Page 1

3GPP T3 #22

Marbella, Spain, 22 – 25 January 2002
Tdoc T3-020027

CR-Form-v3

CHANGE REQUEST

(

31.113
CR

(

rev
1
(

Current version:
5.1.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM
X
ME/UE

Radio Access Network

Core Network

Title:
(

Addition of Security Plug-Ins

Source:
(

SmartTrust

Work item code:
(

USAT interpreter

Date: (

2002-01-15

Category:
(

B

Release: (

Rel-5

Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

The first release of the USAT Interpreter should have standardised security plug-ins

Summary of change:
(

Native Commands (Plug-Ins) for PKI, Triple-DES and PIN-handling are added

Consequences if
(

not approved:

Clauses affected:
(

9, 9.1, 9.2, 9.3, Annex D, Annex E and Annex F

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

Doc T3-020028 is related to this CR

9
Native Commands

Native Commands or "plug-ins" shall be used to provide specific functionality not contained in the USAT Interpreter byte code set. This can be e.g. operating system calls, execution of specific security algorithms, calculation routines or conversion routines. All native commands are called using the Execute Native Command byte code.

Each native command shall have a Native Code Identifier. The Native Code Identifier has a size of 2 bytes and is binary coded, most significant byte first. The values '0000' to '7FFF' are RFU for native commands specified in the present document. Other values may be used for proprietary implementations.

Native Commands are optionally to be supported by the USAT Interpreter. If Native Commands are supported by the USAT Interpreter, which are specified within the present document (using a NCI specified in the present document), they shall be implemented according to the present document.

Native commands specified by the present document:

9.1
PKI Plug-ins

9.1.1
P7 - PKCS#7 Signature Plug-In

9.1.1.1
Description

The P7 plug-in is used to provide a digital signature based on a private (RSA) key stored on the USIM card. The output of the plug-in is compliant with the WMLScript Crypto Library SignText function. As such, P7 will also be compliant with other important (de-facto) standards like PKCS#1, PKCS#7 and CMS.

When executed, the plug-in starts by showing the text-to-be-signed to the user and awaits user conformation. The user confirms by pressing the ‘OK’ button, or rejects by pressing the ‘Cancel’ button. If the user confirms, he will also be requested to enter the signature PIN. After the PIN has been entered correctly, the plug-in calculates the signature and returns the signature value to the calling script.

9.1.1.2
NCI

The NCI for this plug-in is ‘0001’.

9.1.1.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
‘00’/’01’/

’02’/’03’
Key identifier type (KIT). Indicates the type of the key identifier supplied in the next parameter:

· ‘00’ = No key identifier supplied. The plug-in shall choose a default key, if such a key exists, or abort with error code ‘No such key error’.

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in shall use a signature key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index of RSA key.
M

1
Data
Index of RSA key (AKI).
C

20
Data
User key hash.
C

20
Data
Trusted key hash.
C

1
‘04’/’08’
Character encoding scheme.

· ‘04’ = GSM default (unpacked). See 3GPP TS 23.038 ([3]) for further reference.

· ‘08’ = UCS2.
M

1
Data
Processing options.
M

N
Data
Text to be signed (TTBS). Represented in the indicated character encoding scheme.
M

Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

Content flag

 0: Don’t include TTBS in the output.

 1: Include the TTBS in the output.

Key hash flag

 0: Don’t include hash of the public key in the output.

 1: Include hash of the public key in the output.

Certificate flag

 0: Don’t include a URL to the public key certificate in the output.

 1: Include a URL to the public key certificate in the output.

ICCID flag

 0: Don’t include the ICCID in the output.

 1: Include the ICCID in the output.

Message digest flag

 0: Don’t include the message digest of the TTBS in the output.

 1: Include the message digest of the TTBS in the output.

Key index flag

 0: Don’t include the index of the RSA key in the output.

 1: Include the index of the RSA key in the output

RFU

9.1.1.4
Output Parameters

The output from the plug-in is a single value representing one (and only one) of the following:

· A SignedContent data structure as described in D.5.2.3.

· An error message in case the user cancels the operation.

The output shall be returned in the variable indicated in the output variable list.

9.1.1.5
Execution

The detailed execution of the plug-in is described in annex D.5.1.

9.1.1.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter.
Stop

Internal error
Internal error.
Stop

User cancel
User cancelled the operation.
Continue

No such key error
The requested key is not available.
Stop

RSA error
Error occurred in RSA calculation.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.1.2
FP – Fingerprint Plug-In

9.1.2.1
Description

The FP plug-in is used to provide a digital signature based on a private (RSA) key stored on the USIM card. The plug-in output contains a PKCS#1 compliant digital signature and will as such be in line with important (de-facto) standards like PKCS#1, PKCS#7 and CMS.

At first glance, FP may seem strikingly similar to the P7 plug-in. This is nevertheless not the case. As opposed to the P7 plug-in, FP will not operate strictly according to the WYSIWYS (what-you-see-is-what-you-sign) paradigm, but instead work more as an alternative to a smart card in a “fixed” PKI scenario. This ensures that FP can be utilized in cases where P7 is clearly unsuitable, e.g:

· Signing data larger than a few hundred bytes, e.g. an email message or word-processors document.

· Signing data that is not displayable on a mobile phone, e.g. a word-processor document or random nonce in a VPN set-up phase.

Other utilization is also easily imaginable.

When executed, the plug-in starts by displaying a certain value (called an authorization value) to the user that must be explicitly verified. The user confirms by pressing the ‘OK’ button or rejects by pressing the ‘Cancel’ button. If the user confirms, he will also be requested to enter the signature PIN. After the PIN has been entered correctly, the plug-in calculates the digital signature and returns the signature value to the calling script.

9.1.2.2
NCI

The NCI for this plug-in is ‘0002’.

9.1.2.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
‘00’/’01’/

’02’/’03’
Key identifier type (KIT). Indicates the type of the key identifier supplied in the next parameter:

· ‘00’ = No key identifier supplied. The plug-in shall choose a default key, if such a key exists, or abort with error code ‘No such key error’.

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in shall use a signature key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index of RSA key.
M

1
Data
Index of RSA key (AKI).
C

20
Data
User key hash.
C

20
Data
Trusted key hash.
C

1
Data
Processing options.
M

N
Data
Data-to-be-signed. To be truly PKCS#1 compliant, this should be a DER encoded value of the DigestInfo ASN.1 type, as specified in PKCS#1. Note: N must be equal to or greater than 16.
M

Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

RFU

Key hash flag

 0: Don’t include hash of the public key i the output.

 1: Include hash of the public key in the output.

Certificate flag

 0: Don’t include a URL to the public key certificate in the output.

 1: Include a URL to the public key certificate in the output.

ICCID flag

 0: Don’t include the ICCID in the output.

 1: Include the ICCID in the output.

RFU

Key index flag

 0: Don’t include the index of the RSA key in the output.

 1: Include the index of the RSA key in the output

RFU

9.1.2.4
Output Parameters

The output from the plug-in is a single value representing one (and only one) of the following:

· A WrappedContent data structure as described in D.6.2.2.

· An error message in case the user cancels the operation.

The output shall be returned in the variable indicated in the output variable list.

9.1.2.5
Execution

The detailed execution of the plug-in is described in annex D.6.1.

9.1.2.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

User cancel
User cancelled the operation.
Continue

No such key error
The requested key is not available.
Stop

RSA error
Error occurred in RSA calculation.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.1.3
AD – Asymmetric Decryption Plug-In

9.1.3.1
Description

This plug-in is used for application-level asymmetric (RSA) decryption.

Just as in the case with the FP plug-in, the motivation for this plug-in is to serve as a replacement for a smart card in a “fixed” PKI scenario. While the FP plug-in is focused on digital signatures, AD is focused on the remaining private key operation, namely decryption.

If the output of the plug-in shall be used in a network application, it is crucial that the plaintext is protected by some means, e.g. using cryptographic blinding techniques.

