
[bookmark: _Toc27898151][bookmark: _Toc26265178][bookmark: _Toc26528660][bookmark: _Toc26525055][bookmark: _Toc26525058][bookmark: _Toc17295212][bookmark: _Toc26265181][bookmark: _Toc27898154][bookmark: _Toc26528663]SA WG6 Meeting #49-bis-e	S6-221514
22 June – 1 July 2022, e-Meeting	

Source:	Xidian University (Guangdong Communications and Networks Institude)
Title:	Discussion of Service-Based Multi-Access Edge Computing
Document for:	Discussion / Approval
Agenda Item:	9.8
Work Item / Release:	
[bookmark: _GoBack]Abstract of the contribution: Discusses the architecture and the principles of service-based multi-access edge computing, include the network decoupling and reconfiguration of the network functions and resources.
1. Introduction
With the continual growth of the mobile Internet traffic, next-generation networks are expected to operate at rates up to Tbps and delays lower than 1ms. The emergence of Multi-access Edge Computing (MEC) can provide computing and caching capabilities in the close proximity of the users to satisfy enhanced service requirements of the sixth generation (6G)[1][2]. However, there are some problems such as high degree of rigidity, strong coupling of network functions and complex communication protocols in the traditional edge computing architecture, which is difficult to flexibly support the rapidly evolving scenarios of 6G. As a remedy, the idea of service-oriented can be introduced into MEC to provide users with customized edge services.

	S6-221514

	5G supports multiple application scenarios, which call for diverse requirements, such as ultra-high speed, ultra-low latency and ultra-intensive computing [3]. However, the traditional LTE network cannot easily meet these requirements simultaneously, due to the tight coupling of dedicated network elements. To guarantee the quality of services and remove the coupling of network elements, 5G network needs to be service-oriented and software-oriented for different scenarios. Therefore, inspired by the service oriented architecture (SOA) and the micro-service architecture in IT industry, SBA is proposed for 5G Core Network (CN).
5G core network has a more convenient and flexible architecture to introduce vertical industry, namely Service Based Architecture (SBA). The emergence of SBA redefines the network functions of CN. The SBA first adopts network function Virtualization (NFV) technology, and further splits traditional network elements into smaller Network Functions (NFs). Then, it puts a standard and service-based interfaces (SBI) into use, to implement flexible communication between NFs. NFV, as a fundamental technology of SBA, can be further used in Mobile Edge Computing (MEC). Based on NFV, hardware and software of network elements, application instances and platform services are decoupled, for the infrastructure and physical resources to work efficiently [4].
As MEC platform has service-oriented features, and the resource of edge servers is quite limited, some efforts have been invested in combining MEC with SBA.
· The Research Institution of China Unicom provides the overall architecture combined 5G SBA and China Unicom MEC platform. This architecture includes RAN, MEC, managements, 5G core network and bearer network.
· The MEC program by ETSI enables placement of the applications close to the customer. The MEC architecture consists of the MEC Platform (MEP) that hosts MEC applications; the MEC Platform Manager responsible for the management of platform and MEC applications life cycle; and the Virtualization Infrastructure and its Manager. It can be implemented with or without network function virtualization (NFV) [5].

2. Support of Service-based MEC Framework
[bookmark: _Toc510607461]Proposal 1	Using SBA from 5GC to MEC, a four-layer two-plane service-based MEC framework is presented for allowing operators to adaptively customize their users’ networks, which is built on two core principles: the decoupling of tightly coupled MEC functions and resources, and the reconfiguration of the disaggregated MEC functions and resources.

