
1

TSG-Terminals Working Group 3 (USIM) meeting #7 TSGT3#7(99)187
5-7 July, 1999 Page 1

Source: Schlumberger

Title: SCHLUMBERGER PROPOSAL OF 3RD GENERATION PHONE BOOK FEATURE

Tables of contents

SCOPE.. 3

Requirements.. 3

Definition of Phone Book ... 3
Support of two name fields per entry.. 3
Support of multiple phone numbers per entry... 3
Support of email address.. 3
Support of user definable groupings... 3
Support of hidden entries.. 3
Number of entries.. 3
Mode of alerting.. 3

Solution... 4

Structure of the Files.. 5

Phonebook Entry.. 5

Nickname .. 6

Phones ... 7

E-mail .. 8

Reference files: ... 9
Group Reference ... 9
Reference of the Phone book files .. 10
Phones Reference.. 11
Phone book structure... 12

Implementation...13

Administration commands .. 13

Operation commands... 13

Compatibility 2G/3G... 16

Annex.. 17

Extended-linear fixed EF... 17

READ RECORD .. 18

UPDATE RECORD... 18

SEEK... 18

2

CODING OF SFI ... 19

Scenarios ... 20

PERFORMANCE (document 99183)... 22
Card Memory.. 22
Memory Consumption for Phone Book Code (e.g. Operating System, SCQL engine,..) 23
Access to data linked to entries in the ‘Incoming / Outgoing Call’ list... 23
Adding of new features / elements to the Phone Book ... 23
Complexity of the implementation (card and mobile) .. 23
Access time to Phone Book entries... 23
Error Recovery.. 23

3

SCOPE
This document is intended to provide a solution that can be deliverable within the existing

capabilities of the smart card hardware in term of RAM size and microprocessor speed, etc…
The best way to be able to stay compatible with 2G is to create another type of linear fixed file

where the number of record is coded in 16 bits, and use cyclic structure.

Note: Cyclic structure:
A structure is set of records in different files. A cyclic structure is the same set of records linked

through the pointer’s chain where the last one is linked to the first to form a token.

Requirements

Definition of Phone Book
The Phone Book feature is based on the ADN functionality as defined in GSM 11.11 [7].

Additional features are identified in the following sub-clauses. A Phone Book entry consists of a
record in an ADN file and, optionally, additional records which are placed in different EFs. In the
latter case, a mechanism shall be defined to link all records in the same Phone Book entry. The
ME shall support these features while their support by the USIM is optional.

Support of two name fields per entry

The support of two name fields per entry shall be specified to allow, for example, for two
different representations of the same name, for example, in Japanese and English.

Support of multiple phone numbers per entry

The support of multiple phone numbers per entry shall be specified, for example office,
home, fax, mobile or pager. In addition to that, information for identifying those attributes is
needed.

Support of email address

The support of email addresses linked to Phone Book entries shall be specified. In
addition to that, information for identifying these addresses is needed.

Support of user definable groupings

The specification shall support the grouping of Phone Book entries into groups defined
by the user, for example, business and private.

Support of hidden entries

The specification shall support means of marking Phone Book entries as "hidden".

Number of entries

The specification shall support storage of at least 500 entries.

Mode of alerting

[FFS]

4

 Solution

To be compliant with the 21.111 v3.00 we need to include the phonebook functionality as an
application in the USIM where the limitation of the structure “definition” of the files as are described in
7816-3(4) does not constraint the functionality.

The solution will be transparent for the external world (ME). Special APDUs will be adapted to
handle the application, for each entry in the phone book the structure will be linked to one nickname or
none (and/or) to “0-4 “extra phone numbers, (and/or) to one E-mail address or none.