When executed, the plug-in starts by displaying a certain value (called an authorization value) to the user that must be explicitly verified. The user confirms by pressing the ‘OK’ button or rejects by pressing the ‘Cancel’ button. If the user confirms, he will also be requested to enter the private key PIN. After the PIN has been entered correctly, the plug-in calculates the signature and returns the signature value to the calling script.

9.1.3.2
NCI

The NCI for this plug-in is ‘0003’.

9.1.3.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
‘00’/’01’/

’02’/’03’
Key identifier type (KIT). Indicates the type of the key identifier supplied in the next parameter:

· ‘00’ = No key identifier supplied. The plug-in shall choose a default key, if such a key exists, or abort with error code ‘No such key error’.

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in shall use a decryption key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index of RSA key.
M

1
Data
Index of RSA key (AKI).
C

20
Data
User key hash.
C

20
Data
Trusted key hash.
C

N
Data
Ciphertext. A byte string of the same (byte) length as the modulus of the decryption key. Note: N must be equal to or greater than 16.
M

Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

9.1.3.4
Output Parameters

The output from the plug-in is a single value representing one (and only one) of the following:

•
The plaintext (i.e. the decrypted ciphertext) as described in D.7.2.

•
An error message in case the user cancels the operation.

The output shall be returned in the variable indicated in the output variable list.

9.1.3.5
Execution

The detailed execution of the plug-in is described in annex D.7.1.

9.1.3.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK
Continue

Input parameter error
Invalid input parameter(s)
Stop

Internal error
Internal error.
Stop

User cancel
User cancelled the operation
Continue

No such key error
The requested key is not available
Stop

RSA error
Error occurred in RSA calculation.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.2
Triple DES Plug-ins

9.2.1
DE – Triple DES Encryption Plug-In

9.2.1.1
Description

The DE plug-in is used to encrypt arbitrary application-level data. It is typically called from a page to privacy-protect data before it is transmitted to a network application.

9.2.1.2
NCI

The NCI for this plug-in is ‘0004’.

9.2.1.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
Data
Index of secret key (SKI).
M

1
Data
Processing options.
M

N
Data
Data to encrypt (plaintext).
M

Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

IV flag:

 0: IV=0

 1: Plaintext starts with IV (8 bytes)

Cipher spec:

 00: 3DES EDE ECB with two keys

 01: 3DES EDE CBC with two keys

 10: 3DES EDE ECB with three keys

 11: 3DES EDE CBC with three keys

RFU

ECB mode combined with IV shall be regarded as an input parameter error.
9.2.1.4
Output Parameters

The output from the plug-in is a single value representing the encrypted plaintext (i.e. ciphertext). The length of the output is 1 to 8 bytes longer than the length of the plaintext.

The output shall be returned in the variable indicated in the output variable list.

9.2.1.5
Execution

The detailed execution of the plug-in is described in annex F.5.1.

9.2.1.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK
Continue

Input parameter error
Invalid input parameter(s)
Stop

Internal error
Internal error.
Stop

No such key error
The requested key is not available.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.2.2
DD – Triple DES Decryption Plug-In

9.2.2.1
Description

The DD plug-in is used to decrypt arbitrary application-level data. It is typically called from a page to recover data that has been privacy protected by a network application.

9.2.2.2
NCI

The NCI for this plug-in is ‘0005’.

9.2.2.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
Data
Index of secret key (SKI).
M

1
Data
Processing options.
M

N
Data
Data to decrypt (ciphertext)
M

Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

IV flag

 0: IV=0

 1: Ciphertext starts with IV (8 bytes)

Cipher spec:

 00: 3DES EDE ECB with two keys

 01: 3DES EDE CBC with two keys

 10: 3DES EDE ECB with three keys

 11: 3DES EDE CBC with three keys

RFU

ECB mode combined with IV shall be regarded as an input parameter error.
9.2.2.4
Output Parameters

The output from the plug-in is a single value representing the decrypted ciphertext (i.e. plaintext). The length of the output is 1 to 8 bytes shorter than the length of the ciphertext.

The output shall be returned in the variable indicated in the output variable list.

9.2.2.5
Execution

The detailed execution of the plug-in is described in annex F.6.1.

9.2.2.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

No such key error
The requested key is not available.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.2.3
DS – Triple DES Sign Plug-In

9.2.3.1
Description

The DS plug-in is used to calculate a message authentication code (MAC) for arbitrary application-level data. The MAC can be used as a data integrity mechanism to verify that data has not been altered in an unauthorised manner. It can also be used as a message authentication mechanism to provide assurance that a message has been originated by an entity in possession of the secret key.

9.2.3.2
NCI

The NCI for this plug-in is ‘0006’.

9.2.3.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
Data
Index of secret key (SKI).
M

1
Data
Processing options.
M

1
‘04’/’08’
Character encoding scheme.

· ‘04’ = GSM default (unpacked). See 3GPP TS 23.038 ([3]) for further reference.

· ‘08’ = UCS2.
M

N
Data
Text to be signed (TTBS). Represented in the indicated character encoding scheme.
M

Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Coding of the ‘Processing options’:

b8
b7
b6
b5
b4
b3
b2
b1

Truncation flag

 0: 4 byte output

 1: 8 byte output

RFU

9.2.3.4
Output Parameters

The output from the plug-in is a single value representing one (and only one) of the following:

· The signature (or more accurately, the MAC) on the text-to-be-signed. The length of the signature is 4 or 8 bytes as indicated by the ‘Truncation flag’.

· An error message in case the user cancels the operation.

The output shall be returned in the variable indicated in the output variable list.

9.2.3.5
Execution

The detailed execution of the plug-in is described in annex F.7.1.

9.2.3.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

User cancel
User cancelled the operation.
Continue

No such key error
The requested key is not available.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

9.2.4
DU – Triple DES Unwrap Plug-In

9.2.4.1
Description

The DU plug-in is a key-management plug-in that enables a party in possession of a certain secret key, called a key encryption key, to replace a key stored in the USIM at its own desire.

9.2.4.2
NCI

The NCI for this plug-in is ‘0007’.

9.2.4.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
Data
Index of the secret key to be updated (SKI).
M

1
Data
Attributes.
M

N
Data
Encrypted key data.
M

Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

Coding of the ‘Attributes’ field:

b8
b7
b6
b5
b4
b3
b2
b1

Algorithm ID (AID):

 00: 3DES EDE CBC with three keys + ISO9797 MAC
 01: 3DES EDE CBC with two keys + SHA-1 MDC
 10: 3DES EDE CBC with two keys + ISO 97979 MAC
 11: 3DES EDE CBC with three keys + SHA-1 MDC

RFU

Wrapped key length (KL):

 00: 16 bytes

 01: 24 bytes

 10: 32 bytes

 11: 8 bytes

RFU

9.2.4.4
Output Parameters

The plug-in does not produce an output.

9.2.4.5
Execution

The detailed execution of the plug-in is described in annex F.8.1.

9.2.4.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

Integrity error
Integrity error.
Stop

No such key error
The requested key is not available.
Stop

9.3
PIN Management Plug-ins

9.3.1
CP – Change PIN Plug-In

9.3.1.1
Description

The CP plug-in shall be used to change a PIN to a value specified by the user. The user is requested to enter first the old PIN and then the new PIN twice, before the PIN is changed.

9.3.1.2
NCI

The NCI for this plug-in is ‘0008’.

9.3.1.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
’01’/’02’/

’03’/’04’
Key identifier type. Indicates the type of the key identifier supplied in the next parameter:

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in shall use a signature key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index of RSA key.

· ‘04’ = Index of secret key.
M

1
Data
Index of secret key.
C

1
Data
Index of RSA key.
C

20
Data
User key hash
C

20
Data
Trusted key hash
C

Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

9.3.1.4
Output Parameters

The plug-in does not produce an output.

9.3.1.5
Execution

The detailed execution of the plug-in is described in annex E.6.1.

9.3.1.6
Errors

The following errors are possible:

Error Code
Description
Action

No error
OK
Continue

Input parameter error
Invalid input parameter(s)
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

No such key error
The requested key is not available.
Stop

Internal error
Internal error
Stop

9.3.2
RP – Reset PIN Plug-In

9.3.2.1
Description

A specially trusted party may use the RP plug-in to set a PIN to a value of its own choice.

