ETSI SMG4	TSGT2#2(99)348

Yokohama, 19-21 April 1999

�
�
CHANGE REQUEST No :�
�
Please see embedded help file at the bottom of this�page for instructions on how to fill in this form correctly.�
�
�
�
Technical Specification GSM / UMTS:�
03.57�
Version�
1.6.1�
�
�
�
�
Submitted to SMG�
�
for approval�
�
without presentation ("non-strategic")�
�
�
�
list plenary meeting or STC here (�
for information�
�
with presentation ("strategic")�
�
�
�
�PT SMG CR cover form. Filename: crf26_3.doc�
�

Proposed change affects:�
SIM�
�
ME�
x�
Network�
�
�
(at least one should be marked with an X)

Work item:�
�
�

Source:�
Nokia, Motorola�
Date: �
�
�

Subject:�
Capability negotiation�
�

Category: �
F	Correction�
�
Release: �
Phase 2�
�
�
�
A	Corresponds to a correction in an earlier release�
�
�
Release 96�
�
�
(one category �
B	Addition of feature�
�
�
Release 97�
�
�
and one release �
C	Functional modification of feature�
x�
�
Release 98�
x�
�
only shall be �
D	Editorial modification�
�
�
Release 99�
�
�
marked with an X)�
�
�
�
UMTS�
�
�

Reason for �change:��
Utilization of the work being done in WAP Uaprof group.

�
�

Clauses affected:�
Capability negotiation�
�

Other specs�
Other releases of same spec�
�
(List of CRs:�
�
�
affected:�
Other core specifications�
�
(List of CRs:�
�
�
�
MS test specifications / TBRs�
�
(List of CRs:�
�
�
�
BSS test specifications�
�
(List of CRs:�
�
�
�
O&M specifications�
�
(List of CRs:�
�
�

Other �comments:�
�
�

�EMBED Word.Document.8 \s��� <--------- double-click here for help and instructions on how to create a CR.

�
4.4	 Capability and content negotiation

 Interaction between the MExE MS and the MSE shall be supported by the use of the hypertext transfer protocol HTTP/1.1 [9], or an HTTP/1.1 derived protocol (e.g. WSP/B as defined in Wireless Application Protocol [6]). Communication between the MExE MS and the MSE supports:-

Capability negotiation

The MExE MS connects to the MSE by using HTTP/1.1 or an HTTP/1.1 derived protocol. Capability negotiation between the MExE MS and the MSE only takes place for the first time after the MExE MS has connected to the MSE, and the MSE is informed about the MExE MS. Without this first initial contact from the MExE MS, the MSE has no knowledge of the MExE MS, and thereafter the MSE may connect to the MExE MS by using HTTP/1.1 or an HTTP/1.1 derived protocol.

Capability negotiation represents the mechanism by which the MExE MS and the MSE interact to inform each other of the specific mechanisms, capabilities and support which each is able to provide or support within the scope of a MExE service interaction. The capability negotiation normally takes place prior to any content transfer between the two entities.

Capability negotiation is used by the MSE to request the MS’ MExE capabilities, to which a response may be returned by the MExE MS. Information is normally requested by the MSE and supplied by the MExE MS, however the MExE MS may also be informed by the MSE of its current view of the MExE MS’s capabilities. The MExE MS may also spontaneously inform the MSE of its capabilities without initially being requested to send them (i.e. following a change in MExE support, such as removal of MExE MS from a docking station with its keyboard, mouse and monitor). The characteristics which may be requested and transferred between the MExE MS and the MSE during the capability negotiation are identified in subclause 4.4.1 Capability negotiation characteristics.

Content negotiation

Content negotiation represents the means by which the MExE MS and the MSE inform each other of the requested and available form of content. If needed, Thethe content negotiation normally takesmay take place following capability negotiation between the two. The methods for content negotiation are the basic HTTP1.1. or WSP methods explained in [9] and [6].