Phonebook Entry ��{ Name 14 Bytes; X1
Phone1 14 Bytes; X2
Grp1, Grp2 1 Bytes; X3
Pointer P 2 Bytes; X4

 }
Nickname { Nickname 5 Bytes; X5

Pointer 2 Bytes; X6
 }

Phones { Ref 1Bytes; X7
Phone2 8Bytes; X8
Phone3 8Bytes; X9
Phone4 8Bytes; X10
Phone5 8Bytes; X11
Pointer 2Bytes; X12

 }
E-mail {

Email 30 Bytes; X13
Pointer L 2Bytes; X14

 }

Name
Phone1
Grp1
Grp2

Nickname

Phones

EEE---mmmaaaiii lll

5

Structure of the Files

Phonebook Entry

Table 1 - Structure of EFEPB

File Identifier: 'XXXX' Structure: extended linear fixed Mandatory
Record length: X+17 bytes Update activity: low

Access Conditions:
READ CHV1
UPDATE CHV1
INVALIDATE CHV2
REHABILITATE CHV2

Bytes Description M/O Length
1 to X Alpha Identifier (Name) O X bytes
X+1 Length of BCD number/SSC contents M 1 byte
X+2 TON and NPI M 1 byte

X+3 to X+12 Dialling Number/SSC String M 10 bytes
X+13 Capability/Configuration Identifier M 1 byte
X+15 Grouping M 2 bytes
X+17 Pointer P M 2 bytes

Coding of Grouping

b8 B7 b6 b5 b4 b3 b2 b1 B8 B7 B6 B5 B4 B3 B2 B1
RFU

Hidden
Flag
Grp3

Grp2

Grp1

Note1 :From B4 to B4: 1 bit: if b3=0 the entry is not hidden, if b3= 1 the entry hidden.

Coding of Pointer P

b8 B7 b6 B5 b4 b3 b2 b1 B8 B7 B6 B5 B4 B3 B2 B1
 Pointer
in 10 bits
RFU

Short File
Identifier

6

Note1:
From b8 to b4: 5 bits: to define Short File Identifier where the pointer b2 to B1 is pointing to.
From b2 to B1: 10 bits: to define the value of the record number in the file identified by SFI in b8
to b4.

Note2:
The pointer “pointer P” can be connected to Nickname file or Phones file or E-mail file or back to
entry of the Phone Book.

Nickname
Table 2 - Structure of EFNickname

 File Identifier: 'XXXX’ Structure: extended linear fixed Optional
Record length: X +2 bytes Update activity: low

Access Conditions:
READ CHV1
UPDATE CHV1
INVALIDATE CHV2
REHABILITATE CHV2

Bytes Description M/O Length
1 to X Alpha Identifier (Nickname) O X bytes

X+1to X+2 Pointer M 2 bytes

Coding of Pointer

b8 b7 b6 B5 b4 b3 b2 b1 B8 B7 B6 B5 B4 B3 B2 B1
 Pointer
in 10 bits

RFU

Short File
Identifier

Note1:
From b8 to b4: 5 bits: to define Short File Identifier where the pointer b2 to B1 is pointing to.
From b3 to b3: 1 bit: RFU.
From b2 to B1: 10 bits: to define the value of the record number in the file identified by SFI in b8
to b4.

Note2:
The pointer “pointer P” can be connected to Phones file or E-mail file or back to entry of Phone
Book.

7

Phones
Table 3 - Structure of EFPhones

File Identifier: 'XXXX’ Structure: extended linear fixed Optional
Record length: X bytes=13,23,33,43 Update activity: low

Access Conditions:
READ CHV1
UPDATE CHV1
INVALIDATE CHV2
REHABILITATE CHV2

Bytes Description M/O Length
1 to 1 Ref M 1 bytes

2 to 11 Phone2 M 10 bytes
12 to 21 Phone3 M 10 bytes
22 to 31 Phone4 M 10 bytes
32 to 41 Phone5 M 10 bytes
42 to 43 Pointer M 2 bytes

Coding of Ref

b8 B7 b6 b5 b4 b3 b2 b1

Reference for phone5
Reference for phone4
Reference for phone3
Reference for phone2

Coding of Pointer

b8 B7 b6 b5 b4 b3 b2 b1 B8 B7 B6 B5 B4 B3 B2 B1
 Pointer
in 10 bits

RFU

Short File
Identifier

Note1:
From b8 to b4: 5 bits: to define Short File Identifier where the pointer b2 to B1 is pointing to.
From b3 to b3: 1 bit: RFU.
From b2 to B1: 10 bits: to define the value of the record number in the file identified by SFI in b8
to b4.