9.3.2.2
NCI

The NCI for this plug-in is ‘0009’.

9.3.2.3
Arguments

The arguments (i.e. the value part of the input list TLV) shall be according to the following table:

Length
Value
Description
M/O/C

1
’01’/’02’/

’03’/’04’
Key identifier type (KIT). Indicates the type of the key identifier (KI) supplied in the next parameter:

· ’01 = User key hash. SHA-1 hash of the user public key is supplied in the next parameter. The plug-in shall use the private key that corresponds to the public key hash or, if this key is not available, or abort with error code ‘No such key error’.

· ‘02’ = Trusted key hash. A SHA-1 hash of a trusted CA public key is supplied in the next parameter. The plug-in shall use a signature key that is certified by the indicated CA or, if such a key is not available, or abort with error code ‘No such key error’.

· ‘03’ = Index of RSA key.

· ‘04’ = Index of secret key.
M

1
Data
Index of secret key.
C

1
Data
Index of RSA key.
C

20
Data
User key hash.
C

20
Data
Trusted key hash.
C

1
’80’/’81’/

’82’/’83’
Algorithm identifier (AID).

· ‘80’ = 3DES EDE CBC with two keys + SHA-1 MDC

· ‘81’ = 3DES EDE CBC with two keys + ISO9797 MAC

· ‘82’ = 3DES EDE CBC with three keys + SHA-1 MDC

· ‘83’ = 3DES EDE CBC with three keys + ISO9797 MAC
M

N
Data
Encrypted PIN data (EP).
M

Malformed, out of range, or missing input parameters shall result in error code ‘Input parameter error’ and plug-in termination.

9.3.2.4
Output Parameters

The plug-in does not produce an output.

9.3.2.5
Execution

The detailed execution of the plug-in is described in annex E.7.1.

9.3.2.6
 Errors

The following errors are possible:

Error Code
Description
Action

No error
OK.
Continue

Input parameter error
Invalid input parameter(s).
Stop

Internal error
Internal error.
Stop

PIN length error
The received PIN was to long or to short.
Stop

Integrity error
Integrity error.
Stop

No such key error
The requested key is not available.
Stop

Illegal operation
Attempt to perform an illegal operation.
Stop

Annex D (informative):
PKI Plug-ins Implementation Specification

D.1
Scope

This annex provides detailed implementation guidelines for the PKI plug-ins outlined in section 9.1 of this document.

D.2
References

[PKCS1]
RSA Laboratories , “PKCS #1 v2.0: RSA Cryptography Standard”, http://www.rsalabs.com/pkcs/
[PKCS7]
RSA Laboratories , “PKCS #7 v1.5: Cryptographic Message Syntax”, http://www.rsalabs.com/pkcs/
[PKCS9]
RSA Laboratories , “PKCS#9 v2.0: Selected Object Classes and Attribute Types”, http://www.rsalabs.com/pkcs/
[PKCS15]
RSA Laboratories , “PKCS #15 v1.1: Cryptographic Token Information Syntax Standard”, http://www.rsalabs.com/pkcs/
[SHA1]
FIPS PUB 180-1, “Secure Hash Standard (SHS)”

[WMLCLIB]
Wireless Application Forum , “Wireless Application Protocol – WMLScript Crypto Library Specification”, Version 20-Jun-2001.

[WAPWTLS]
Wireless Application Forum , “Wireless Application Protocol – Wireless Transport Layer Security Specification”, Version 18-Feb-2000s.

D.3
Symbols

|| .||
Byte length operator.

X || Y
Concatenation of byte-strings X and Y (in that order).

AKI
One byte key Index of a RSA (private) key

bn
Individual bit in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most significant), denoted b8.

Bn
Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n (rightmost), denoted Bn.

c
Ciphertext representative. An integer between 0 and n-1.

C
Ciphertext. Input parameter to the AD plug-in.

DTBS
Data-to-be-signed. Input parameter to the FP plug-in.

EM
Encoded message, a byte string.

EMSA-PKCS1-v1_5-ENCODE
PKCS#1 encoding function. See [PKCS1] section 9.2.1 for further reference

I2OSP
Integer-to-Octet-String conversion primitive. See [PKCS1] section 4.1 for further reference.

ICCID
Raw ICCID. 10 bytes length.

k
Length in bytes of the modulus.

K
RSA private key.

KH
SHA-1 hash of the public key. The hash shall be computed from the unsigned modulus to be in line with WAP WTLS and WAP WIM.

m
Message representative. An integer between 0 and n-1.

M
Message, a byte string.

MD
SHA-1 hash of the TTBS.

n
Modulus. An integer.

OS2IP
Octet-String-to-Integer conversion primitive. See [PKCS1] section 4.2 for further reference.

R
Random nonce. 8 bytes length.

RSADP
RSA decryption primitive. See [PKCS1] section 5.1.2 for further reference.

RSASP1
RSA signature primitive. See [PKCS1] section 5.2.1 for further reference.

RSASSA-PKCS1-v1_5-SIGN
PKCS#1 signature generation function. See [PKCS1] section 8.1.1 for further reference.

S
Raw signature of byte length k.

SHA1
SHA-1 hash function. See [SHA1] for further reference.

TTBS
Text-to-be-signed. Byte string. Input parameter to P7 plug-in.

D.4
Abbreviations

For the purposes of the present annex, following abbreviations apply:

AD
Asymmetric Decryption Plug-in

ASN.1

Abstract Syntax Notation One (1)

CMS

Cryptographic Message Syntax

DER

Distinguished Encoding Rules of ASN.1

FP
Fingerprint Plug-in

IANA

Internet Assigned Numbers Authority

OID

Object Identifier

P7
PKCS#7 Signature Plug-in

OTA

Over-the-Air

PIN

Personal Identification Number

PKCS

Public-Key Cryptography Standards

PUK

PIN Unblocking Key

RFU

Reserved for Future Use

RSA

Algorithm invented by Rivest, Adleman and Shamir.

SHA-1
Secure Hash Algorithm 1

UCS2

Universal Character Set (2)

URL

Universal Resource Locator

WAP
Wireless Application Protocol

WTLS
Wireless Transport Layer Security

WIM
Wireless Identity Module

D.5
P7

D.5.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the P7 execution.

[image: image1]

 SHAPE * MERGEFORMAT
As illustrated, the plug-in starts by showing the text-to-be-signed to the user and then awaits user confirmation. The user confirms by pressing the ‘OK’ button or cancels by pressing the ‘Cancel’ button. If the user confirms, he will be asked to enter his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The termination states indicate the following:

CANCEL – Indicates that the user cancelled the operation. The plug-in shall set the error code to ‘User cancel’, the output to the string “error:userCancel”, and terminate.

FINISHED – Indicates success. The plug-in shall set the error code to ‘No error’, the output to the calculated SignedContent data structure, and terminate.

ERROR – Indicates an error. The plug in shall set the error code to an appropriate value and terminate.

The ‘Select key’ procedure is implementation dependent and cannot therefore be described in detail. The following requirements still apply:

· An implementation shall be capable of selecting a key based on any valid key identifier type.

· If the key identifier references a non-existing key or if the key is incorrect in some other manner, the plug-in shall set the error code to ‘No such key error’ and terminate.

· The P7 plug-in is a digital signature plug-in. Consequently, only private keys assigned for digital signatures shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

The ‘Verify PIN’ procedure is briefly illustrated below.

[image: image2]
If the PIN is entered incorrectly, the “Wrong PIN” message shall be displayed concatenated with the number of attempts left. E.g. if the “Wrong PIN” message is “Wrong PIN. Attempts left: ” and there are two attempts left before blocking, the message displayed on the screen shall be “Wrong PIN. Attempts left: 2”.

PUK handling is omitted in the figure, since it is a rather implementation dependent. It is nevertheless a mandatory requirement to support PUKs.

The ‘Generate signature’ procedure is described in the next section.