Content negotiation is used to select the best representation of an entity when there are multiple representations of the entity available from the MSE. The entity (e.g. a service, an image, etc) is located behind a URI, and the application in the MExE MS connects to the URI by using HTTP/1.1 or an HTTP/1.1 derived protocol. The best representation of an entity can be decided by the server (server-driven negotiation) or by the client application (agent-driven negotiation).

Both the capability and the content negotiation has the same purpose: to optimize the content according to client´s capabilities. The term "content negotiation" has been used e.g. in the HTTP specification and the HTTP 1.1. and the WSP contain headers to perform the content negotiation. However, the capability negotiation in MexE aims at extensing the basic HTTP and WSP methods for content negotiation. MexE terminal is free to use both the existing HTTP/WSP content negotiation methods and the new MexE capability negotiation methods.

The content negotiation transferred between the MExE MS and the MSE is identified in subclause 4.4.2 Client Capability Report onwards.

4.4.1	Capability negotiation characteristics

Method for capability negotiation is based on the CC/PP specification made by W3C, [16]. The properties and the actual schema is based on the WAP Uaprof group specification [17]. The Composite Capability/ Preferences Profiles framework is intended to provide an efficient mechanism for enabling enhanced content and service negotiation through a standardized format for user agent profiles. The use of Resource Description Framework (RDF) in CC/PP allows for interoperable encoding of the profile metadata in XML and supports multiple vocabularies to provide for future extensibility. WAP UAProf is based on the CC/PP framework. The purpose of the Uaprof is to specify

an RDF based schema and vocabulary for CC/PP in the context of WAP UAProf that includes the class definitions and semantics of attributes described in a user agent profile, and

guidelines for schema extensibility to support a composite profile that enables future additions to the vocabulary and schema.

Not all capabilities have to be reported in the reqeust to the server but instead, the client may point to an URL where the server may fetch the properties.

The Uaprof group will devide the properties into 5 different components: hardware profile, software profile, user agent profile, user preferences and network preferences. After the Uaprof group will finalize their work in July, the W3C will take over their work and develop it further.

The generic set of capabilities which may be negotiated between the client and the server consists of the subsequently identified characteristicsproperties in the schema.:-

TokenProperty�
Characteristics�
Optionality�
Description�
�
�
�
MS to MSE�
MSE to MS�
�
�
MExE-class�
MExE Classmark�
M�
O�
Classmark of the MExE device, e.g. 1, 2, etc.

Example coding:

MExE-class: 1�
�
MExE-Spec�
MExE specification�
O�
O�
Version of the MExE Stage 2 standard supported by the MS; represents the first two digits of the 03.57 specification version number.

Example coding:

MExE-Spec: 7.0�
�
MExE-srvcs�
MExE services�
O�
O�
Identification on where information on the PLMN-provided MExE services may be found, e.g. URL

Example coding:

MExE-srvcs: http:://telco.mexe.com/services�
�
MExE-manufVendor�
Device�
Manufacturer�
O�
O�
Identification of the manufacturer, e.g. Motorola, Nokia, Ericsson, etc

Example coding:

MExE-manuf: Motorola�
�
MExE-modelModel�
�
Model�
O�
O�
Model type, e.g. 130, 8810, 688, etc.

Example coding:

MExE-model: 130�
�
MExE-SN�
�
Serial Number�
O�
O�
Manufacturer’s model, e.g. 1.1.0 etc.

Example coding:

MExE-SN: 1.1.0�
�
MExE-SV�
�
SoftwareVersion�
O�
O�
Manufacturer’s software version, IMEISV

Example coding:

MExE-SV: 45007867414563701�
�
MExE-resScreensize�
Display�
Size�
resolution�

O�

O�
Definition: The size of the display screen in terms of pixels identified by width x height x depth. The depth represents the number of grey scale/ colors supported (see ColorCapable property below). If the depth is not included, the default is 1 bit mono.