Note2:
The pointer “pointer P” can be connected E-mail file or back to entry of Phone Book.

8

E-mail

Table 4 - Structure of EFEmail

File Identifier: 'XXXX’ Structure: extended linear fixed Optional
Record length: X+2 bytes Update activity: low

Access Conditions:
READ CHV1
UPDATE CHV1
INVALIDATE CHV2
REHABILITATE CHV2

Bytes Description M/O Length
1 to X Alpha Identifier (E-mail address) O X bytes

X+1 to X+2 Pointer L M 2 bytes

Coding of Pointer L

b8 b7 b6 b5 b4 b3 b2 b1 B8 B7 B6 B5 B4 B3 B2 B1
 Pointer
in 10 bits

RFU

Short File
Identifier

Note1:
From b8 to b4: 5 bits: to define Short File Identifier where the pointer b2 to B1 is pointing to.
From b3 to b3: 1 bit: RFU.
From b2 to B1: 10 bits: to define the value of the record number in the file identified by SFI in b8
to b4.

Note2:
The pointer “pointer P” can be connected only back to entry of Phone Book.

9

Reference files:
To be able to support this structure some administrative files need to be created.

Group Reference

This file will contain all the names of the groups, which every phone book entry could belong to.
The content of Group reference file is shown in Table 5.

Table 5 - Group reference File Structure
Identifier: 'XXXX' Structure: linear fixed Mandatory

Record Length: 3 bytes Update activity: low

Access Conditions:
READ CHV1
UPDATE ADM
INVALIDATE ADM
REHABILITATE ADM

Bytes Description M/O Length
1 – 3 Group reference O 3 bytes

Table 6 - Content of Group reference file.

Record
number

Group name

01 PER
02 JOB
… …

0F XXX
15 records maximum

10

Reference of the Phone book files

This file will contain all the files’ SFI , and their existence in the structure.
Table 7 - Phone Book file Structure

Identifier: 'XXXX' Structure: Transparent Mandatory
size: X bytes Update activity: low

Access Conditions:
READ CHV1
UPDATE ADM
INVALIDATE ADM
REHABILITATE ADM

Bytes Description M/O Length
1 – X Structure M X bytes

Coding of Structure:

Phonebook Entry Nickname Phones Email
1st –2nd Byte 3rd –4th Byte 5th – 6th Byte 7th – 8th Byte

Byte1 b8 b7 b6 b5 b4 b3 b2 b1

RFU

Exist

Short File
Identifier

Size of
the record

Note1:
First byte is the size of the record in the corresponding file identified by the following SFI.
From b8 to b4: 5 bits to define Short File Identifier of the corresponding file.
From b3 to b3: b3=0 if the file exists, b3= 1 if it does not exist.
From b2 to b1: 2 bits RFU

11

Phones Reference

This file will contain all the designation of the extra phone numbers, which will be stored in the phone
book, as FX for fax number, HM for home number, etc….

The content of Phones reference file is shown Table 9.

Table 8 - Phones reference File Structure
Identifier: 'XXXX' Structure: linear fixed Mandatory

Record Length: 2 bytes Update activity: low

Access Conditions:
READ CHV1
UPDATE ADM
INVALIDATE ADM
REHABILITATE ADM

Bytes Description M/O Length
1 – 2 Phone reference O 2 bytes

Table 9 - Content of Phones reference file.

Record
number

Designation

01 FX
02 HM
03 …
04 XX

4 records maximum

12

Phone book structure

Entry of Phone Book
Record
number

Name Phone1 Pointer

001 John 1408125466 001
002 Peter 5233645582

Nickname file
Record
number

Nickname Pointer

001 JJ 007
002 PP

Record
number

Phones Pointer

001
002 00 1 1 1 1 001

007 01125463215223155466FFFFFFFFFFFFFFFFFFF 0 0 1 1 001

Record
number

Email address Pointer

001 Slll@soud.tt.com 002
002 X@yyy.aol.com

The maximum number of records will be 3FF.

13

Implementation

Administration commands

Create phonebook
� Create file PHONE BOOK FILE STRUCTURE: it’s a reference file.
� Create all the reference files.
� Create all the files needed for the phone book: the EFEPB file is mandatory, all others are

optional.
� All the files have to be under the same DF to able to use SFI to access elementary files.

