
3GPP TSG SA WG3 Security — S3#13 S3-000384

24-26 May, 2000, Yokohama, Japan

From: TSG SA WG3

To: ETSI SAGE

Copy: AHAG, GSMA SG

Title: Draft LS on consideration of SHA-1 for 3GGP(1) Authentication by ETSI
SAGE

Contact: Frank Quick, Vice-Chair TIA TR-45 Ad Hoc Authentication Group
(AHAG)

 E-mail: fquick@qualcomm.com
 Tel: +1-858-658-3608

TSG SA WG3 has received and reviewed an input from AHAG, about the possible
use of SHA-1 for the 3GPP(1) authentication algorithm. The document represents
the latest proposal on the use of SHA-1 as a hash function in AKA.

SAGE is asked to consider this input when deciding on the possible (example)
algorithms for 3GPP(1) authentication, as AHAG will be standardising on the use of
SHA-1 for their standards, therefore optimising harmonisation efforts

The authors of the document are available for comments or clarifications, if required.

Attached:

NUMBER TITLE SOURCE

S3-000315 Use of SHA-1 for AKA f0-f5 AHAG (F Quick)

References:

Moni Naor and Omer Reingold, "From unpredictability to indistinguishability: A simple
construction of pseudo-random functions from MACs", In CRYPTO 98.

Mats Naslund, "Universal hash functions & hard core bits", In EUROCRYPT 95.

3GPP TSG SA WG3 Security — S3#13 S3-000315
May 24-26, 2000
Yokohama, Japan

Source: TR-45 AHAG

To: TSG SA WG3

Title: Use of SHA-1 for AKA f0-f5

Cc:

Contact Person: Frank Quick, Vice-Chair TIA TR-45 Ad Hoc Authentication Group (AHAG)
E-mail: fquick@qualcomm.com
Tel: +1-858-658-3608

At the joint meeting of S3 and TR-45 in Stockholm, Sweden, April 12, 2000, it was
agreed that AHAG would send S3 the latest proposal on the use of SHA-1 as a hash
function in AKA. The attached contribution provides this information.

Please note that this contribution represents work in progress that has not been formally
approved or adopted by TR-45. Although the document is very close to completion, some
details are still subject to change. We invite your comments and suggestions for
improvement.

Please note also that this document is based on the latest draft of 3GPP document 33-105
available to us (v.3.3.0). If 33-105 undergoes further revision, changes to the SHA-1
proposal may accordingly be necessary.

This document is being provided in accordance with the export regulations of the United
States of America as specified in the Export Administration Regulations (EAR), Title 15
CFR parts 730 through 774 inclusive. In so keeping with the regulations, the information
contained shall not be knowingly given to a foreign national of Cuba, Iran, Iraq, Libya,
North Korea, Sudan, or Syria. This document contains publicly-available cryptographic
source code, subject to export license exemption TSU. Notification has been given to the
US Department of Commerce that this document may be posted on the web site
ftp://ftp.3gpp.org/TSG_SA/WG3_SECURITY/TSGS3_13.

ftp://ftp.3gpp.org/TSG_SA/WG3_SECURITY/TSGS3_13

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as specified in
the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping with the regulations,

the information contained shall not be knowingly given to a foreign national of Cuba, Iran, Iraq, Libya, North Korea,
Sudan, or Syria.

TITLE:1

SHA based functions for Authenticated Key Agreement2

SOURCE:3

Lucent Technologies4

Sarvar Patel Zulfikar Ramzan Ganesh Sundaram Marcus Wong5
(973)386-6558 (617)253-2345 (973)739-4489 (973)739-12586
sarvar@lucent.com zulfikar@mit.edu ganeshs@lucent.com mw888mw@lucent.com7

ABSTRACT:8

This contribution presents an adaptation of the SHA-1 algorithm for functions f0, f1,9
f1*, f2, f3, f4, and f5 needed in the AKA scheme.10

RECOMMENDATIONS:11

Review and accept the proposed adaptation of SHA-1 for default functions in 3GPP12
security architecture.13

Copyright Statement:14

Copyright Lucent Technologies Inc., 2000. The contributor grants a free, irrevocable license to the15

Telecommunications Industry Association (TIA), ETSI, and 3GPP to incorporate text contained in this contribution and16

any modifications thereof in the creation of TIA, ETSI, and 3GPP standards publications, to copyright in TIA’s, ETSI’s,17
and 3GPP’s name any respective standards publication even though it may include portions of this contribution, and at18

to permit others to reproduce in whole or in part the resulting standards publication.19