D.5.2
Signature calculation

The output from the P7 plug-in is a SignedContent data structure as specified in [WMLCLIB]. The (ordered) steps to produce this data structure are as follows:

1. Template expansion

2. Signing

3. Output formatting

Each step is described thoroughly in the following sections.

D.5.2.1
Template Expansion

The template expansion constructs the signer’s authenticated attributes. These are:

Attribute
OID
Binary OID

contentType
pkcs-9 3
2A 86 48 86 F7 0D 01 09 03

messageDigest
pkcs-9 4
2A 86 48 86 F7 0D 01 09 04

signerNonce
pkcs-9 25 3
2A 86 48 86 F7 0D 01 09 19 03

See [PKCS9] for further information regarding these attributes.

First, construct the following 91-byte buffer (‘xx’ indicates an undefined value):

31 59

 30 18

 06 09 2a 86 48 86 f7 0d 01 09 03 -– contentType
 31 0B

 06 09 2a 86 48 86 f7 0d 01 07 01 -- data

 30 18

 06 0A 2a 86 48 86 f7 0d 01 09 19 03 –- signerNonce
 31 0A

 04 08 xx xx xx xx xx xx xx xx –- random nonce

 30 23

 06 09 2A 86 48 86 F7 0D 01 09 04 -– messageDigest

 31 16

 04 14 xx xx xx xx xx xx xx xx xx -- SHA-1 digest

 xx xx xx xx xx xx xx xx xx xx xx

The authenticated attributes are included in ascending order compared as byte strings.

Now perform the following steps.

1. Generate R, a 8 byte nonce, and replace B47 to B54 of the buffer with R. The nonce should be a pseudorandom number generated securely in the USIM and of good quality. Recommended standards for implementing pseudorandom bit generators are ANSI X9.19 or FIPS 186.

2. Generate

 MDC = SHA-1(TTBS).

Replace B72 to B91 of the buffer with MD.

The expanded buffer constitutes the input to the signature generation operation.

D.5.2.2
Signature Generation Operation

Generate the signature

 S = RSASSA-PKCS1-v1_5-SIGN(K, M)

where K is the selected private key and M is the output from the pervious step.

The hash function required in EMSA-PKCS1-v1_5-ENCODE shall be SHA-1. See [PKCS1] section 9.2.1 for further details.

Errors occurring during the signature generation shall lead to error code ‘RSA error’ and plug-in termination.

D.5.2.3
Output data formatting

The SignedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers the required steps.

B := ‘01’

B := B || ‘01’

B := B || k || S

siLen := 0

IF key hash flag is set

siLen := siLen + 21

END

IF ICCID flag is set

siLen := siLen + 11

END

IF key index flag is set

siLen := siLen + 2

END

IF certificate flag is set

z := 0

FOR all certificate URLs

urlLen = ||URL||

z := z + urlLen + 2

END

siLen := siLen + z

END

B := B || siLen

IF ICCID flag is set

B := B || ‘80’ || ICCID

END

IF key index flag is set

B := B || ‘81’ || AKI

END

IF key hash flag is set

B := B || ‘01’ || KH

END

IF certificate flag is set

FOR all certificate URLs

urlLen = ||URL||

B := B || ‘05’ || urlLen || URL

END

END

B := B || ‘01’

IF character encoding scheme is UCS2

B := B || ‘03E8’

ELSE

B := B || ‘07D0’

END

IF content flag is set

ttbsLen = ||TTBS||

B := B || ‘01’ || ttbsLen || TTBS

ELSE

B := B || ‘00’

END

IF message digest flag is set

B := B || ‘1E’ || ‘80’ || MD

ELSE

B := B || ‘09’

END

B := B || ‘02’ || R

The following remarks to the pseudo code apply:

· After the last step, the variable B contains the plug-in output value.

· Using ICCID as a SignerInfo has no equivalent in [WMLCLIB].

· The value ‘07D0’ (2000 decimal) is used due to fact that IANA has not assigned a character set number for the GSM default character set.

· k, siLen and ttbsLen shall all be encoded in two bytes, big endian.

D.6
FP

D.6.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the FP execution.

[image: image3]

 SHAPE * MERGEFORMAT
As illustrated, the plug-in starts by displaying the authorization request to the user and the await user confirmation.

The authorization request itself consists of the authorization prompt concatenated with the authorization value, which is an excerpt of the data-to-be-signed (DTBS). The authorization value shall be displayed using a two-digit hexadecimal representation for every byte. The digits of the hexadecimal alphabet shall be “0123456789ABCDEF”, i.e. lower-case letters are not allowed. If DTBS is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with the most significant byte. To improve readability, the hexadecimal digits shall be grouped 4‑and‑4, with space between the groups. Splitting a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorization value with information received via some other channel, the user confirms by pressing the ‘OK’ button or cancels by pressing the ‘Cancel’ button. If the user confirms, he will be asked to enter his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The termination states indicate the following:

CANCEL – Indicates that the user cancelled the operation. The plug-in shall set the error code to ‘User cancel’, the output to the string “error:userCancel”, and terminate.

FINISHED – Indicates success. The plug-in shall set the error code to ‘No error’, the output to the calculated WrappedContent data structure, and terminate.

ERROR – Indicates an error. The plug in shall set the error code to an appropriate value and terminate.

The ‘Select key’ procedure is implementation dependent and cannot therefore be described in detail. The following requirements apply:

· An implementation shall be capable of selecting a key based on any valid key identifier type.

· If the key identifier references a non-existing key or if the key is incorrect in some other manner, the plug-in shall set the error code to ‘No such key error’ and terminate.

· The FP plug-in is a digital signature plug-in. Consequently, only private keys assigned for digital signatures shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

The ‘Verify PIN’ procedure is identical to the procedure described in section D.5.1.

The ‘Generate signature’ procedure is described in the next section.

D.6.2
Signature calculation

D.6.2.1
Signature Generation Operation

Generate the signature

 S = RSASSA-PKCS1-v1_5-SIGN(K, DTBS)

where K is the selected private key and DTBS is supplied as an input parameter.

In EMSA-PKCS1-v1_5-ENCODE, only steps from (including) step 3 shall be executed. The following equality (using PKCS#1 terminology) apply for the computation of the remaining steps:

 T = DTBS and ||T|| = ||DTBS||
Errors occurring during the signature generation shall lead to error code ‘RSA error’ and plug-in termination.

D.6.2.2
Output data formatting

The WrappedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers the required steps.

B := ‘02’

B := B || k || S

siLen := 0

IF key hash flag is set

siLen := siLen + 21

END

IF ICCID flag is set

siLen := siLen + 11

END

IF key index flag is set

siLen := siLen + 2

END

IF certificate flag is set

z := 0

FOR all certificate URLs

urlLen = ||URL||

z := z + urlLen + 2

END

siLen := siLen + z

END

B := B || siLen

IF ICCID flag is set

B := B || ‘80’ || ICCID

END

IF key index flag is set

B := B || ‘81’ || AKI

END

IF key hash flag is set

B := B || ‘01’ || KH

END

IF certificate flag is set

FOR all certificate URLs

urlLen = ||URL||

B := B || ‘05’ || urlLen || URL

END

END

The following remarks to the pseudo code apply:

· After the last step, the variable B contains the plug-in output value.

· k and siLen shall be encoded in two bytes, big endian.

D.6.3
Format of WrappedContent

For completeness, the formal definition of WrappedContent is included below (it is described using the same presentation language as used in [WMLCLIB]).

struct {

 opaque signature<0.. 2^16-1>;

} Signature;

enum {

 sha_key_hash(1),

 certificate_url(5),

 iccid (128),

 aki (129),

 (255)

} SignerInfoType;

Item
Description

sha_key_hash
The SHA-1 hash of the public key, encoded as specified in [WAPWTLS].

certificate_url
A URL where the certificate is located.

iccid
The (raw) ICCID.

aki
The Index of the used private key.

struct {

 SignerInfoType signer_info_type;

 switch (signer_info_type) {

 case sha_key_hash: opaque hash[20];

 case certificate_url: opaque url<0..255>;

 case iccid: opaque iccid[10];

 case aki: uint8;

 };

} SignerInfo;

struct {

 uint8 version;

 Signature signature;

 SignerInfo signer_infos<0..2^16-1>;

} WrappedContent;

Item
Description

version
Version of the WrappedContent structure. The current version is 2.

signature
Signature

signer_infos
Information about the signer. This may contain zero items (in case the signer is implicit). Also, there may be multiple items of SignerInfo present (public key hash and a certificate).