Operation commands

Retrieve a complete structure

Scenario

SELECT PHONE BOOK DIRECTORY

Select the references files and store the content in the phone.

SELECT PHONE BOOK ENTRY

INPUT:
Name of the file

OUTPUT:

SW1=XX
SW2=”YY” length of data to retrieve

GET RESPONSE

To get the length of the record and the number of records.

READ RECORD

INPUT:
From record number X
To record number Y
The length of the retrieved data has to be less than 255 “(Y-X)*length of each record <255”.

14

OUTPUT:
Records of the Phonebook entry.

Retrieving other information for the same entry:

Since we have the pointer with the Short File Id and the number of the record of the next data ,we
need to send READ RECORD with the right SFI and right record number.

 UPDATE RECORD

Command Message

APDU HEADER
CLA = ‘AX’. X as defined in 7816-4

INS= ‘DC’
P1-P2 See Below

APDU BODY
Interpretation of the Body APDU depends on b3, b2, b1 of P2
Lc :

Case 1 (Simple) : Length of the Data to be overwritten
Case 2 (Extended): 1+ Length of the Data to be overwritten

Data Field:
Case 1 (Simple) : Data to be overwritten
Case 2 (Extended): First byte is the lowest Byte of the Record Number

 Subsequent bytes

P1-P2
Interpretation of P1-P2 depends on b3, b2, b1 of P2:

-Case 1 (Simple):
If b3, b2, b1 of P2 =100 then P1 codes the Record Number
to be updated (Up to 256 entries). Coding of P2 is the same
as 7816-4.

-Case 2 (Extended):
If b3, b2, b1 of P2 =111, then the Record Number is coded
over 2 bytes as [P1 || First Data Field byte].

Response Message

As defined in ISO 7816-4

COMMENT For Case 1 (Record Number <255), this command (Structure & Coding) is the same
as defined in 7816-4

SEEK (SEARCH RECORD) Command

After a succesful SEEK the record pointer is set to the Record in which the pattern was
found.The response Data Field contains the Record Number over 2 bytes.

15

Command Message

CLA = ‘AX’. X as defined in 7816-4
INS= ‘A2’
P1-P2 See the text below
LC : Length of the subsequent data field coded over one byte
Data Field: String Data Pattern to be found
LE = Empty or ‘02’

P1=’00’
P2 specifies type and mode

‘x0’ = Search from the Beginning of the Phonebook Forward
‘x1’ = Search from the End of the Phonebook Backwards
‘x2’ = Search from the Next Current Pointer Position

Forward
‘x3’ = Search from the Previous Current Pointer Position Backwards
Where x=’0’ specifies type 1 SEEK and x=’1’ type 2 SEEK.

Response Message

Data Field : Empty or Record Number where the match is found coded over 2 bytes
SW1-SW2 Status Bytes

The following specific warning condition may occur
SW1=’62’ with SW2= ‘82’
SW2= ‘82’ Means end of file reached before finding matching string.The Response Data

Field shall be empty.

READ RECORD

Command Message

APDU HEADER
CLA = ‘8X’. X as defined in 7816-4
INS= ‘D2’
P1-P2 See Text below

APDU BODY
Interpretation of the Body APDU depends on b3 of P2
Lc = Empty or ‘01’
Data Field : -Empty (Case 1)

 -1 Byte Lowest Byte of the Record Number to be Read (Case 2)
LE = Length of the Data to be Read over 1 byte.

P1-P2
Interpretation of P1-P2 depends on b3 of P2:

16

-Case 1 (Simple): If b3 of P2 =1 then P1 codes the Record Number
(up to 256 entries. Coding of P2 is the same as 7816-4. No Data Field is
present.

-Case 2 (Extended): If b3 of P2 =0, then the Record Number is
coded over 2 bytes as [P1 || Data Field byte].

P1= ‘00’ refers to the current Record.

Response Message

As defined in ISO 7816-4

COMMENT For Case 1 (Record Number <255), this command (Structure & Coding) is
the same as defined in 7816-4

Compatibility 2G/3G

The ICC will make the difference between the two environments 2G and 3G because of the way
the application “environment” is selected. The ICC will have a filter in 2G environment to catch
all the commands related to ADN and it will map them to have the information from phonebook
file.

