
3GPP TSG-T2 #12

London Heathrow
3-5 April 2001
T2E-010027

Agenda Item:

SMS
Source:

Magic4

Title:
Introduction of Extended Format Tags
Document for:

Change Request 23.040

Introduction

This CR proposes to include new Information Elements for EMS. These IE allow to grouped format types which support and expandable series of sub level information formats

3GPP TSG-T2 SWG3 Ad Hoc 1
 London UK
3-5 April 2001
T2E-010012

CR-Form-v3

CHANGE REQUEST

(

Spec-Number
CR
CR-Num
(

rev
-
(

Current version:
x.y.z
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE
X
Radio Access Network

Core Network

Title:
(

Ammendment of iei tags to support grouped expanded format types

Source:
(

Magic4

Work item code:
(

Messaging (SMS)

Date: (

05 February 2001

Category:
(

C

Release: (

REL-4

Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

There is a limit to the number of iei’s available for use with different format types and an increasing number of new format types which will need to be supported

Summary of change:
(

Five IE are defined for allowing the inclusion of categories for sounds, images , animations, Text and non-specific information types. The category types will support via a 2 byte identifier space for 255 sub data formats and recognise the existence of current data formats.

Consequences if
(

not approved:
There will be no standardised means of exchanging existing data formats or support for existing or evolving formats.

The iei table will be filled with specific data formats leaving limited headroom for future inclusive evolution

Clauses affected:
(

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.,

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
The Information Element Identifier octet shall be coded as follows:

VALUE (hex)
MEANING

00
Concatenated short messages, 8-bit reference number

01
Special SMS Message Indication

02
Reserved

03
Value not used to avoid misinterpretation as <LF> character

04
Application port addressing scheme, 8 bit address

05
Application port addressing scheme, 16 bit address

06
SMSC Control Parameters

07
UDH Source Indicator

08
Concatenated short message, 16-bit reference number

09
Wireless Control Message Protocol

0A
Text Formatting

0B
Predefined Sound

0C
User Defined Sound (iMelody max 128 bytes)

0D
Predefined Animation

0E
Large Animation (16*16 times 4 = 32*4 =128 bytes)

0F
Small Animation (8*8 times 4 = 8*4 =32 bytes)

10
Large Picture (32*32 = 128 bytes)

11
Small Picture (16*16 = 32 bytes)

12
Variable Picture

13
User prompt indicator

14
Large EMS Messages

15-1F
Reserved for future EMS features (see subclause 3.10)

20
RFC 822 E-Mail Header

21-6F
Reserved for future use

70 – 7F
(U)SIM Toolkit Security Headers

80 – 9F
SME to SME specific use

A0 – BF
Reserved for future use

C0 – DF
SC specific use

E0 – FF
Reserved for future use

A receiving entity shall ignore (i.e. skip over and commence processing at the next information element) any information element where the IEI is Reserved or not supported. The receiving entity calculates the start of the next information element by looking at the length of the current information element and skipping that number of octets.

The SM itself may be coded as 7, 8 or 16 bit data.

If 7 bit data is used and the TP‑UD‑Header does not finish on a septet boundary then fill bits are inserted after the last Information Element Data octet up to the next septet boundary so that there is an integral number of septets for the entire TP‑UD header. This is to ensure that the SM itself starts on an septet boundary so that an earlier Phase mobile shall be capable of displaying the SM itself although the TP‑UD Header in the TP‑UD field may not be understood.

It is optional to make the first character of the SM itself a Carriage Return character encoded according to the default 7 bit alphabet so that earlier Phase mobiles, which do not understand the TP‑UD‑Header, shall over‑write the displayed TP‑UD‑Header with the SM itself.

If 16 bit (USC2) data is used then padding octets are not necessary. The SM itself shall start on an octet boundary.

If 8 bit data is used then padding is not necessary. An earlier Phase mobile shall be able to display the SM itself although the TP‑UD header may not be understood.

It is also possible for mobiles not wishing to support the TP‑UD header to check the value of the TP‑UDHI bit in the SMS‑Deliver PDU and the first octet of the TP‑UD field and skip to the start of the SM and ignore the TP‑UD header.

Information elements 14-18 additionally support a subgroup of Content format tags (outlined in Annex F) which identify specific content formats which can may be recognised by the mobile. If a mobile does not support the content an error message may be display to inform the user that this content format is not supported.
Annex F
Information Format Tags

This Annex identiies the proposed supplementary tags which support iei values 14-18 and include the facility for support of existing formats and potential information formats which may be support by a handset .