Sample values: 640x480x4, 320x280x2

Pixel size of the display, e.g. 200x150 etc.

Example coding:

MExE-resol: 200x150�
�
MExE-charsScreenSizeChar�
�
�
Characters�

O�

O�
Definition: The size of the display screen in terms of pixels identified by width x height x depth. The depth represents the number of grey scale/ colors supported (see ColorCapable property below). If the depth is not included, the default is 1 bit mono.

Sample values: 640x480x4, 320x280x2

Number of lines and characters per line, e.g. 3x20, 4x15 etc.

Example coding:

MExE-chars: 3x20�
�
MExE-clrsColorCapable�
�
Colour/monochrome�
Number of colours�

O�

O�
Definition: Does the device support color display? If set to “No”, the display is grey scale.

Sample values: Yes, No

The number of colours supported, e.g. . 2, 256, 16,000 etc.

Example coding:

MExE-clrs: 256�
�
MExE-grey�
�
�
Greyscale�

O�

O�
The number of gray scale, e.g. 2 for black and white only

Example coding:

MExE-grey: 4�
�
MExE-voiceAudioInputEncoders�
Input mode�
Voice�
�

O�

O�
Indication of whether voice capture is supported, e.g. yes/no

Example coding:

MExE-voice: yes�
�
MExE-kbdid�
�
Keyboard type�
Keyboard identity�

O�

O�
Type of keyboard supported, e.g. default, PC-AT-102

Example coding:

MExE-kbdid: default�
�
MExE-kbdlg�
�
�
Human language�

O�

O�
Language used on keyboard (ISO 639 [13]), i.e. EN-UK etc.

Example coding:

MExE-kbdlg: EN-UK�
�
MExE-keys�
�
�
Number of keys�

O�

O�
The number of keys supported by the keyboard, i.e. default, 15, 102, etc.

Example coding:

MExE-keys:default�
�
MExE-pntrPointingResolution�
�
Pointing device�
Identity�

O�

O�
Type Resolution of pointing device, i.e. none, touchscreen, mouse, etc.

Example coding:

MExE-pntr: none,char or pixel�
�
MExE-hlangLanguage�
Human Language�
O�
O�
An ordered list of languages comprehensible by the user. The first value is the preferred value. Preferred language in which the user wishes to work (ISO 639 [13]), i.e EN-UK etc.

Example coding:

MExE-hlang: EN-UK�
�
MExE-flang�
Formal Language�
O�
O�
Prioritised list of renditions for formal languages, e.g. HTML, WML, etc.

Example coding:

MExE-flang: WML/HTML�
�
MExE-adprt (extention to Uaprof schema)�
Additional Protocols�

O�

O�
List of additionally supported protocols of the MExE device, e.g. SAT (SIM Application Toolkit)

Example coding:

MExE-adprt: SAT�
�
MExE-bear

(extention to Uaprof schema)�
Supported Bearers�
O�
O�
Prioritised list of preferred bearers, e.g. SMS, USSD, GPRS, etc.

Example coding:

MExE-bear: GPRS/SMS�
�
MExE-cldif�
Difference to base Classmark�

O�

O�
Identification of the devices’ components differing from the base Classmark definition

Example coding:

MExE-cldif: Java.rmi�
�
MExE-memty�
User authorised available memory�
Type of memory�
O�
O�
Type of memory, e.g. RAM, memory, hard disk, etc.

Example coding:

MExE-memty: RAM�
�
MExE-mem�
�
Amount of memory�
O�
O�
Amount of memory in Kb authorised by the user for MExE, e.g. 1, 6, 10, etc.

Example coding:

MExE-mem: 1�
�
MExE-audioAudioEncoderTypes�
Multimedia�
Audio codec type�
O�
O�
Prioritised list of preferred audio codecs (cf. H.323) e.g. G.711, G.723 etc.