17

Annex

Extended-linear fixed EF
An EF with linear fixed structure consists of a sequence of records all having the same (fixed) length. The
first record is record number 1. The length of a record as well as the value its length multiplied by the
number of records are indicated in the header of the EF.

Header
Body Record 1

Record 2
 :
 :

Record n

Figure 1 - Structure of a linear fixed file

There are several methods to access records within an EF of this type:
- absolutely using the record number;

- when the record pointer is not set it shall be possible to perform an action on the first or the last
record by using the NEXT or PREVIOUS mode;

- when the record pointer is set it shall be possible to perform an action on this record, the next
record (unless the record pointer is set to the last record) or the previous record (unless the
record pointer is set to the first record);

- by identifying a record using pattern seek starting:

- forwards from the beginning of the file;

- forwards from the record following the one at which the record pointer is set (unless the
record pointer is set to the last record);

- backwards from the end of the file;

- backwards from the record preceding the one at which the record pointer is set (unless the
record pointer is set to the first record).

If an action following selection of a record is aborted, then the record pointer shall remain set at the record
at which it was set prior to the action.

NOTE 1: It is possible to have more than 255 records in a file of this type because the number of
record will be coded in 16 bits, and each record cannot be greater than 255 bytes.

18

READ RECORD
This function reads one complete record in the current Extended-linear fixed EF. The record to be

read is described by the modes below. This function shall only be performed if the READ access condition
for this EF is satisfied. The record pointer shall not be changed by an unsuccessful READ RECORD
function.
Four modes are defined:

CURRENT: The current record is read. The record pointer is not affected.

ABSOLUTE: The record given by the record number is read. The record pointer is not affected.

NEXT: The record pointer is incremented before the READ RECORD function is performed and
the pointed record is read. If the record pointer has not been previously set within the selected EF,
then READ RECORD (next) shall read the first record and set the record pointer to this record.

If the record pointer addresses the last record in a Extended-linear fixed EF, READ RECORD (next)
shall not cause the record pointer to be changed, and no data shall be read.

PREVIOUS: The record pointer is decremented before the READ RECORD function is
performed and the pointed record is read. If the record pointer has not been previously set within the
selected EF, then READ RECORD (previous) shall read the last record and set the record pointer to
this record.

If the record pointer addresses the first record in a Extended-linear fixed EF, READ RECORD
(previous) shall not cause the record pointer to be changed, and no data shall be read.

Input:
- mode, record number (absolute mode only) and the length of the record.
Output:
- the record.

UPDATE RECORD
This function updates one complete record in the current Extended-linear fixed EF. This function shall
only be performed if the UPDATE access condition for this EF is satisfied. The UPDATE can be
considered as a replacement of the relevant record data of the EF by the record data given in the command.
The record pointer shall not be changed by an unsuccessful UPDATE RECORD function.
The record to be updated is described by the modes below. two modes are defined.

CURRENT: The current record is updated. The record pointer is not affected.

ABSOLUTE: The record given by the record number is updated. The record pointer is not affected.

Input:
- mode, record number (absolute mode only) and the length of the record;
- the data used for updating the record.
Output:
- none.

SEEK
This function searches through the current linear fixed EF to find a record starting with the given pattern.
This function shall only be performed if the READ access condition for this EF is satisfied. Two types of
SEEK are defined:

19

Type 1 The record pointer is set to the record containing the pattern, no output is available.

Type 2 The record pointer is set to the record containing the pattern, the output is the record
number.

The SIM shall be able to accept any pattern length from 1 to 16 bytes inclusive. The length of the pattern
shall not exceed the record length.
Four modes are defined:

- from the beginning forwards;
- from the end backwards;
- from the next location forwards;
- from the previous location backwards.

If the record pointer has not been previously set (its status is undefined) within the selected Extended-linear
fixed EF, then the search begins:

- with the first record in the case of SEEK from the next location forwards; or
- with the last record in the case of SEEK from the previous location backwards.