Fig. 1: The service-based MEC framework.
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]The service-based MEC framework conceived is shown in Fig. 1. The entire framework includes the application plane and control plane. The application plane is mainly responsible for data processing and transmission, involving the infrastructure layer, virtualization layer, MEC platform layer, and application layer.
1) The application layer provides the interface of edge services to users. We design two kinds of MEC APPs, i.e., edge computing APP and edge caching APP, which process computing and caching requests respectively, and communicate with MEC NFs through the standard protocol. The system can further monitor the status of MEC APPs and manage them based on the users’ requirements.
2) The MEC platform layer, as the core part of whole system, not only provides basic edge services, but also supports third-party applications for different scenarios. It is composed of a unified SBI and diverse NFs, where the SBI can connect these NFs together based on the unified stateless hypertext transfer protocol (HTTP) for ensuring that they can communicate directly with each other when needed. The basic edge services of MEC platform include traffic offloading, computing offloading and content caching. Furthermore, we decouple the originally centralized service functions into independent NFs. These NFs are transparent to each other and can also be combined at will, so that they could be activated and released by all users instantly in support of their customized services.
3) The virtualization layer is based on NFV technology, and the infrastructure resources can be decoupled from the hardware. The virtualization layer could realize resource sharing and isolation at the infrastructure layer as well as simultaneously support different NFs for providing customized services. Then, the lightweight Docker container and K8s are used to deploy MEC NFs, which are run on the underlying resource pool.
4) The infrastructure layer comprises computing, caching and communication resources for MEC server. Central Processing Unit (CPU) guarantees high-density computing for MEC server. Caching resource involves memory and storage, i.e., Hard Disk Drive (HDD)/Solid State Drive (SSD). Bandwidth and Network Interface Card (NIC) are the main components of communication resource.
The control plane is composed of the virtualized infrastructure manager (VIM) and MANO, which is responsible for managing NFs as well as APPs, and for scheduling the VIM to allocate resources.
1) MANO is in charge of MEC reconfiguration, where the service-based MEC’s templates and instances are proposed for implementing flexible reconfiguration, as and when required.
2) The VIM of the control plane manages the virtualized resources according to MANO’s commands, so as to ensure that appropriate computing, caching and communication resources are supplied for the upper layers.
3. Support of MEC Decoupling
Proposal 2	MEC decoupling consists of hardware/software decoupling (HSDe) and the decoupling of MEC functions. HSDe is achieved through network virtualization technology. Based on the concept of microservice architecture (MSA), the tightly coupled service functions are divided into multiple independent network functions (NFs).

Fig. 2: A detailed view of the service-based MEC layer
The service-based MEC completes the decoupling of the traditional MEC through the close cooperation between NFs and service-based interface (SBI), including the HSDe realized by NFV, and the logical decoupling of network functions realized by the idea of MSA. The MEC platform layer in Fig.1 is the core part of service-based MEC, which is composed of the service-oriented NFs and SBI. The service-based MEC layer is shown in the detailed view of Fig. 2.
The MEC network functions include NFs that need to be redefined for the characteristics of MEC services, and NFs referenced to 5G core network. There are six basic NFs in the service-based MEC layer of Fig. 1.
1) Taking the context of service-based MEC into consideration, the communication protocol conversion function (CPCF), the service registry function (SRF) and the application selection function (ASF) are introduced in the service-based MEC layer.
2) Moreover, the MEC NFs that are derived from 5GC include the unified data management (UDM), the NF repository function (NRF) and User Plane Function (UPF) seen in Fig. 2.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]On the basis of using the same HTTP, a unified Representational State Transferful (RESTful) API is designed for the SBI, which is lightweight and can be read both by people and machines easily. Thus, the MEC platform layer provides direct communications between the NFs, the MANO and the NFs, as well as the NFs and APPs, thereby reducing the interface complexity and the protocol-inconsistency in the traditional MEC architecture.

Fig. 3: The SBI protocol stack
1) The SBI connects all the NFs together for facilitating their interface programming and implementation. Similar to 5G core network SBA, the SBI protocol stack for communication between MEC NFs can be seen in Figure 3.
2) In order to obtain services, the application layer interacts with the MEC platform layer by SBI.
3) NF’s MANO interacts with the MEC platform layer by SBI, which is mainly used to manage and orchestrate both the resource allocation and life cycle of NFs.
Therefore, a logical bus is formed by a unified communication protocol, namely HTTP. In the control plane, MANO can flexibly schedule MEC NFs and APPs according to service request types. In our scheme, all service-oriented NFs are independently deployed in the Docker containers of Fig. 1 to get virtualized. As the role of MANO, Kubernetes, the open-source implementation of the container cluster management, is advocated for centrally managing all the containers.
4. Support of MEC Reconfiguration
Proposal 3	The template and instantiation based concepts are introduced into the NF's management and orchestration (MANO) scheme, the disaggregated NFs may be re-assembled and the required resources may be allocated by means of Kubernetes to provide customized services for users.