D.7
AD

D.7.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the AD execution.

[image: image4]

 SHAPE * MERGEFORMAT
As illustrated, the plug-in starts by displaying the authorization request to the user and the await user confirmation.

The authorization request itself consists of the authorization prompt concatenated with the authorization value, which is an excerpt of the ciphertext (C). The authorization value shall be displayed using a two-digit hexadecimal representation for every byte. The digits of the hexadecimal alphabet shall be “0123456789ABCDEF”, i.e. lower-case letters are not allowed. If C is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with the most significant byte. To improve readability, the hexadecimal digits shall be grouped 4‑and‑4, with space between the groups. Splitting a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorization value with information received via some other channel, the user confirms by pressing the ‘OK’ button or cancels by pressing the ‘Cancel’ button. If the user confirms, he will be asked to enter his PIN and after that, if the PIN was valid, the plug-in decrypts the data.

The termination states indicate the following:

CANCEL – Indicates that the user cancelled the operation. The plug-in shall set the error code to ‘User cancel’, the output to the string “error:userCancel”, and terminate.

FINISHED – Indicates success. The plug-in shall set the error code to ‘No error’, the output to the decrypted ciphertext, and terminate.

ERROR – Indicates an error. The plug in shall set error the code to an appropriate value and terminate.

The ‘Select key’ procedure is implementation dependent and cannot therefore be described in detail. The following requirements apply:

· An implementation shall be capable of selecting a key based on any valid key identifier type.

· If the key identifier references a non-existing key or if the key is incorrect in some other manner, the plug-in shall set the error code to ‘No such key error’ and terminate.

· Only private keys assigned for decryption purposes shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

The ‘Verify PIN’ procedure is identical to the procedure described in section D.5.1.

The ‘Decrypt’ procedure is described in the next section.

D.7.2
Decryption calculation

The decrypted ciphertext (i.e. plaintext), and hence the output of the plug-in is generated by computing the steps outlined below.

1. Convert the ciphertext C to an integer ciphertext representative c:

 c = OS2IP(C)

2. Calculate the integer message representative m:

 m = RSADP (K, c)

where K is the selected private key.

3. Convert the message representative m to an encoded message M of length k octets:

 M = I2OSP (m, k)

M represents the decrypted ciphertext, and hence the output from the plug-in.

Errors occurring during the decryption shall lead to error code ‘RSA error’ and plug-in termination

D.8
Non-functional Requirements

D.8.1
OTA/Management Requirements

1. All OTA/management requirements with regard to PINs and PUKs listed in E.8.2 apply equally here..

2. It shall be possible to enable or disable the ‘Authorization request’ and the subsequent user confirmation by performing an administrative task, both at personalization time and OTA.

3. The authorization prompt shall be configurable through an administrative task, both at personalization time and OTA. UCS2 and GSM default alphabets shall be supported.

4. It should be possible to configure the number of digits displayed in the authorization value through an administrative task, both at personalization time and OTA. The number of digits displayed shall be 4, 8, 12 or 16, with 16 as the default.

5. The list of URL(s) linked to a key shall be updatable through an administrative task, both at personalization time and OTA.

D.8.2
Architectural Requirements

1. All architectural requirements with regard to PINs and PUKs listed in E.8.2 apply equally here.

2. Key diversification shall be supported. This is to ensure that certain clearly inappropriate use cases, such as using a digital signature key with the AD plug-in, are prevented. At least the following types of (private) keys shall be distinguishable:

a. non-repudiation

b. digital signature

c. unwrap

d. decrypt

Annex E (informative):
PIN Management Plug-ins Implementation Specification

E.1
Scope

This annex provides detailed implementation guidelines for the PIN management plug-ins outlined in section 9.3 of this document.

E.2
References

[APPLIED]
B. Schneier, “Applied Cryptography: Protocols, Algorithms and Source Code in C”, 2nd Edition.

[DEA]
ISO 8731-1, “Banking – Approved algorithms for message authentication – Part 1: DEA”
[ISO9797]
ISO/IEC 9797-1:1999(E) – Information technology – Security techniques – Message Authentication Codes (MACs)
[MODES]
ISO/IEC 10116 – Security Techniques – Modes of Operation for an n-bit Block Cipher Algorithm”
[SHA1]
FIPS PUB 180-1, “Secure Hash Standard (SHS)”

E.3
Symbols

<i..j>
Sub-string extraction operator. Extracts bytes i through j.
[image: image5.wmf]j

i

£

£

1

.

X || Y
Concatenation of byte-strings X and Y (in that order).

|| .||
Byte length operator.

bn
Individual bit in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most significant), denoted b8.

Bn
Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n (rightmost), denoted Bn.

DP
Decrypted PIN data.

EP
Encrypted PIN data.

ISO_9797_ALG3
MAC algorithm 3. See [ISO9797] section 7.3 for further reference.

ISO_9797_PAD2
ISO9797 padding method 2. See [ISO9797] section 6.1.2 for further reference.

K1, K2, K , K’
DES keys.

MD
A 20 byte SHA-1 MDC value.

PC
A 8 byte PIN checksum.

PM
A message padded with ISO 9797 padding method 2.

SHA1
SHA-1 hash function. See [SHA1] for further reference.

TDEA_DECR
Triple DES decryption algorithm. See [APPLIED] section 15.2 for details regarding the algorithm.

E.4
Abbreviations

For the purposes of the present annex, following abbreviations apply:

3DES
Triple DES

CBC
Cipher Block Chaining (Mode)

CHV

Cardholder Verification

CP
Change PIN Plug-in

DES

Data Encryption Standard

ECB
Electronic Code-book (mode)

EDE
Encrypt-Decrypt-Encrypt

IV
Initialization Vector

MAC
Message Authentication Code

MDC
Modification Detection Code

OTA

Over-the-Air

PIN

Personal Identification Number

PUK

PIN Unblocking Key

RFU

Reserved for Future Use

RP
Reset PIN Plug-in

SHA-1
Secure Hash Algorithm 1

UCS2

Universal Character Set (2)

E.5
Overview

The PIN (or CHV in the “GSM world”) is a secret number that is involved in the process of user identification. The usual procedure starts with the user entering his PIN at a terminal, and shortly thereafter the display shows whether the PIN was correct, and if not, how many attempts are still left. In this process the PIN is compared with a reference value that is securely stored (preferably) inside a Smart Card (like a USIM). If the user enters the PIN incorrectly several consecutive times, the PIN is blocked for any further PIN verification, and may only be unblocked by using a special unblocking PIN called PUK (this possibility may not exist in all applications).

In an ideal world there would be no need to change or reset the PIN. Unfortunately, PINs are occasionally compromised and users have a tendency of forgetting them. To handle such situations, this annex introduces plug-ins for PIN management:

Change PIN - This plug-in is capable of changing the PIN to a value entered by the user on the UE keypad.

Reset PIN - This plug in offers means whereby a trusted party may (re)set a PIN value over-the-air.

E.6
CP

E.6.1
Plug-in Execution

The plug-in execution start with locating the PIN to be changed. This requires the plug-in to find the PIN based on the key identifier input parameter. Exactly how this is done is implementation dependent. If a PIN cannot be located, e.g. because the key identifier is referencing a non-existing key or due to some other error, the plug in shall set the error code to ‘No such key error’ and terminate.

After locating the PIN, the user must enter the PIN to authorize the modification, and thereafter enter the new PIN twice. The sequence diagram below illustrates this briefly.