Format Category
Content Format Tag
Description

Sounds ()
00
Predefined Sound

01
User Defined Sound

02
Nokia format Ringtone

03
Bitstream Format Sounds

04
Jade Format Sounds

05
MIDI Sounds

06
Polyphonic Sounds

07-2F
Reserved for additional Sound formats

Images ()
30
Large Picture

31
Small Picture

32
Variable Picture

33
Operator replacement logo

34
Nokia Picture Message

35
 variable Bitstream Image format

36
GiF format

37
J-PEG format

38-4F
Reserved for additional Image Formats

Animations
50
Large Animations

51
Small Animations

52
Predefined Animations

53
Freeform animations

55
Animated GIF

55-6F
Reserved for Additional Animation Formats

Text Mesages
70
Text formatting

71
Text Positioning

72
Text Display Mode

73
Embedded Text Stream

74-7F
Reserved for Additional Text Formats

Non Specific Information Types
80
Forms

81
Service ID

82
Non Specific Binary Data

83
VCard objects

84
VCal objects

85
Compressed byte stream

86-FF
Reserved for Additional Formats

Definitions of the content type

Predefined sounds
 As defined in TS 23.040 9.2.3.24.10.1.2

User Defined Sound
As defined in TS 23.040 9.2.3.24.10.1.3

Nokia Ringtone format
As defined in Nokia Smart Messaging Revision 3.0.0 18 –12-2000
Bitsteam Format Sound
Bitstream Sound uses the format <FORMAT TAG><CONTROL BYTES><LENGTH> <DATA>
<Format Tag> is the Content Format Tag identified in table F

<Control Bytes>
The control bytes (CBx) include various bit fields and flags for controlling how the Handset deals with the data. The Handset software will be able to read and process any number of control bytes, even if it does not use the content of the control bytes. As a minimum the client will be able to understand at least control bytes 1 and 2 (CB1 & CB2). If a second control byte (CB2) is not defined then it is assumed that no encryption is used and licensing allows data to be transmitted without restriction.

Control Byte 1 Table

Bit(s)
Usage

7
Another control byte following flag:

0
No more control bytes follow (default)

1
At least 1 more control byte follows

6
‘O’ bit
– flag indicating the current operation

5
‘D’ bit
– flag indicating display

4
‘P’ bit
– flag indicating persistence

3
‘R’ bit
– flag indicating unencrypted reply

2
‘RE’ bit
-- flag indicating encrypted reply

1-0
The Length of the <LENGTH> field

00
1 byte

01
2 bytes

10
3 bytes

11
4 bytes

Control Byte 2 Table- Optional

Bit(s)
Meaning

7
Another control byte following flag:

0
No more control bytes follow (default)

1
At least 1 more control byte follows

6-4
Encryption Method

000
No Encryption
(default)

001
DES

010
Triple DES

011
RSA

100+
Reserved

3-2
Object Protection bits:

00
Media can be transmitted and persisted freely (default)

01
Media can be persisted, but not transmitted

10
Media can be transmitted but target cannot persist

11
Media cannot be persisted

1-0
Reserved – Assumed set to zero.

<Length>
The <LENGTH> element describes the length of the <DATA> section in bytes.
<Data>

Data is represented in a single Notestream

A <NOTE STREAM> is a simple series of note tones (including the special pause note). Each note is represented by 2 bytes (16 bits), as described in the table below:

Bit(s)
Usage

15 – 14
Octave Number:

00
Octave 0

01
Octave 1

10
Octave 2

11
Octave 3

13 – 10
Note Identifier – Specifies particular note:

0000

Pause

0001

C

0010

C#

0011

D

0100

E$

0101

E

0110

F

0111

F#

1000

G

1001

A$

1010

A

1011

B$

1100

B

1101 – 1111
Reserved

9 – 0
Duration – Length of note to be played (time units are 1/100 s):

0000000000
1 time unit (0.01s)

…

…

…

…

1111111111
1024 time units (10.24s)

Jade Sound Format
As defined in Motorola Document Appended
MIDI Musical Information Digital Interface
Definition to be Appended MIDI 1.0 standard document

Polyphonic Sounds
To be defined as per Ad Hoc Group Alcatel Proposal
Large Picture Format
As defined in TS 23.040 9.2.3.24.10.1.7

Small Picture Format

As defined in TS 23.040 9.2.3.24.10.1.8
Variable Picture

As defined in TS 23.040 9.2.3.24.10.1.9

Operator Replacement Logo
TBN

Nokia Picture Message Format

As defined in Nokia Smart Messaging Revision 3.0.0 18 –12-2000

Variable Bitstream Image Format

The Bitstream Image format follows the following Format
<Format TAG><CONTROL BYTES><IMAGE HEADER>
[<TOP LEFT POSITION>]
<SIZE>[<EXT INFO>] <LENGTH><IMAGE DATA>
<Format Tag> is the Content Format Tag identified in table F

<Control Bytes>

The control bytes (CBx) include various bit fields and flags for controlling how the Handset deals with the data. The Handset software will be able to read and process any number of control bytes, even if it does not use the content of the control bytes. As a minimum the ME will be able to understand at least control bytes 1 and 2 (CB1 & CB2). If a second control byte (CB2) is not defined then it is assumed that no encryption is used and allows data to be transmitted without restriction.