Notice:20

This contribution has been prepared by Lucent Technologies Inc. to assist the Standards Committee TIA TR45, ETSI,21

and 3GPP. This document is offered to the Standards Committee as a basis for discussion and should not be22
considered as a binding proposal on Lucent Technologies Inc. or any other company. Specifically, Lucent Technologies23

Inc. reserves the right to modify, amend, or withdraw the statement contained herein.24

Permission is granted to TIA, ETSI, and 3GPP Committee participants to copy any portion of this document for the25
legitimate purposes of creating the standards. Copying this document for monetary gain or other non-standardization26

purpose is prohibited.27

mailto:zulfikar@mit.edu
mailto:ganeshs@lucent.com

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

1. Introduction

The various functions f0, f1, f1*, f2, f3, f4, f5 in the AKA protocol require different cryptographic
primitives:

1. MAC: A message authentication code (MAC) is used to produce a “tag” of a message, and typical
applications include, challenge response and message integrity. The user and serving system share a
secret key and the MAC function is expected to have the following property: Given several message
tag pairs, (x1,t1), (x2,t2), …., (xq,tq) an adversary who does not know the secret key cannot create a new
message tag pair in any reasonable amount of time.

2. PRG: A pseudo random generator (PRG) is used to produce bit strings which “appear random”.
Typical applications include challenge response and other authentication applications. A PRG is
expected to have the following property: Given a secret seed, a PRG outputs bits with the property that
any adversary who does not know the secret key, cannot predict any of the bits (given a past history) in
any reasonable amount of time.

3. PRF: A pseudo random function (PRF) is used to produce random looking bit strings given a secret
key and any known input. Typical applications include, for example, session key generation. A PRF is
expected to have the property that: given any sequence of outputs, an adversary who does not know the
secret key is unable to differentiate between the output sequence and a sequence of truly random bits,
in any reasonable amount of time.

Note that the PRF and PRG properties are stronger requirements compared to the MAC property. In
particular, a function that is believed to be a secure MAC may not be a secure PRG since one or more bits
of the output may be predictable. But every PRF can be used as a PRG, and again every PRF can be used as
a MAC. So it seems attractive to use a PRF for all functions, but because of the security requirements a
PRF can be a lot more complex to compute when compared to a MAC.

Below we list the primitives required by various AKA functions:

• f0: This function is used to generate the RAND, and so is expected to behave like a PRG.

• f1, f1*, f2 : These functions are used to generate the MAC as a part of AUTN, the MACS as a part of
re-synchronization procedure, and RES, respectively, and are expected to behave like a MAC.

• f3, f4: These functions are used to generate the Ciphering Key CK and Integrity Key IK, and are
expected to behave like a PRF.

• f5: This function is used to generate the Anonymity Key AK. Ideally this function is expected to
behave like a PRF. But in AKA, the role of f5 is limited to masking the relatively short sequence
number SQN. Hence it may be secure enough to use a MAC function.

In our proposal the secure hash algorithm (SHA) is used as a MAC function. SHA was designed by the
National Institute of Standards and Technology (NIST) along with the National Security Agency (NSA) to
be used as the core hashing algorithm for the Digital Signature Standard (DSS). The algorithm was closely
modeled after the MD family of message digest algorithms developed by Rivest. SHA is also used for
message authentication as described in [RFC2404]. Over the years, SHA has been crypt-analyzed and
scrutinized by both the academic and industrial scientific communities and no weaknesses on the MAC
property have been reported. In addition, using the MAC property one can create a PRF as well PRG out of
SHA. Note that SHA was initially proposed by NIST as a collision resistant function, however, its use as a
MAC function was exploited early and it has withstood the test of time. SHA is also believed to possess

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

some pseudo random properties [DSS]. Since pseudo random generation and key generation are vital to the
security of the entire system, we want to make only the conservative assumption that SHA possesses the
MAC properties and build the other primitives (PRG and PRF) on top of it. To summarize:

• SHA's MAC property is widely believed.

• SHA has been part of the Internet standard HMAC which uses the MAC property of the SHA
compression function.

• We can create the other PRG and PRF functions from the MAC function.

• It is openly and widely available.

2. Details of Functions

The proposal is based on the simple basic premise:

• The same SHA-1 algorithm is used for all functions.

• Every bit of the output of these functions is ensured to be cryptographically secure based on widely
believed properties of SHA-1.

• Whenever the expected length of the function output does not exceed 64 bits, the MAC property of
SHA-1 is claimed, and the algorithm is used directly.

• Whenever the expected length of the function exceeds 64 bits, the SHA-1 is “whitened” by following
it with a linear congruential hashing procedure over a finite field of order 2160.

• The “White SHA” procedure is than executed multiple times as necessary, producing 64
cryptographically secure bits with each execution.