Example coding:

MExE-audio: G.711�
�
MExE-videoVideoEncoderTypes�
�
Video codec type�
O�
O�
Prioritised list of preferred video codecs (cf. H.323), e.g. H.261, H.263

Example coding:

MExE-video: H.261�
�
MExE-tsize�
Transfer limits�
Size�
O�
O�
Maximum size of transfers in Kb, e.g. 1,2, 4, 8, etc.

Example coding:

MExE-tsize: 4�
�
MExE-ttime�
�
Time�
O�
O�
Maximum duration of transfers in minutes, eg. 1,2, 4, 8, etc.

Example coding:

MExE-tsize: 2�
�
MExE-locLocationType�
Location Information�
Support of location information�

O�

O�
Type of location informationsupported, if any, e.g.

No, GPRS, cell, other E-OTD, TOA, etc.

Example coding:

MExE-loc: E-OTD�
�
MExE-locinLocation�
�
Location information�
O�
O�
Actual location information (as defined by type)

Example coding:

MExE-locin: xxxxxxxxxxxxxxx�
�
MExE-uprofile�
User profile�
O�
O�
Transfer of the User Profile; individual characteristic(s) of the profile

Example coding:

MExE-uprof: nnnnnnnn�
�
MExE-URL�
�
O�
O�
An indirect reference to a location where the MExE MS’s characteristics may be obtained

Example coding:

MExE-URL: http:://name.co.com/profile�
�
MExE-addch�
Additional characteristics�
O�
O�
Support of additional characteristics, e.g. none, smart card reader, docking station, etc.

Example coding:

MExE-addch: docking-station�
�
MExE-addin�
Additional Information�
O�
O�
Manufacturer defined additional characteristics; free format

Example coding:

MExE-addin: XYZ�
�

Table 1: Capability negotiation characteristics

The support of the above characteristics between the MS and the MSE is either mandatory (marked with an M) or optional (marked with an O), as indicated in the Optionality column. M indicates that it must be sent by that entity, and O indicates that it may be sent by that entity if it supports it. A characteristic marked as O, does not necessarily require to be supported by the receiving entity.

Generally, the combination of user profile preferences and ME logic will determine the information sent in the capability negotiation from the MExE device to the MExE Service Environment. As an example, for the support of location information the user’s profile controls if and when location information may be sent to the MExE Service Environment (e..g. never sent, always sent, only after user confirmation).

The capability negotiation process shall be used by both the client and the server to permit transfer of capabilities from one client to the otherserver. By transferring its capabilities, the client or server will support efficient use of resources both over the radio interface as well as in the client or server. Capability negotiation shall performed by the server prior to transfer over the radio interface to verify as far as possible the ability of the client to support any services to be downloaded.

In order to transfer the capability information between the MExE MS and the MSE, “tokens” are identified for each transferable characteristic in the HTTP request and response headers. CC/PP method is used with the schema defined in the WAP Uaprof working group. In Classmark 1, the CC/PP is carried over by using CC/PP over WSP –mapping and in classmark 2, the CC/PP is carried over by using CC/PP over HTTP.

4.4.2 CC/PP over WSP (Classmark1)

Refer to [17].

4.4.3. CC/PP over HTTP (Classmark2)

Refer to [15].

4.4.2	Client Content Capability Report

The client may report its capabilities either spontaneously, or shall do so as a result of an enquiry from a server; the characteristics to be reported in the client capability report are identified in Table 1.

The client reports it's capabilitiesmay perform content negotiation to the server by using appropriate HTTP1.1. or WSP request headers. The following capabilities can be reportedmethods are available for content negotiation:

Client software (product): User-Agent header

MIME media types: Accept header

Character set: Accept-Charset header

Content encoding: Accept-Encoding header

Language: Accept-Language header

There is no need for MExE to specify any tokens for content negotiation, as they these headers are already defined in HTTP and WSP. The formats for these headers are specified in [9] and [6].