Control Byte 1 Table

Bit(s)
Usage

7
Another control byte following flag:

0
No more control bytes follow (default)

1
At least 1 more control byte follows

6
‘O’ bit
– flag indicating the current operation

5
‘D’ bit
– flag indicating display

4
‘P’ bit
– flag indicating persistence

3
‘R’ bit
– flag indicating unencrypted reply

2
‘RE’ bit
-- flag indicating encrypted reply

1-0
The Length of the <LENGTH> field

00
1 byte

01
2 bytes

10
3 bytes

11
4 bytes

Control Byte 2 Table- Optional

Bit(s)
Meaning

7
Another control byte following flag:

0
No more control bytes follow (default)

1
At least 1 more control byte follows

6-4
Encryption Method

000
No Encryption
(default)

001
DES

010
Triple DES

011
RSA

100+
Reserved

3-2
Object Distribution bits:

00
Media can be transmitted and persisted freely (default)

01
Media can be persisted, but not transmitted

10
Media can be transmitted but target cannot persist

11
Media cannot be persisted

1-0
Reserved – Assumed set to zero.

<IMAGE HEADER> is 1 byte defined as follows:
Bit(s)
Usage

7 – 6
Length of the <LENGTH> field:

00
1 byte

01
2 bytes

10
3 bytes

11
4 bytes

5 – 3

Compression Scheme:

000
No Compression

001
RLE Scheme 1

010
RLE Scheme 2

011-111
Reserved.

2
Reserved.

1
Reserved.

0

<EXT INFO> presence flag:

0
<EXT INFO> not present

1
<EXT INFO> present

<Position>
Position

Co-ordinate position in X, Y format. A <POSITION> consists of four bytes.
<POSITION>::= { X Position (2 bytes) } { Y Position (2 bytes) }

<SIZE>

The <SIZE> is a four-byte quantity. The first pair of bytes hold the image width (in pixels), the second pair of bytes hold the image height (in pixels). The values can range from 0 – 65535.

<EXT INFO>

The <EXT INFO> byte is an optional byte that can be used to hold further extended information- at present unused.

<LENGTH>

This field can range between 1 and four bytes inclusive. Its value represents the amount of bytes comprising the < IMAGE DATA>.

< IMAGE DATA>

The < IMAGE DATA> is the raw data for the image. This is simply a bit-based bitmap for the whole of the image. The final byte of the data may be partially used, depending upon the dimensions of the image.

Examples:

· An 8 by 8 bitmap would take 8 bytes, with one byte representing each row of bits within the bitmap.

· A 9 by 9 bitmap would take 11 bytes. The highest bit of the 2nd byte would represent the last bit of the first row of the bitmap. The second highest bit of the second byte would represent the first bit of the second row of the bitmap. Continuing in this fashion wastes no bits in any of the bytes apart from the final byte where the highest bit represents the last bit of the ninth row of the bitmap. The remaining bits within this byte are unused.

GIF Format
As defined in attached Appendix
J-PEG

As defined in attached Appendix

Large Animations
As defined in TS 23.040 9.2.3.24.10.1.5

Small Animations

As defined in TS 23.040 9.2.3.24.10.1.6

Predefined Animations
As defined in TS 23.040 9.2.3.24.10.1.4
Freeform Animations
A <Freeform Animation> is an animated monochrome bitmap.
<FreeForm Animation> ::=
<Freeform Animation TAG>

<CONTROL BYTES><Length><Freeform Animation HEADER>

<DELREP>

[<EXT INFO]

<Freeform IMAGE>+

<Format Tag> is the Content Format Tag identified in table F

<Control Bytes>

The control bytes (CBx) include various bit fields and flags for controlling how the Handset deals with the data. The Handset software will be able to read and process any number of control bytes, even if it does not use the content of the control bytes. As a minimum the client will be able to understand at least control bytes 1 and 2 (CB1 & CB2). If a second control byte (CB2) is not defined then it is assumed that no encryption is used and licensing allows data to be transmitted without restriction.