After a successful SEEK, the record pointer is set to the record in which the pattern was found. The record
pointer shall not be changed by an unsuccessful SEEK function.

Input:
- type and mode;
- pattern;
- length of the pattern.
Output:
- type 1: none;
- type 2: status/record number

CODING OF SFI

 EF s

MF

PhoneBook
DF

20

File Id of Phonebook DF is X1X2X3X4

All the EFs under X1X2X3X4 will have an Id starting with X1X2 and second byte
coded on 5 bits

Byte1 b8 b7 b6 b5 b4 b3 b2 b1

Short File
Identifier

RFU

X1X2

Note1:
First byte is the first byte of the parent Id
From b8 to b6: 3 bits RFU.
From b5 to b1: 5 bits to define Short File Identifier of the corresponding file.

Scenarios
3G phones
Add a new entry
Assumptions

� Phonebook DF Id : X1X2X3X4

� Entry phonebook EF Id: X1X201

Select X1X2X3X4

Select X1X201
Seek for the first empty record, or use another way to find the first empty record “Mobile related”.
For example “The first empty record number is 01FF”
Is the record will be hidden? For example “Yes”
Update the found record by putting the name, the principal phone number, the pointer in the creation
will point on itself and the value of the pointer will be: 0DFF.

Adding an e-mail address to an existing entry.
Assumptions.

File Id of E-mail file is: X1X21F
The phone knows:

The number of the entry phone record
The pointer
The name of the file where the e-mails are stored

Seek for the first empty record in X1X21F ”e-mail file”. For example “The first empty record
number is 001A”.

21

If the value of the pointer P1 contained in the entry is pointing to itself.

Then
Update the entry record in EFEPB by making it pointing to the e-mail record “001A” with

SFI 1F;
Update the e-mail record by making it pointing to the entry record in EFEPB with SFI 01.

Else
Perform the function F=Read(record) from the file designated by its SFI in P1;

Repeat the same function “F” until the pointer is pointing to the Phonebook Entry file
(EFEPB) or to the e-mail file.

Update the e-mail record 001A if the result of the function F is pointing to the Phonebook
Entry file; Otherwise Update the e-mail record found by the function F

 End If

22

PERFORMANCE (document 99183)

Card Memory

Memory Optimization

Yes it’s possible in the personalization stage.

Memory Consumption for Phone Book Data

Assumptions:

Header Phone Entry Nickname E-mail Extra Phones
24 33 9 34 35

Every entry has 4 phone numbers linked.

100 entries
Nickname 0% 50% 100%
E-mail

0% 7048 7498 7948
30% 8068 8518 8968

200 entries
Nickname 0% 50% 100%
E-mail

0% 14048 14948 15848
30% 16088 16988 17888

300 entries
Nickname 0% 50% 100%
E-mail

0% 21048 22398 23748
30% 24108 25458 26808

500 entries
Nickname 0% 50% 100%
E-mail

0% 35048 37298 39548
30% 40148 42398 44648

23

Memory Consumption for Phone Book Code (e.g. Operating System,
SCQL engine,..)

Not applicable

Access to data linked to entries in the ‘Incoming / Outgoing Call’ list

It’s possible just for the principal phone number.

Adding of new features / elements to the Phone Book

Since the structure is cyclic it’s possible to add another attribute as long as the Mobile can manage
it. All the length of the record are flexible ,for example we can have just two extra phone instead of
4 ,etc …

Complexity of the implementation (card and mobile)

For the card we need to add another type of file where the number of record is coded in 16 bits,
other solutions can be implemented even without creating another type of file.

Access time to Phone Book entries

Time to retrieve all names from the card into the phone

It’s faster than 2G phone.

Time for access first matching data after starting a search on the database (Phone Book)

Up to the phone since all the needed data are in the phone.

Time to retrieve linked information of a selected phone book entry

Very fast one APDU due to the format of the pointer in the file.

Error Recovery

We will not have any lost of data or link because for each action we have to send two APDUs
first one will be to update the link “reserve the space” and the second one will be to update the
data in the corresponding file.
� If any problem happens in the middle of any APDU the existing error recovery will be

applied.
� If any problem happens between the two APDUs the structure will be consistent and the data

has to be inserted again.