• For each execution all inputs to the SHA-1 remain the same except for the value of Internal Counter,
which is updated for each function call. The counter mode operation allows additional flexibility. For
example, if the 100th output is needed, the counter mode takes only one function call into the procedure
to generate required output

• The constants for the “whitening” operation are fixed across the board for all functions. These values
are chosen at random and can be publicly known.

• With a view towards maintaining operator identity, a Family Key is used as an input to the functions.

• The Function Type input parameter differentiates between functions.

In the rest of this section we present the algorithms and pseudo code for the various functions. The sample
ANSI-C code including Test Vectors can be provided on request.

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

2.1 RAND Generation Procedure f0

Procedure name:

f0

Inputs from calling process:

Random Secret Seed (K) 128 bits

Type identifier (f0) 8 bits

Family Key (Fmk) 32 bits

Inputs from internal stored data:

Counter (C) 64 bits.

Outputs to calling process:

None.

Outputs to internal stored data:

 Buffer 64 bits

The function f0 is a pseudo random generator algorithm that is
provably as hard as SHA-1. The function is presented with the random
secret Seed, which is chosen by the operator, as well as a Counter
parameter, which is initialized to 0 at the Authentication Center (AC)
once, and is incremented every time the function is called. The
procedure returns 64 pseudo random bits every time it is invoked; the
calling process is responsible for incrementing the counter and
repeatedly calling the procedure in order to generate a required number
of pseudo random bits. The generator is specified in Exhibit 2.1-1.

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

Exhibit 2.1-1. Pseudocode of f0

SHA-based PRG:

Input:

 Random Secret Seed K: 128 bits

Type identifier f0: 8 bits

 Counter C C: 64 bits

 Family Key Fmk: 32 bits.

Output:

 64 bits of key material stored in buffer per call.

Procedure:

1. Load the registers of SHA with known constants as follows:
 Load the IV with the standard SHA IV constant
 Load the 512-bit payload with the constant 0x5C repeated 64
times

2. Load seed and counter values as follows:
 XOR seed into the leftmost (most significant) 128 bits of IV.
The 64 bit counter value is XORed into the (0th, 1st) words, (4th,
5th) words, (8th, 9th) words, and (12th, 13th) words. 0th is the least
significant word and 15th is the most significant. Next, a “type
constant” (unique to function f0) is XORed into the 2nd word, and
the “family key” is XORed into the 3rd word.

3. Run SHA to produce a 160-bit output.

4. The polynomial (AX + B mod G) is calculated, where:
 A and B are predetermined 160-bit random numbers (treated
as binary polynomials in the variable T) and remain constant for
the life of the system, and are equal across system.
 X is the 160-bit output from the SHA operation, treated as a
binary polynomial in the variable T.
 G is the polynomial T^160+T^5+T^3+T^2+1.

5. The Least Significant 64 bits of the result are returned and stored
in buffer.

6. The next time the function is invoked, increment the counter value
by 1 and repeat steps 1 through 5.

7. Repeat procedure as many times as needed.

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

Exhibit 2.1-2 Pseudo Random Generator.

SHA

AX+B MOD G

Extract 64 least
significant bits

128 bit random
secret seed

512 bit constant
(0x5C repeated 64 times)

X=160
Bits

160
Bits

64 bits

Counter, Typeid, Family Key.160 Bit SHA IV

XOR counter with 0-
1,4-5,8-9,12-13, typeid
with 2nd, and Fmk with
3rd words respectively.

XOR on left

A and B are 160-bit
random quantities. G is
the polynomial
T160+T5+T3+T2+1.

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

2.2 Ciphering Key (CK) and Integrity Key (IK) Generation Procedures f3,f4.

Procedure name:

f3,f4

Inputs from calling process:

Subscriber Authentication Key (K) 128 bits

Type Identifier (f3 or f4) 8 bits

Random Number (RAND) 128 bits

Family Key (Fmk) 32 bits

Inputs from internal stored data:

None.

Outputs to calling process:

None.

Outputs to internal stored data:

Key_buffer 128 bits

The functions f3,f4 are pseudo random functions which are provably as
hard as SHA-1. The function is presented with a secret key, a family
key, a type identifier, and a random number. The procedure is ran twice
returning 64 pseudo random bits with each iteration; an internal index
is incremented each time the procedure is run; as the result, the function
generates 128 of pseudo random bits. The algorithm is specified in
Exhibit 2.2-1.

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

Exhibit 2.2-1. Pseudocode of f3,f4

SHA-based PRF:

Input:

 Subscriber Authentication Key K: 128 bits
 Random Number RAND: 128 bits
 Family Key Fmk: 32 bits
 Type identifier fi: 8 bits

Output:

 128 bits of key material stored in CK or IK.