[image: image6]

 SHAPE * MERGEFORMAT
If the PIN is entered incorrectly, the “Wrong PIN” message shall be displayed concatenated with the number of attempts left. E.g. if the “Wrong PIN” message is “Wrong PIN. Attempts left: ” and there are two attempts left before blocking, the message displayed on the screen shall be “Wrong PIN. Attempts left: 2”.

A PIN shall be associated with a maximum and minimum length. The plug-in shall ensure the new PIN entered by the user is within these boundaries, before it is accepted.

After the PIN has been changed, the plug-in shall set the error code to ‘No error’, and terminate.

E.7
RP

E.7.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the RP execution.

[image: image7]

 SHAPE * MERGEFORMAT
The termination states indicate the following:

FINISHED – Indicates success. The plug-in shall set the error code to ‘No error’, and terminate.

ERROR – Indicates an error. The plug in shall set error the code to an appropriate value and terminate.

The ‘Select key’ procedure is implementation dependent and cannot therefore be described in detail. The following requirements still apply:

· If the key identifier references a non-existing key or if the key is incorrect in some other manner, the plug-in shall set the error code to ‘No such key error’ and terminate.

· Only secret keys assigned to the specific purposes of re-setting PINs shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

The ‘Decrypt and verify’ procedure is described in the next section.

E.7.2
Decryption and Verification

This procedure includes decryption of the encrypted PIN data, as well as verification of it’s authenticity.

To decrypt and verify the encrypted PIN data, select the correct algorithm based on the algorithm identifier (AID) and thereafter decrypt and verify according to the selected algorithm.

An implementation must support at least one algorithm.

Algorithms employing SHA-1 are preferred prior to algorithms employing ISO 9797.

E.7.2.1
3DES EDE CBC with two keys + SHA-1 MDC

The decrypted PIN data shall be formatted according to the table below:

Bytes
Description
M/O
Length

1 – 8
Nonce. 8 bytes of random data.
M
8

9 – 16
PIN value. Each digit in the PIN shall be encoded with it’s corresponding GSM default alphabet value. All unused digits at the end shall be encoded as ‘FF’.
M
8

17 – 24
PIN checksum. Truncated SHA-1 MDC.
M
8

To decrypt and verify the PIN data, do the following:

4. Calculate the decrypted PIN data

 DP = TDEA_DECR(EP)

using the following cipher parameterisation:

Keys
K1, K2

Cipher mode
Outer CBC using two keys in DED operation.

IV
0 (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

5. Calculate

 MD = SHA1(KIT || KI || AID || DP<1..16>).

The key identifier type (KIT) and the actual key identifier (KI) must be included in the checksum calculation to avoid certain replay attacks.

6. Calculate the PIN checksum

 PC = MD<1..8>
7. Compare PC with DP<17..24>. If identical, proceed to the next step. Otherwise, set error code to ‘Integrity error’ and terminate.

8. Success. The new PIN is DP<9..16>.

E.7.2.2
3DES EDE CBC with two keys + ISO9797 MAC

The decrypted PIN data shall be formatted according to the table below:

Bytes
Description
M/O
Length

1 – 8
Nonce. 8 bytes of random data.
M
8

9 – 16
PIN value. Each digit in the PIN shall be encoded with it’s corresponding GSM default alphabet value. All unused digits at the end shall be encoded as ‘FF’.
M
8

17 – 24
PIN checksum . ISO 9797 MAC.
M
8

To decrypt and verify the PIN data, do the following:

1. Calculate the decrypted PIN data

 DP = TDEA_DECR(EP)

using the following cipher parameterisation:

Keys
K1, K2

Cipher mode
Outer CBC using two keys in DED operation.

IV
0 (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

2. Calculate

 PM = ISO_9797_PAD2(KIT || KI || AID || DP<1..16>).

The key identifier type (KIT) and the actual key identifier (KI) must be included in the checksum calculation to avoid certain replay attacks.

3. Calculate

 PC = ISO_9797_ALG3(PM).

Using terminology from [ISO9797], keys K and K’ shall be derived by complementing alternate sub-strings of four bits of K1 and K2 respectively, commencing with the first four bits.

8 bytes of output from the MAC calculation shall be used (i.e. m=64 using ISO9797 terminology).

4. Compare PC with DP<17..24>. If identical, proceed to the next step. Otherwise, set the error code to ‘Integrity error’ and terminate.

5. Success. The new PIN is DP<9..16>.

E.7.2.3
3DES EDE CBC with three keys + SHA-1 MDC

This algorithm is identical algorithm ‘80’, except that the 3DES cipher shall be parameterized with three DES keys, as opposed to two for algorithm ‘80’.

E.7.2.4
3DES EDE CBC with three keys + ISO9797 MAC

This algorithm is identical algorithm ‘81’, except that the 3DES cipher shall be parameterized with three DES keys, as opposed to two for algorithm ‘81’.

E.7.3
Changing the PIN value

Changing the PIN value is simply copying the new PIN value to the appropriate location, possibly stripping of the padding bytes and/or converting the PIN value to an internal format.

The ‘remaining attempts’ counter (if it exist) shall always be reset to it’s maximum value at the same time.

The max. and min. length restrictions on the PIN value shall be checked. If violated, the plug-in shall set the error code to ‘PIN length error’ and terminate.

E.8
Non-functional Requirements

E.8.1
OTA/Management Requirements

1. Maximum number of attempts before blocking/termination for PINs and PUKs shall be configurable through an administrative task at personalisation time.
2. PIN and PUK values shall be configurable through an administrative tasks at personalization time.

3. All prompts displayed to the user during PIN/PUK verification shall be configurable through an administrative task, both at personalization time and OTA. UCS2 and GSM default alphabets shall be supported. The following PIN/PUK prompts are foreseeable:

a. “Enter PIN” prompt

b. “Wrong PIN. Attempts left:” message

c. “PIN blocked” message

d. “PIN terminated” message

e. “Enter PUK” prompt

f. “Wrong PUK, try again” message

4. All prompts displayed to the user during the PIN change procedure shall be configurable through an administrative task, both at personalization time and OTA. UCS2 and GSM default alphabets shall be supported. The following prompts/messages are foreseeable:

a. “Enter new PIN” prompt

b. “Confirm new PIN” prompt

c. “No match, try again” message

5. The possibility to use the ‘Reset PIN’ plug-in to reset a PIN shall be configurable on a per PIN basis, using a administrative task at personalization time. I.e. some PINs may not be allowed to be reset via the ‘Reset PIN’ plug-in, while others are.

6. Minimum and maximum PIN lengths shall be configurable using a administrative task at personalization time. The same boundaries shall be shared by all PINs.

E.8.2
Architectural Requirements

1. It shall be possible to associate every key (private or secret) with a unique PIN. It shall also be possible for keys to share PINs, if so desired. The associations between keys and PINs shall be configurable through an administrative task at personalization time. A key that is not linked to a PIN shall not be subjected to PIN verification before it is accessed.

2. Is shall be possible to associated a unique “Enter PIN” prompt (i.e. the first prompt displayed in the PIN verification procedure) to every PIN, and thereby to every key. This is to ensure that the user is given the possibility to recognize a key before using it. All other prompts may be shared between PINs.

3. It shall be possible to associate every PIN with a unique PUK.

4. PIN lengths between 4 and 8 digits shall be supported.

5. Successfully entering a PIN shall only grant access to the underlying key (private or secret) for the remaining duration of the plug-in execution. I.e. the next time the plug-in is executed, a new PIN verification is required.

6. Key diversification with regard to the operation carried out by the RP plug-in, shall be supported. This is to ensure that certain clearly inappropriate use cases, such as using a PIN reset key for general encryption/decryption, are prevented.

7. A “terminated’ PIN, i.e. a PIN who’s PUK has be unsuccessfully exercised for the maximum allowed number of times, shall not be usable, changeable or reset-able by any means. In other words, it shall be unconditionally unrecoverable.

Annex F (informative):
Triple DES Plug-ins Implementation Specification

F.1
Scope

This annex provides detailed implementation guidelines for the triple DES plug-ins outlined in section 9.2 of this document.