Control Byte 1 Table

Bit(s)
Usage

7
Another control byte following flag:

0
No more control bytes follow (default)

1
At least 1 more control byte follows

6
‘O’ bit
– flag indicating the current operation

5
‘D’ bit
– flag indicating display

4
‘P’ bit
– flag indicating persistence

3
‘R’ bit
– flag indicating unencrypted reply

2
‘RE’ bit
-- flag indicating encrypted reply

1-0
The Length of the <LENGTH> field

00
1 byte

01
2 bytes

10
3 bytes

11
4 bytes

Control Byte 2 Table- Optional

Bit(s)
Meaning

7
Another control byte following flag:

0
No more control bytes follow (default)

1
At least 1 more control byte follows

6-4
Encryption Method

000
No Encryption
(default)

001
DES

010
Triple DES

011
RSA

100+
Reserved

3-2
Object Distribution bits:

00
Media can be transmitted and persisted freely (default)

01
Media can be persisted, but not transmitted

10
Media can be transmitted but target cannot persist

11
Media cannot be persisted

1-0
Reserved – Assumed set to zero.

<Length>

The <LENGTH> element describes the length of the <DATA> section in bytes.

The <Freeform HEADER> is 1 byte defined as follows:

Bit
Usage

7
Reserved. Assumed to be zero.

6 – 3
The number of images within the iconimation:

0000
2 images

1111
17 images

2
Iconimation reversing flag:

0
Play Iconimation normally

1
Once Iconimation has played normally, reverse the sequence

1
Reserved. Assumed to be zero.

0
<EXT INFO> presence flag:

0
<EXT INFO> not present

1
<EXT INFO> present

The <DELREP> byte always appears and is used as follows:

Bits
Usage

7 – 4
Delay value. The value (in tenths of a second) that is requested between each frame:

0000
1 tenth
(i.e. 0.1s)

1111
16 tenths
(i.e. 1.6 s)

3 – 0
Repeat value. The requested number of repetitions of the iconimation:

0000
Unlimited repetition

0001
1 repetition

1111
15 repetitions

<EXT INFO>

The <EXT INFO> is presently unused. It will be ignored.

<Image >

Animated GIF

As defined in the Outline specification appended
Text Formatting
As defined in 23.040

Text Positioning
Text Display Mode

Allows text to be Scrolled across the screen , flashing text to appear, text to be wrapped around objects
Embedded Text Stream
Data Type/Description
Meta Language

Text

Text is ASCII or UCS2
<DATA>::=
<EMBEDDED TEXT STREAM HEADER>

<POSITION>]

<EXT INFO> [<WIDTH>]]

<TEXT CHARACTERS>

The<TEXT HEADER> is 1 byte defined as follows:

Bit(s)
Usage

7
Bold flag:

0
Bold off (default)

1
Bold on

6

Italic flag:

0
Italic off (default)

1
Italic on

5 – 4

Text size:

00
Medium / Normal (default)

01
Small

10
Large

11
Reserved

3 – 2

Justification:

00
Left Justify (default)

01
Right Justify

10
Centre

11
Reserved

1

<POSITION> flag:

0
<POSITION> does not appear (default)

1
<POSITION> appears

0

<EXT INFO> presence flag:

0
<EXT INFO> not present (default)

1
<EXT INFO> present

<POSITION>

A <POSITION> as previously defined defines the position where the top left part of the text will appear. If no <POSITION> details are specified then text will be displayed at the current cursor position.

<EXT INFO>

The <EXT INFO> is 1 byte used as follows:

Bit
Usage

7
<WIDTH> appears:

0
<WIDTH> does not appear (default)

1
<WIDTH> appears

6

Multiline Flag:

0
Multiline text (Text wrapping) (default)

1
Single line only (No text wrapping)

5

Indentation flag:

0
Position successive lines of text at the same horizontal position as the first line (default)

1
Position any successive lines of text at the leftmost position of the screen

4 – 0
Reserved.

<TEXT CHARACTERS>

<TEXT CHARACTERS> is simply a byte stream containing the text.
Forms

A basic requirement of the form mechanism is to allow the two-way transfer of data between a handset and the service centre. There is no guarantee that a group of SMS messages sent from the service centre to a given handset will arrive at the handset in the order in which they were sent, or vice versa. It is essential that we are able to maintain the correct sequence of packets and also keep packet associated with the same transaction together.

Information needs to be stored in each form definition packet to:

· Identify the transaction number

· Indicate the packet sequence number and

· The total number of packets in the transaction

The above details can be represented in a two-byte header, one byte for a modulo-256 transaction number. The packet sequence number and the total number of packets in a transaction can be stored in a single byte.

Form Format

The form data will consist of one or more message command blocks described below. Each block will be self-contained and may contain one or more instruction that need to be parsed and acted upon by the SMS client software.

The form will consist of two parts: - a form identification block, which will uniquely identify the set of commands that will follow together with one or more form-specific commands.