Example:

The following HTTP request reports that the name of client software is "GSM-Phone" version "1.0". The MExE-Spec token identifies the first two digits of the MExE specification. The client accepts both compiled WML and compiled WMLScript, and supports both the English and Swedish as languages.

GET / HTTP/1.1

Host: www.company.com

User-Agent: GSM-Phone/1.0

MExE-Spec: 7.0

Accept: application/x-wap.wmlc, application/x-wap.wmlscriptc

Accept-Language: en, sv

...

The basic format of the User-Agent: header is: User-Agent: software-name/version. A comment can be attached enclosed in parentheses to give more specific information. For example, operating system, display size, supported software extensions, script libraries, etc. The format of the comment is, however, not specified in [69].

4.4.3	Server-driven Negotiation role in capability negotiation

The server may request the capabilities of a client whenever required, and shall enquire of the client’s capabilities prior to making each transaction resulting in a set of transfers to the client; the characteristics which may be reported in the client capability report are identified in Table 1.

In server-driven negotiation the server signals to the client that the response entity was selected from a set of available representation. To do this, the server attaches the Vary: response header in the response to the client. The Vary: header includes a list of request headers. For example:

HTTP/1.1 200 OK

Vary: User-Agent, Accept-Language

Content-type: application/x-wap.wmlc

Content-language: en

...

Indicates that the entity is available for multiple languages and user-agents. The selected entity is the English version.

4.4.4	Client-driven Negotiation

If the server cannot specify an optimal version for the client basing on the CC/PP sent over to the server, the server may also indicate to client which type of versions are available and let the client make the decision. This method is already available in HTTP1.1. In client-driven negotiation the client selects the best representation after having received an initial response from the server. The response from the server is a 300 Multiple Choices response and contains a list of available representations. The selection of the available representations may be done automatically by the client application or by the (human) user from a menu.

It is noted that there is an implicit overhead of (at least) one additional round-trip delay with client-driven negotiation. The client-driven negotiation will always require an additional request/response iteration, due to the fact that the initial response from the server to the client’s initial request may be a 300 Multiple choices response, or an equivalent presentation of available choices. After the user has selected one of the available options, the client sends the request for the actual content to the server.

4.4.5	Example Capability Information Cache

MExE terminals have three methods for capability indication to a content server:

MExE terminal may use only MExE URL, (ref. Table 1 in Chapter 4.1.1), referencing to the terminal’s capability information page in a capability server

MExE terminal may indicate the capability information in the request header by using the HTTP capability tokens defined in the Table 1

MExE terminal may use them both: refer to capability information page by using MExE-URL and in addition to that, also providing some additional capability information into the request header by using defined HTTP tokens.

In order to reduce the overhead of performing the capability negotiation within every service interaction, a MexE server may have a service available to each MExE ME enabling them to write a file which is able to be read publicly, but which only the ME can modify. This page is the "cache" of the capability information and can be referenced by using MExE-URL (ref. Table 1).The MExE server providing this kind of service is here referred to as the Capability Server. The server where the ME requests content or a service is here referred to as the Content Server. The Capability and Content server could be one server.

The client may control the cache in the capability server by using e.g. following methods:

The ME may keep a local dynamically modified copy of the cache.

The ME may distinguish between capability info which should be publicly available in the Capability server, and info which is private. The private capability info will only be divulged to the Content server when requesting content.

The public capability information will go into the cache in the Capability server and can be referred to by using MExE-URL. The private info will not be cached.

The ME may modify the capability information cache in the Capability server at any time on user permission. This may happen either automatically if the user permits or by an action initiated by the user. Modification may be performed by using appropriate HTTP 1.1. protocol methods or HTTP 1.1. derived protocol.

Before the ME requests some content from a Content server, it will check coherency of the capability cache in the Capability server, and maybe update the cache. Then it will request content from the Content server, referencing to the capability information cache by using MExE-URL and optionally also providing the private capability information in the http header.