Fig. 4: A detailed view of the control plane of the service-based MEC.
The control plane of the service-based MEC is shown in the middle (blue) part of Fig. 4, where the right side represents the predefinition and selection of templates, while the left side represents the templates’ instantiation based upon Kubernetes. The VIM seen at the bottom right of Fig. 4 is used for scheduling the underlying resource pool to arrange for the immediate resource deployment for instantiation, so as to avoid the assignment of excessive resources.
Kubernetes is a container-based cluster management platform, which is composed of a master node and several slave nodes. The master nod is in charge of managing Kubernetes while the slave nodes are in charge of the orchestration of NFs. In a slave node, there are two basic components dedicated to instantiation in NF’s MANO, namely Pod and Kubelet as seen in Fig. 4. As defined in, Pod is the smallest unit of deploying and monitoring NFs in Kubernetes, which can run several Docker containers simultaneously. Kubelet of Fig. 4 maintains the life cycle of Pods and the communication between the master and the slave nodes. In the master node, there are three basic components, namely the scheduler, controller and API server. The API server provides the only entry for slave nodes to the application layer, i.e., Pods communicate with the given templates selected by the user through the API server for implementing MEC reconfiguration. The Scheduler and Controller of Fig. 4 manage and monitor all slave nodes, e.g., for fault detection. Moreover, there is a Kubernetes’ data center represented by Etcd of Fig. 4 for storing the states of the above components.
By means of Kubernetes, we present the service-based MEC’s templates and instances of NF’s MANO, which supports the flexible scheduling of NFs, and any further MEC reconfiguration.
1) Generally, MEC offers supports two types of services, namely, edge computing and edge caching. Each type of edge service has some common features, so we propose MEC templates to predefine the attributes and functions of dedicated MEC services. The definition of template supports the service-based MEC and enables the reuse of MEC NFs. There are two defined templates in terms of the NFs selection and data table definition in UDM, as detailed in Fig. 5.

Fig 5: A detailed view of the service-based MEC templates.
Explicitly, observe in Fig. 5 that the service-based MEC template is composed of three tiers, including Managed NFs, Attributes and Actions. In this context, all NFs have to communicate directly with the Managed NFs at the top layer, which are responsible for monitoring the templates’ status and orchestrating NFs. The middle-layer of Fig. 5 representing the Attributes acts as the database of templates, where the associated parameters are stored in the UDM’s data tables. Finally, the underlying Actions seen at the bottom of Fig. 5 are provided for completing a range of customized functions by selecting appropriate NFs as well as APPs and for updating the predefined UDM parameters in real time.
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]The edge computing and edge cache templates are divided into the shared parts (overlap of the templates in Fig. 5) and the dedicated non-overlapping parts of each. The shared part is irrelevant for the APPs, it essentially ensures the normal operation of the system, while the dedicated template is the key for supporting service-based MEC in providing specific services for the corresponding APP. For example, both the edge computing and edge cache templates have to complete service registration provided by SRF, protocol conversion completed by CPCF and data updates by UDM. However, the dedicated ASF and APP of the edge computing template are responsible for completing the computations based on the source-data, as seen at the bottom left of Fig. 5 and for setting up a charging function. By contrast, the dedicated ASF and APP of the edge cache template process video caching and analyze the video popularity, as observed at the bottom right of Fig. 5.
When a user requests a dedicated edge service, the MEC server calls the corresponding template directly, and provide services through parameter configuration and instantiation, which effectively reduces the service response time. Hence, MEC templates improve the utilization of infrastructure resources, and provide users with customized edge services in real time.
2) MEC template is a kind of logical function for different services requirements and it is unable to provide services directly. As a result, users can only get MEC services through the MEC instances. The instantiation is the activation process of the related template according to the edge services that users request.