Procedure:

1. Load the registers of SHA with known constants as follows:
Load the IV with the standard SHA IV constant
Load the 512-bit payload with the constant 0x5C repeated 64 times

2. Load the subscriber authentication key and index value as follows:
 XOR the subscriber authentication key into the leftmost (most
significant) 128 bits of IV. The 64 bit index value, initialized to 0,
is XORed into the (0th, 1st) words, (4th, 5th) words, (8th, 9th) words,
and (12th, 13th) words. 0th is the least significant word and 15th is
the most significant. Next, a “type constant” (unique to function f3,
f4) is XORed into the 2nd word, and the family key is XORed with
the 3rd word. The 128 bit random number is split into two parts (64
bits each). The least significant 64 bits are XORed with the 6th and
7th words, and the most significant 64 bits are XORed with the 10th

and 11th words.

3. Run SHA to produce the 160-bit output.

4. The polynomial AX + B mod G is calculated, where:
 A and B are predetermined 160-bit random numbers (treated
as binary polynomials in the variable T) and remain constant for
the life of the system,
 X is the 160-bit output from the SHA operation, treated as a
binary polynomial in the variable T.
 G is the polynomial T^160+T^5+T^3+T^2+1. Extract the least
significant 64 bits and store it in the key buffer.

5. Steps 1 through 4 are repeated 2 times, with the index incremented
between iterations. This gives a total of 128 bits. Store these 128
bits in CK or IK (accordingly).

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

Exhibit 2.2-3 Key Scheduler.

SHA

AX+B MOD G

Extract 64 least
significant bits

128 bit subscriber
authentication key

512 bit constant
(0x5C repeated 64 times)

X=160
Bits

160
Bits

64 bits

index, rand#, typeid, Family Key
160 Bit SHA IV

XOR index with 0-1,4-5,8-
9,12-13, typeid with 2nd, family
key with 3rd, and rand # with 6-

7, 10-11 words respectively.

XOR on left

A and B are 160-bit
random quantities. G is
the polynomial
T160+T5+T3+T2+1.

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

2.3 Message Authentication Code & Authentication Signature Generation Procedures, f1, f1*, f2, f5

Procedure name:

f1, f1*, f2, f5

Inputs from calling process:

Subscriber Authentication Key (K) 128 bits

Random Number (RAND) 128 bits

 Family Key (Fmk) 32 bits

 Type Identifier (f1,f1*, f2, or f5) 8 bits

 SQN (set to 0 for f2 and f5) 48 bits

 AMF(set to 0 for f2 and f5) 16 bits

Inputs from internal stored data:

None.

Outputs to calling process:

None.

Outputs to internal stored data:

Buffer 160 bits

The function f1, f1*, f2, and f5 require the MAC property, hence the
SHA-1 compression function is used as follows: the input arguments
are loaded in the SHA payload and the resulting 160-bit digest is
truncated to the required output length.

TR45 AHAG TR45.AHAG/00.05.19.02

May 19,2000

Information included herein may be subject to the export jurisdiction of the US Department of Commerce as
specified in the Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive). In so keeping
with the regulations, the information contained shall not be knowingly given to a foreign national of Cuba, Iran,

Iraq, Libya, North Korea, Sudan, or Syria.

Exhibit 2.1-4. Pseudocode of f1, f1*, f2, f5

SHA-based MAC:

Input:

 Subscriber Authentication Key K: 128 bits

Type identifier f1,f1*,f2,f5: 8 bits

Family Key Fmk: 32 bits

Random Number RAND: 128 bits

SQN SQN: 48 bits

AMF AMF: 16 bits

Output:

 160 bits truncated to the required f1, f1*, f2, f5 output length.

Procedure:

1. Load the registers of SHA with known constants as follows:
 Load the IV with the standard SHA IV constant
 Load the 512-bit payload with the constant 0x5C repeated 64
times

2. Load the subscriber authentication key and counter value as
follows:
 XOR the subscriber authentication key into the leftmost (most
significant) 128 bits of IV. A “type constant” (unique to function
f1, f1*, f2) is XORed into the 2nd word. The 32 bit family key is
XORed into the 3rd word, 128 bit RAND is XORed into words 4-
7th. For f1 and f1* the 48 bit SQN is XORed into the 8th and 9th

words, and the AMF is XORed into the 10th word.

3. Run SHA to produce a 160-bit output.

4. Only the required least significant bits are used as output for each
of the f1, f1*, f2, f5 functions.

	S3-000384 LS_sage_sha1.rtf
	S3-000315 SHA-1 functions.pdf
	AHAG00051902(R2).pdf
	1.	Introduction
	2.	Details of Functions
	RAND Generation Procedure f0