F.2
References

[APPLIED]
B. Schneier, “Applied Cryptography: Protocols, Algorithms and Source Code in C”, 2nd Edition.

[DEA]
ISO 8731-1, “Banking – Approved algorithms for message authentication – Part 1: DEA”
[ISO9797]
ISO/IEC 9797-1:1999(E) – Information technology – Security techniques – Message Authentication Codes (MACs)
[MODES]
ISO/IEC 10116 – Security Techniques – Modes of Operation for an n-bit Block Cipher Algorithm”
[PKCS5]
RSA Laboratories , “PKCS #5 v2.0: Password-Based Cryptography Standard”, http://www.rsalabs.com/pkcs/
[SHA1]
FIPS PUB 180-1, “Secure Hash Standard (SHS)”

F.3
Symbols

<i..j>
Sub-string extraction operator. Extracts bytes i through j.
[image: image8.wmf]j

i

£

£

1

.

X || Y
Concatenation of byte-strings X and Y (in that order).

|| .||
Byte length operator.

bn
Individual bit in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most significant), denoted b8.

Bn
Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n (rightmost), denoted Bn.

EM
Encrypted message.

ISO_9797_ALG3
MAC algorithm 3. See [ISO9797] section 7.3 for further reference.

ISO_9797_PAD2
ISO9797 padding method 2. See [ISO9797] section 6.1.2 for further reference.

KC
An 8 byte key checksum.

K1, K2, K , K’
DES keys.

MD
A SHA-1 MDC value.

MAC
A ISO9797 message authentication code

PKCS5_PAD
PKCS#5 padding function. See [PKCS5] section 6.1.1 for further reference.

PKCS5_UNPAD
Inverse of PKCS5_PAD. See [PKCS5] section 6.1.1 for further reference.

PM
A padded message.

SHA1
SHA-1 hash function. See [SHA1] for further reference.

TDEA_DECR
Triple DES decryption algorithm. See [APPLIED] section 15.2 for details regarding the algorithm.

TDEA_ENCR
Triple DES encryption algorithm. See [APPLIED] section 15.2 for details regarding the algorithm.

F.4
Abbreviations

For the purposes of the present annex, following abbreviations apply:

3DES
Triple DES

CBC
Cipher Block Chaining (Mode)

CHV

Cardholder Verification

DD
Triple DES Decrypt Plug-in

DE
Triple DES Encrypt Plug-in

DES

Data Encryption Standard

DS
Triple DES Sign Plug-in

DU
Triple DES Unwrap Plug-in

ECB
Electronic Code-book (mode)

EDE
Encrypt-Decrypt-Encrypt

IV
Initialization Vector

MAC
Message Authentication Code

MDC
Modification Detection Code

OTA

Over-the-Air

PIN

Personal Identification Number

RFU

Reserved for Future Use

SHA-1
Secure Hash Algorithm 1

UCS2

Universal Character Set (2)

F.5
DE

F.5.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the DE execution.

[image: image9]
The termination states indicate the following:

FINISHED – Indicates success. The plug-in shall set the error code to ‘No error’, the output to the encrypted data, and terminate.

ERROR – Indicates an error. The plug in shall set the error code to an appropriate value and terminate.

The ‘Select key’ procedure is implementation dependent and cannot therefore be described in detail. The following requirements still apply:

· If the key identifier references a non-existing key or if the key is incorrect in some other manner, the plug-in shall set the error code to ‘No such key error’ and terminate.

· The DE plug-in is a encryption plug-in. Consequently, only secret keys assigned to encryption purposes shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

As the figure shows, the plug-in must check if the selected key has an associated PIN, and in this case ask the user to verify the PIN before accessing the key.

The ‘Verify PIN’ procedure is briefly illustrated below.

[image: image10]
If the PIN is entered incorrectly, the “Wrong PIN” message shall be displayed concatenated with the number of attempts left. E.g. if the “Wrong PIN” message is “Wrong PIN. Attempts left: ” and there are two attempts left before blocking, the message displayed on the screen shall be “Wrong PIN. Attempts left: 2”.

PUK handling is omitted in the figure, since it is a rather implementation dependent. It is nevertheless a mandatory requirement to support PUKs.

The ‘Encrypt’ procedure is described in the next section.

F.5.2
Encrypt Procedure

To encrypt the plaintext, do the following:

1. Calculate the padded message

 PM = PKCS5_PAD(Plaintext).

2. Calculate the encrypted message

 EM = TDEA_ENCR(PM)

using the following cipher parameterisation:

Keys
K1, K2 and possibly K3 as indicated by ‘Cipher spec’.

Cipher mode
ECB or CBC as indicated by ‘Cipher spec’.

IV
Indicated by ‘IV flag’.

3. EM is the output from the plug-in.

F.6
DD

F.6.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the DE execution.

[image: image11]
The termination states indicate the following:

FINISHED – Indicates success. The plug-in shall set the error code to ‘No error’, the output to the decrypted data, and terminate.

ERROR – Indicates an error. The plug in shall set the error code to an appropriate value and terminate.

The ‘Select key’ procedure is implementation dependent and cannot therefore be described in detail. The following requirements still apply:

· If the key identifier references a non-existing key or if the key is incorrect in some other manner, the plug-in shall set the error code to ‘No such key error’ and terminate.

· The DD plug-in is a decryption plug-in. Consequently, only secret keys assigned to decryption purposes shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

As the figure shows, the plug-in must check if the selected key has an associated PIN, and in this case ask the user to verify the PIN before accessing the key.

The ‘Verify PIN’ procedure is identical to the procedure described in F.5.1.

The ‘Decrypt’ procedure is described in the next section.

F.6.2
Decrypt Procedure

To decrypt the ciphertext, do the following:

1. Calculate the padded plaintext message

 EM = TDEA_DECR(Ciphertext)

using the following cipher parameterisation:

Keys
K1, K2 and possibly K3 as indicated by ‘Cipher spec’.

Cipher mode
ECB or CBC as indicated by ‘Cipher spec’.

IV
Indicated by ‘IV flag’.

2. Calculate the plaintext message

 M = PKCS5_UNPAD(EM).

3. M is the output from the plug-in.

F.7
DS

F.7.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the DS execution.

[image: image12]
The termination states indicate the following:

CANCEL - Indicates that the user cancelled the operation. The plug-in shall set the error code to ‘User cancel’, the output to the string “error:userCancel”, and terminate.

FINISHED – Indicates success. The plug-in shall set the error code to ‘No error’, the output to the decrypted data, and terminate.

ERROR – Indicates an error. The plug in shall set the error code to an appropriate value and terminate.

The ‘Select key’ procedure is implementation dependent and cannot therefore be described in detail. The following requirements still apply:

· If the key identifier references a non-existing key or if the key is incorrect in some other manner, the plug-in shall set the error code to ‘No such key error’ and terminate.

· The DS plug-in is a digital signature plug-in. Consequently, only secret keys assigned to digital signature (MAC) purposes shall be accessible through the plug-in. If the selected key does not satisfy this criteria, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

As the figure illustrates, the plug-in must check if the selected key has an associated PIN, and in this case display the text-to-be-signed to the user using the indicated character encoding scheme, and await user confirmation. The user confirms by pressing the ‘OK’ button, or rejects by pressing the ‘Cancel’ button.

The ‘Verify PIN’ procedure is identical to the procedure described in F.5.1.

The ‘Calculate signature’ procedure is described in the next section.

F.7.2
MAC Calculation Procedure

To calculate the MAC, do the following:

1. Calculate the padded message

 PM = ISO_9797_PAD2(TTBS)
2. Calculate the MAC

 MAC = ISO_9797_ALG3(PM)

using the following cipher parameterisation:

Keys
K1, K2

Truncation
As indicated by ‘Truncation flag’.

3. MAC is the output from the plug-in.

F.8
DU

F.8.1
Plug-in Execution

The flowchart below illustrates briefly the different steps of the DU execution.

[image: image13]
The termination states indicate the following:

FINISHED – Indicates success. The plug-in shall set the error code to ‘No error’, the output to the decrypted data, and terminate.