Data Type/Description
Meta Language

Form

Forms have four major categories: free text, selection and input
<DATA>::= {<COMMAND BLOCK}* <CONFIRMATION BLOCK>

<COMMAND BLOCK>::= ‘#’

{

 <DISPLAY FREE TEXT COMMAND>|

 <SELECTION COMMAND>|

 <INPUT COMMAND>|

 <TEXT FORMATTING COMMAND>

}

‘;’

<DISPLAY FREE TEXT COMMAND>::= {‘T’|’t’}<TEXT STRING>

<SELECTION COMMAND>::= ‘S’<SELECTION BYTE>

<PROMPT TEXT>’:’<OPTION BLOCK>

<INPUT COMMAND>::= {‘I’|’i’}{‘C’|’N’|’T’|’D’}

 <FORMAT BYTE>

 [<MIN VALUE>,][<MAX VALUE>,]

 [<PROMPT>]’:’[<DEFAULT INPUT DATA>]

<TEXT FORMATTING COMMAND>::= ‘F’<FORMATTING WORD>

<CONFIRMATION BLOCK>::= ’#‘<CONFIRMATION PROMPT COMMAND>

‘;’

<CONFIRMATION PROMPT COMMAND>::= ‘R’

 [<CONFIRMATION PROMPT>]

<OPTION BLOCK>::= [<OPTION STATE>]<OPTION VALUE>

{‘,’[<OPTIONSTATE>] <OPTION VALUE>}*

<OPTION STATE>::= ‘?’

where:

Directive
Description

‘T’ or ’t’
Text prompt

‘I’ or ’i’
Input

‘C’
Text input

’N’
Numeric input

’T’
Time input

’D’
Date input

General Conventions

The Generic Form Definition Language (GFDL) will use a convention whereby the case of the letters that specify the current command will be significant. Where relevant an uppercase character will imply that the cursor will start at the beginning of line below the line where the prompt is displayed. A lower case letter will imply that the cursor will remain after the end of the prompt text.

Form Identification

Each form definition includes a 4-byte identifier that allows form responses to be synchronized between the handset and the back office server. This identification will be generated by the server and be unique for the lifetime of the forms transaction.

Display Free Text

Displays the specified piece of text. The user can specify a piece of text that will be displayed on the handset display for providing information to the user or prompting purposes. The layout of this text message will depend on the physical characteristics of the display on the handset. Examples:

#THello World

or

#tHello World
Hello World

 h

The length of the free text is limited to 126 bytes: i.e. 126 GSM characters (or 63 UCS2 characters when implemented).

Reserved Characters

In order to display reserved characters within a free text prompt (for example ‘<’ and ‘#’), a byte stream similar to that given below is required.

#T<<<# Magic <#> is here !!

This command will produce the following output:

<# Magic4#> is here !!

Text Formatting Command

The Text Formatting Command is used to describe the appearance of both the prompt and user entry text on the handset. The content of the formatting bytes are given below:

[image: image1.png]Most Significant Byte (Defaut 0)

Least Significant Byte (Default 0)

[“Iu

—Prompt Text— [User data—

T

R=E:

Alignnent
Read-0nly
Passuard
Hekden Feld
Unused

Bold
Underline
Italic

L Fiaching

MSB Text Formatting Command

The bottom two bits are used to specify the text alignment properties. Valid combinations of bits are given below. All other bits are currently unused.

Bit1
Bit0
Alignment

RESET
RESET
Left Aligned

RESET
SET
Right Aligned

SET
RESET
Centred

SET
SET
Unused

LSB Text Formatting Command

The bottom nibble is concerned with the appearance of the text entered by the handset user; the upper nibble is concerned with the appearance of the prompt text supplied by the client.

Selection Commands- Single Option Selection

To provide the user with the ability to choose one option from a number of possible options displayed on the handset.

The user will be given a textual prompt followed by the list of possible options. A number of these, possibly zero, may be selected which will then be transmitted back to the service centre for processing.

The default value is that all items in the selection list will be unselected. Example:

#S<selection options>

Please Select One:

Black, White, Red

Please Select One:

Black
White h
Red

This response will then be sent back to the service centre for processing. The selection list provides the user with the ability to choose potentially several options from a number of possible options displayed on the handset.

The user will be given a textual prompt followed by the list of possible options. A number of these, possibly zero, may be selected which will then be transmitted back to the service centre for processing. The default value is that all items in the selection list will be unselected. Since only one option can be selected the bits of the <selection options> byte will always be set as shown below:

[image: image2.png]Selection Type
Single Selection
Multiple Selection
Waxinun Number Of Optians
That Mat Be Selected
(only Applicable When
Bito Is Set)

Selection Multiple Option Selection Commands-

Example of the multiple option selection:

#S<selection options>

Please Select Some:

England, America, Italy;
Please Select Some:

[x] England h
[] America

 Cursor down-
(

Please Select Some:

[x] England

[x] America h

 Cursor down-
(

Please Select Some:

[x] America

[] Italy h

The <selection options> byte will allow one or more options from the supplied list to be selected. The bit settings will look similar to that shown below:

[image: image3.png]Selection Type
ingle Selection
1= Muliiple Selection

Maximum Number of Options
That May be Selected

(Only Applicable When

BIlD is Set. Zero

Indicates Unlimited
Selections

Minimum Number Of Selections
0= May Have Zero Selections
t Least One Selection Required

The default state of each item in the selection list may be specified such that if the first character is ‘?’ (ASCII 63) then this item is selected otherwise the item is unselected.