Capability information will be much abbreviated, consisting of a reference to the URL, i.e. MExE-URL, of the public capability information, plus optionally some tokens and values for the ME's private capability information. The goal should be that this will be as small as possible.

Editor's note: MExE-URL to ME’s public capability information cache in the Capability server could be further shortened if there is a virtual MExE name server (using rules) so that the cache location could be specified as company.com. 358503583862, which would be automatically expanded to something like:

http://www.company.com/MExE/capabilities_cache/~358503583862.html

���

Figure 2: Usage of the MExE URL and capability cache in the capability server

4.4.6	Example client-server negotiation

The initial client request is the same as for subclause 4.4.2 “Client capability reporting” (with the difference being that the client does not indicate its acceptable or preferred format(s), in this initial request). Also, the client’s request does not refer to a specific document (note, that there is no file-type in the URL), but rather some abstract resource “/late_works/sunflowers“ that is to be interpreted by the server (e.g. as a subdirectory containing miscellaneous versions of the said painting):

GET / HTTP/1.1

Host: http://www.vincent_van_gogh_museum.nl/late_works/14sunflowers

User-agent: GSM-phone/1.0

MExE-Spec: 7.0

Accept-Language: en, ge

...

The server recognises that it has several versions and/or formats of the client’s requested document, and thus issues a 300 multiple choices response to the client. The response includes a list (here: a .html-document) describing the available formats. This list of available formats is displayed to the user who selects one, and the user-agent then requests the selected document from the server in a second request/response iteration. Note (as shown in this example), that the server can optionally include its preferred or suggested representation (e.g. the one it deems most appropriate for that particular user-agent) in the Location field. A user-agent can use this to perform an automatic redirection if it chooses not to display the obtained document to the user, in which case this method falls back to server-driven negotiation):

HTTP/1.1 300 Multiple Choices

Content-type: text/html

Location: /late_works/sunflowers/14sunflowers_midres.gif

<html>

<head>

...

</head>

<body>

We have several versions and formats of the requested painting available - please select:

icon size (30x20):

GIF-format,

bitmap-format (Windows).

low resolution (200x300):

GIF-format,

JPEG-format.

medium resolution (400x600):

GIF-format,

JPEG-format.

high resolution (800x1200):

GIF-format,

JPEG-format.

super-high resolution (1200x1600):

GIF-format,

JPEG-format.

</body>

</html>

...

Editor’s note: RFC 2068 states that "the server SHOULD include an entity containing the list of resource characteristics and location(s) from which the user or the user-agent can choose the one most appropriate". The RFC does not state, how a user(-agent) could possible select any format, if the server does NOT send any such further indication about available formats...).

However, the RFC does not name or describe any specific format, in which such a list should be transferred, but rather notes that "the (list) entity format is specified by the media type given in the Content-type header field". As there appears to be no special "format-list" media-type, the typical format for such a list is probably a simple .html-document describing the miscellaneous format choices (as shown in the above example). The document can be displayed to the user, and the user then picks the desired format by clicking on one of the embedded hyper-links.

While it is very easy to implement this "carbon-supported" selection mechanism in a Web-browser, the possibility to select the correct format automatically is drastically limited, because the browser does not have any semantic understanding of the kind and attributes of the document versions listed in the .html document. The RFC authors were probably quite aware of this limitation as they also noted "However, this specification does not define any standard for such automatic selection.". They probably expect(ed) that such a list format will be specified in another document.

In the absence of any such standardisation activities, it will probably be necessary to standardise such an attribute-list format so that MExE-user-agents can "understand" and automatically select from the list, such that automatic content format selection (not to speak of other capability negotiation issues...) may be enabled.

Editor’s note: Final two paragraphs of the above editorial note requires to be reconsidered and preferably deleted, and the editorial note converted into main text.