ERROR – Indicates an error. The plug in shall set the error code to an appropriate value and terminate.

The ‘Verify PIN’ procedure is identical to the procedure described in F.5.1.

The ‘Select keys’ , ‘Decrypt and verify’ and ‘Install new key’ procedures are described in the following sections.

F.8.2
Decryption and Verification Procedure

This procedure includes decryption of the encrypted key data, as well as verification of its authenticity.

To decrypt and verify the key data, select the correct algorithm based on the algorithm identifier field and thereafter proceed according to the selected algorithm.

An implementation must support at least one algorithm.

Algorithms employing SHA-1 are preferred prior to algorithms employing ISO 9797.

F.8.2.1
3DES EDE CBC with two keys + SHA-1 MDC

The decrypted key data shall be formatted according to the table below.

Bytes
Description
M/O
Length

1 – 8
Random nonce.
M
8

9 – P
Key material
M
8, 16, 24 or 32

Q – R
Key checksum.
M
8

The values P,Q and R are calculated from wrapped key length according to the following table:

Wrapped key length
P
Q
R

8
16
17
24

16
24
25
32

24
32
33
40

32
40
41
48

To decrypt and verify the key data, do the following:

9. Select the key pointed to by the SKI input parameter. This is the destination key ,KD.

10. Verify that KD is modifiable. If not, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

11. Based on the SKI parameter, locate the unwrap key, KU.
12. Verify that KU is in fact an unwrap type of key. If not, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

13. Calculate the decrypted key data

 DK = TDEA_DECR(Encrypted key data)

using the following cipher parameterisation:

Keys
K1 and K2 of KU.

Cipher mode
Outer CBC in DED operation.

IV
0 (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

14. Calculate the message digest

 MD = SHA1(SKI || AID || DK<1..P>)
15. Calculate the key checksum

 KC = MD<1..8>
16. Compare KC with DK<Q..R>. If identical, proceed to the next step. Otherwise, the plug-in shall set the error code to ‘Integrity error’ and terminate.

17. Success.

F.8.2.2
3DES EDE CBC with two keys + ISO 9797 MAC

The format of the decrypted key data is the same as in the pervious section (F.8.2.1).

To decrypt and verify the key data, do the following:

18. Select the key pointed to by the SKI input parameter. This is the destination key, KD.

19. Verify that KD is modifiable. If not, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

20. Based on the SKI parameter, locate the unwrap key, KU.
21. Verify that KU is in fact an unwrap type of key. If not, the plug-in shall set the error code to ‘Illegal operation’ and terminate.

22. Calculate the decrypted key data

 DK = TDEA_DECR(Encrypted key data)

using the following cipher parameterisation:

Keys
K1 and K2 of KU.

Cipher mode
Outer CBC in DED operation.

IV
0 (this is not a weakness since the nonce effectively becomes a randomly chosen IV).

23. Calculate the padded message

 PM = ISO_9797_PAD2(SKI || AID || DK<1..P>)
24. Calculate the key checksum

 KC = ISO_9797_ALG3(PM)

Using terminology from [ISO9797], keys K and K’ shall be derived by complementing alternate sub-strings of four bits of K1 and K2 respectively, commencing with the first four bits.

8 bytes of output from the MAC calculation shall be used (i.e. m=64 using ISO9797 terminology).

25. Compare KC with DK<Q..R>. If identical, proceed to the next step. Otherwise, the plug-in shall set the error code to ‘Integrity error’ and terminate.

26. Success.

F.8.2.3
3DES EDE CBC with three keys + SHA-1 MDC

This algorithm is identical to the algorithm described in F.8.2.1, except that the 3DES cipher shall be parameterized with three DES keys.

F.8.2.4
3DES EDE CBC with three keys + ISO 9797 MAC

This algorithm is identical to the algorithm described in F.8.2.2, except that the 3DES cipher shall be parameterized with three DES keys.

F.8.3
Updating the Key

Updating the key means simply copying the key material to the location referenced by SKI.
F.9
Non-functional Requirements

F.9.1
OTA/Management Requirements

1. All OTA/management requirements with regard to PINs and PUKs listed in E.8.2 apply equally here.

2. OTA modifiability of a key using the DU plug-in shall be configurable through an administrative task at personalization time.

F.9.2
Architectural Requirements

1. All architectural requirements with regard to PINs and PUKs listed in E.8.2 apply equally here.

2. Key diversification shall be supported. This is to ensure that certain clearly inappropriate use cases, such as using the same key for encryption and decryption, are prevented. At least the following types of (secret) keys shall be distinguishable:

a. encrypt

b. decrypt

c. unwrap

d. digital signature (MAC)

Select�keys

Decrypt�and verify

NO

YES

FINISHED

Install�new key

ERROR

Verified�OK?

START

Get�response

CANCEL

OK

CANCEL

Key�pressed?

Display�TTBS

ERROR

Select�key

Calculate�signature

NO

YES

FINISHED

Verify�PIN

Need�PIN?

START

ERROR

Select�key

Decrypt�data

NO

YES

FINISHED

Verify�PIN

Need�PIN?

START

PIN OK

Exit plug-in: “Illegal operation”

Exit plug-in:�“User Abort”

Exit plug-in:�“User Abort”

Ack.

DISPLAY TEXT�“PIN blocked”

PIN blocked

Ack.

Exit plug-in:�“User Abort”

DISPLAY TEXT�“Wrong PIN. Attempts left: 2”

Wrong PIN

VERIFY PIN

PIN

GET INPUT �“Enter PIN:”

OPERATING�SYSTEM

PLUGIN

USER

ERROR

Select�key

Encrypt�data

NO

YES

FINISHED

Verify�PIN

Need�PIN?

START

Select�key

Decrypt�and verify

NO

YES

FINISHED

Reset PIN�value

ERROR

Verified�OK?

START

Exit plug-in:�“User Abort”

Exit plug-in:�“User Abort”

Exit plug-in:�“User Abort”

Exit plug-in:�“User Abort”

Exit plug-in:�“User Abort”

PIN OK

Exit plug-in: “Illegal operation”

Exit plug-in:�“User Abort”

Ack.

DISPLAY TEXT�“PIN blocked”

PIN blocked

Ack.

DISPLAY TEXT�“Wrong PIN. Attempts left: 2”

Wrong PIN

VERIFY PIN

PIN

GET INPUT �“Enter PIN:”

OPERATING�SYSTEM

PLUGIN

USER

PIN modified

Ack.

No match

DISPLAY TEXT�“No match, try again”

MODIFY PIN

New PIN again

GET INPUT �“Confirm new PIN:”

New PIN

GET INPUT �“Enter new PIN:”

Get�response

CANCEL

OK

ERROR

FINISHED

Decrypt

Verify�PIN

Select�key

CANCEL

Key�pressed?

Request�authorization

START

Get�response

CANCEL

OK

ERROR

FINISHED

Generate�signature

Verify�PIN

Select�key

CANCEL

Key�pressed?

Request�authorization

START

PIN OK

Exit plug-in: “Illegal operation”

Exit plug-in:�“User Abort”

Exit plug-in:�“User Abort”

Ack.

DISPLAY TEXT�“PIN blocked”

PIN blocked

Ack.

Exit plug-in:�“User Abort”

DISPLAY TEXT�“Wrong PIN. Attempts left: 2”

Wrong PIN

VERIFY PIN

PIN

GET INPUT �“Enter PIN:”

OPERATING�SYSTEM

PLUGIN

USER

Get�response

CANCEL

OK

ERROR

FINISHED

Generate�signature

Verify�PIN

Select�key

CANCEL

Key�pressed?

Display�TTBS

START

�PAGE \# "'PAGE: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'PAGE: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'PAGE: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'PAGE: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'PAGE: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'PAGE: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'PAGE: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'PAGE: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'PAGE: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'PAGE: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'PAGE: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'PAGE: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'PAGE: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'PAGE: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'PAGE: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'PAGE: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'PAGE: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'PAGE: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'PAGE: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

_1071571087.unknown