Confirmation Prompt

Provides a prompt to the user as to whether the data that has been entered is correct and can be sent back to the service centre for processing. There are two alternatives to this command: the first uses a standard prompt (TBD, example below), the other displays a form specified prompt. This field is mandatory and must be the last field in the form definition. Example:

#R;
Send Request? h

#ROK To Send Results?;
OK to Send Results? h

Input Commands

A number of general techniques for retrieving information from the user will be provided. In general terms these will be textual (characters) based input and numeric input. Other more specific forms of data entry will be supported at some point.

Each piece of data may be preceded by a prompt message (either via the Input Command method below or by using the Free Text method described above). There will also be the ability to provide a default value, whose format will depend on the type of value that is being expected.

<Input Command>::=
{‘I’|‘i’} {‘C’|’N’|’T’|’t’|’D’}<Format Byte>

 [<Min Value>,][<Max Value>,]

 [<Prompt>]’:’[<Default Input Data>]

}

The maximum length of the default input value is 126 GSM characters or 63 UCS2 characters when implemented. The mandatory <Format Byte> is supplied regardless of input data type. Its use is dependant on the input data type specified.

[image: image7.png]76543210

00XX ===+ Nominimum

01XX = === Minimumvalue present
10 XX = === Oreaterthan cument system timeidate

11%X - Greater than previous systern timefdate

XX 00 - No maximum

Xx01 - Madrur value present

XX 10 - Maximurm value less than current system timefdate
Xx 11 - Maximurm value less than previous system timeldate

Nurnber of decimal places
0.7 . Only applicable for flsating poirt nurmbers, ignored and assumed

to be zero for integer values. (Default is zero)
Optional Field, set > field optional, clear field -> mandatory.

A number of specific cases are given below:

· If the maximum value is less than the minimum value then the data entered by the user would be invalid

· When inputting textual data, the min-max range specifies the number of characters that may be entered.

· When inputting numeric data, the min-max range specifies the range of values that may be entered.

· Time and Date fields are only checked for valid format

If either the minimum or maximum values are missing the following interpretations will be used:

· Textual missing minimum: Minimum number of characters is assumed to be one, unless “Optional Field” flag is set.

· Textual missing maximum: Maximum number of characters is limited to a default of 126 GSM or 63 UCS2 when implemented.

· Numeric missing minimum: No restriction on the minimum number that may be entered.

· Numeric missing maximum: No restriction on the maximum value that may be entered.

The format of floating point numbers specified in the input command is defined as below:

<Floating Point Number> ::= {‘+’|‘-‘}{<digit>}*[‘.’]{<digit>}*

Text Input

Allows the user to enter a piece of non-specific text in response to a form initiated prompt. The user response is treated as a piece of unformatted free text.

#IC<0>Enter Name:Colin;

or

#iC<0>Enter Name:Colin;
Enter Name

 Colin h
Enter a string with prompt giving a default displayed on next line.

#IC<0>Enter Your Name:;

or

#iC<0> Enter Your Name:;
Enter Your Name

 h
Enter a string with prompt but no default value. Input moves to next line.

#IC<0>:ABCDEF;

or

#iC<0>:ABCDEF;
 ABCDEF h
Enter a string with no prompt but with a default value.

#IC<0>:;

or

#iC<0>:;
 h
Enter a string with no prompt or default value.

Numeric Input

Allows the user to enter a numeric value in response to a form initiated prompt. The user’s response is treated as an integer value.

#IN<0>Enter Your Age:33;

or

#iN<0>Enter Your Age:33;
Enter Your Age

 33 h
Enter a numeric value with a prompt and a default value

#IN<0>Enter Your Age:;

or

#iN<0>Enter Your Age:;
Enter Your Age

 h
Enter a numeric value with prompt but no default value

#IN<0>:100;

or

#iN<0>:100;
100 h
Enter a numeric value with no prompt but a default value

#IN<0>:;

or

#iN<0>:;
 h
Enter a numeric value with no prompt or default value.

Date Input

It is necessary to specify the format (ordering of day month and year information) in which the date input is expected to be entered. The date input format byte is given below:

[image: image4.png]TT7T

T

Dete Format
DDy

MYV YYD
YYYYMMDD

111 = Unused
Fied Optonal

Maxinumyalue, (See Input Command)
Mirimum Value, (Sez Input Commanc)

Date examples:

#ID<0>Date:30022001;

or

#iD<0>Date:;
Enter Date

 30022001 h
Enter a date with a text prompt.

#ID<0>Date:

or

#iD<0>Date:
Enter Date

 h
Enter a date without a text prompt.

Time Input

The input of time-related data needs be considered in a global context. The accuracy and time format needs to be able to be specified within the input data specification. Time formats will always be sent in 24 hour format; bit 0 of the time format byte will determine how the time is actually displayed.
[image: image5.png]T Tt

Hou Cycle
0= 24nour format used
Displayed using AMPM

Time Format
=g
HHMSS
Unused
Unused

Fied Optonal
Maxinum Value, (See It Commanc)
Mirimum Value, (Se2 Input Comman)

Time examples:

#IT<0>Time:1355;

or

#iT<0>Time:1355;
Enter Time

 1355 h
Enter a time with prompt text.

#IT<0>Time:;

or

#iT<0>Time:;
Enter Time

 h
Enter a time without text prompt.

Using data short codes

A number of short codes may be specified within the default value field of an input command. This allows several personal information and initialisation file settings to be retrieved and used as the default responses to form requests. The currently recognised short codes are given in the table below.

Note : The case of the short code is significant.

Short Code
Meaning

$FNAME
Retrieves the stored forename from the personalisation settings

$SNAME
Retrieves the stored surname from the personalisation settings

$HNO
Retrieves the stored house number from the personalisation settings

$PCODE
Retrieves the stored post code from the personalisation settings

$IMEI
Retrieves the ME IMEI number

$IMSI
Retrieves the IMSI number of the current SIM

Client Command

To be decided.

Encryption

The format of encrypted data is as follows: TBD

Field Name
Description

<Challenge>
128 bits (16 bytes) for the Challenge.

<No. Of Padding Bytes>
1 byte indicating the number of zero padding bytes to the right of the unencrypted data.

<Encrypted Data>
A multiple of 64 bits (8 bytes) of encrypted data that was zero padded before it was encrypted.

Service ID
The Service ID
Data Type/Description
Meta Language

Service ID
Unique number assigned to the content service
<SERVICE ID>::={ 4 byte service ID number }

Server Number

<SERVER NUMBER>::= <LENGTH><TON>

 <PHONE NUMBER>

<LENGTH>::= single byte= number of digits in phone number

<TON>::= single byte= Type Of Number

normally 0x91 for International or 0x83 Short Code

<PHONE NUMBER>::= Multiple bytes- Phone number digits are packed two per byte, padded to an even number of digits with 'F' and byte nibbles swapped e.g. 7008981032F4 represents 0780 890 1234

Service Descriptor Field

The service descriptor field is either encoded as ASCII or UCS2 (depending upon the text type selected for the SMS message. LENGTH is a one byte value therefore the maximum length of a descriptor is 255 chars for ASCII or 127 chars for UCS2.
<LENGTH>::=<BYTE>

<SERVICE DESCRIPTOR FIELD>::=<LENGTH><BYTE>+

Non Specific Binary Stream
Non Specific Binary Data represents a binary data stream which is delivered to the handset for handset specific processing .it is represented by athe following Format
<FORMAT TAG>
<DATA ID> 1 Byte

<LENGTH> 1Byte

<DATA> - Bytestream

Vcard Objects
VCard Objects are defined as in Gwenales Le Bodic CR

VCAL Objects
VCAL Objects are defined as in Gwenal Le Bodics CR

Compressed Byte Stream
Byte Stream Structure

Media are encoded into a simple byte stream. The structure of a complete, incoming, byte stream for the client is illustrated below:

[image: image6.png]Element 1 Element 2.

erement1 | [eiements crementz | | Erementz
e e o oL oty B i T
T) o)

— ——

 Figure 3 Byte Stream Structure

The structure comprises a simple linear sequence of Command Elements where

Command Element::==
<Element Identifier>

<Element Control bit field(s)>

<Element Length of data field>

<Data field>

Command Identifiers are 1-byte fields, which identify the type of the following data element. This field is followed by a 1-byte, optionally 2-byte, control bit block comprises the following bits:
Label
Description

O
Operation toggle.

D
Display Flag.

P
Persist flag.

R
Reply Flag.

L1
Licence bit 1.

L2
Licence bit 2.

LL1
Length of length field 1.

LL2
Length of length field 2.

Operation toggle

The bytestream uses the concept of an operation to group events that must be simultaneous to the user e.g. simultaneous playing of a ring tone with icon animation. Commands are grouped into operations using the operation toggle. This is simply a switched bit in the incoming byte stream. Initially set 0 it is reset for every element of a new operation structure. For instance a sequence as follows:

 Byte stream = {0 DPR 3210} + {0 DPR 3210} + {1 DPR 3210} + {0 DPR 3210}

Would evaluate to an operation queue as follows:

Operation elements = {Command1, Command2} + {Command3} + {Comand4}.

Flags

The display flag D indicates to the engine that the data block following is displayed on the mobile phone.

The persist flag P indicates to the client that the following block may be persisted upon the mobile phone.

The reply flag R indicates to the client that the following FBT data block will invoke an SMS reply through the GSM stack to the BSC.

The Distribution bits L1 and L2 allow media to be tagged as freely distributable, downloadable to a single phone or play and discard. This licensing is mandated by the requirement for the Magic4 client to support point-to-point transmission of SMS containing embedded media.

General Data Transmission Format (GDTF)

Data Transfer

All transfers of data from a server to the ME can be achieved using various transport technologies (currently SMS). Once all packets of the same message have been received, the individual parts are re-assembled to form the General Data Transfer Format (GDTF).

GDTF Sections

The completed package consists of three distinct sections.

Data Type/Description
Meta Language

GDTF
<GDTF>::=

<PREAMBLE><COMPRESSED DATA><CHECKSUM>[<PADDING BYTE>]

<PREAMBLE>

Data Type/Description
Meta Language

The preamble contains information regarding the transmission that may be required, but is not intrinsically required for client operation
<PREAMBLE>::=
<HEADER BYTES>

[<SERVER NUMBER>]

[<LOCALE>]

[<PHONE METRIC ID>]

[<SERVICE DESCRIPTOR FIELD>

Header Byte 1

Header byte 1 is mandatory.

Bit(s)
Usage

7
Another header byte following flag:

0
No more header bytes follow

1
At least 1 more header byte follows

6 – 5
Compression Method (of <COMPRESSED DATA>):

00
No Compression (default)

01
CM1

10
CM2

11
Reserved

4
Server number present:

0
Server number not present (default)

1
Server number present

3
Locale present:

0
Locale not present (default)

1
Locale present

2
Phone Metric present:

0
Phone Metric not present (default)

1
Phone Metric present

1
Text Character Set (for all text within the transmission):

0
GSM 7/8 bit character set (default)

1
UCS2 16 bit character set

0
Service descriptor field:

0
Service descriptor field not present

1
Service descriptor field present

Header Byte 2

Header byte 2 is mandatory.

Bit(s)
Usage

7
Another header byte following flag:

0
No more header bytes follow

1
At least 1 more header byte follows

6
Padding byte present flag :

0
No padding byte appears (default)

1
Padding byte appears

Note: The padding byte may be required for certain SMSC issues. Some SMSC will fail to pass SMS on if a user data header field terminates on a 7bit 8 bit boundary. This can be handled in an SMS message by ensuring that this condition never occurs in SMS 1 to n-1. In SMS n there may be a requirement to pad the user data header with an extra byte.

5
Auto delete on play:

Message not deleted after successful playing (default).

Complete message removed from the client file system after SUCCESSFULLY being played. NB For forms based transactions this includes successfully returning the form to the SMSC. This does not guarantee that the form will arrive at a magic4 server.

4
Forward message enabled:

Message may not be forwarded (default).

Entire message may be forwarded to another client enabled ME.

3-0
Reserved (Set to 0):

 <COMPRESSED DATA>

When the Magic4 data is being prepared on the server, compression is applied to the data before transmission to reduce the amount of data being transmitted.

<CHECKSUM>

The checksum byte contains a running XOR of the entire <MAGIC4 DATA>.

<PADDING BYTE>

The padding byte is 0x00. It is required to enable data streams to be passed properly through certain SMSCs that require an even number of data bytes.

Compressed Data Format

Data Representation

This data representation contained within the <COMPRESSED DATA> from the GDTP is structured into a series of elements.

Data Type Elements

Each element in the data stream is defined using the following format:

Data Type
Meta Language

Un-compressed data
<COMPRESSED DATA>::=
<ELEMENT>+

<ELEMENT>::=
 <MAIN TAG><CONTROL BYTES><LENGTH> <DATA>

<MAIN TAG>::=
 {Main tag (defined in table F}

<CONTROL BYTES>::= {1+ control bytes (see control byte table) }

<LENGTH>::=

 { Length of <DATA> section, in bytes }

<DATA>::=

 { Specific data depending upon <MAIN TAG> }

�

�PAGE \# "'PAGE: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'PAGE: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'PAGE: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'PAGE: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'PAGE: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'PAGE: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'PAGE: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'PAGE: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'PAGE: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'PAGE: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'PAGE: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'PAGE: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'PAGE: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'PAGE: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'PAGE: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'PAGE: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'PAGE: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'PAGE: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'PAGE: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'PAGE: '#'�'" �� This is an example of pop-up text.

_1021711726.doc
[image: image1.png]Element 1 Element 2.

erement1 | [eiements crementz | | Erementz
e S ey i N
Terre e Ve e

— ——