Fig.6 Instantiation
Fig.6 depicts a brief instantiation from MEC templates to MEC instances, and it contains three main steps. Firstly, when a user requests for MEC services, the operating environment for running MEC instances are set in the configuration files of MEC by MANO, i.e. the API Server of Fig. 4 locates the idle Pod and updates the relevant information to Etcd of Fig. 4. Secondly, according to the users’ requirements, the MANO schedules VIMs to allocate virtual network resources, computing resources, and caching resources to dedicated MEC templates. Finally, MANO adds the configuration files to the runtime environment and instantiates the MEC template, i.e., Kubelet runs the Pod that specifically deploys NFs and APPs. Therefore, the dedicated MEC instances are created and the MEC instances provide customized services for the specific user.
[image:]
Fig 7: The service-based MEC workflow.
In Fig. 7, the workflow of the service-based MEC is summarized, commencing from the instant when a user sends a service request until the edge service is instantiated. Specifically,
1) when a user sends a service request to the service-based MEC, such as the intensive computation service request, CPCF firstly actions the protocol identification.
2) Upon receiving a HTTP request, CPCF does not need to perform the protocol conversion; otherwise, it re-encapsulates the service request using HTTP. In this way, CPCF can send the unified HTTP request to MANO.
3) MANO selects the edge computing template for the user. Explicitly,
a) The predefined parameters of this template are added to the specific data table in UDM.
b) By querying the NFs and APP information specified by the template in UDM, MANO selects the appropriate NFs and APPs stored in NRF
c) MANO updates the predefined parameters in UDM’s data table, completing the selection of templates.
4) Nextly, the instantiation process is implemented by the following three steps: the environmental configuration, resource allocation, and NF activation and APP activation.
5) Finally, the service-based MEC provides an edge computing service to the user in the form of APP by the service interface.
At this point, we have succeeded in creating the service-based MEC scheme by completing the MEC decoupling and reconfiguration.
5. Conclusions
[bookmark: _Hlk51968268]The following proposals have been made.
Proposal 1	Using SBA from 5GC to MEC, an four-layer two-plane service-based MEC framework is presented for allowing operators to adaptively customize their users’ networks, which is built on two core principles: the decoupling of tightly coupled MEC functions and resources, and the reconfiguration of the disaggregated MEC functions and resources.
Proposal 2	MEC decoupling consists of hardware/software decoupling (HSDe) and the decoupling of MEC functions. HSDe is achieved through virtualization technology. Based on the concept of Microservice Architecture (MSA), the tightly coupled service functions are divided into multiple independent network functions (NFs).
Proposal 3	The template and instantiation based concepts are introduced into the NF's management and orchestration (MANO) scheme, the disaggregated NFs may be re-assembled and the required resources may be allocated by means of Kubernetes to provide customized services for users.
6. References
[1]	S2-2102984: “General descriptions and reference architectures for Edge Computing”, LS from SA2#144e.
[2]	S2-2200785 “Key Issue on enable edge computing services via UPF deployed on satellite”, LS from SA2# 149e.
[3]	S2-2200434: “LS on 3GPP Edge Computing Feature Control”, LS from SA2#149e.
[4]	S2-2200615: “Key Issue on edge computing in roaming scenarios.” LS from SA2#149e.
[5]	S6-202325: “Relation between 3GPP EDGEAPP and ETSI MEC architectures” LS from SA6#40e.
3GPP

image1.emf
Virtualization LayerDocker EngineDocker ContainerApplication LayerEdge Computing APPEdge Cache APP VIM MANO（Kubernetes） App¶s MANONF¶s MANOApplication PlaneControl PlaneDocker ContainerDocker ContainerInfrastructure LayerComputing ResourceCaching ResourceCommunicating ResourceCPUMemoryHDD/SSDBandwidthBandwidthNICDocker¶sVIMDocker¶sVIMMEC Platform LayerSRFCPCF UDMASFNRFMEC NFsUPFTraffic OffloadingComputing OffloadingContent Caching

Microsoft_Visio___.vsdx
Virtualization Layer

Docker Engine
Docker Container
Application Layer
Edge Computing APP
Edge Cache APP

VIM
MANO
（Kubernetes）
App’s MANO
NF’s MANO

Application Plane
Control Plane

Docker Container

Docker Container
Infrastructure Layer
Computing Resource
Caching Resource
Communicating Resource
CPU
Memory
HDD/SSD
Bandwidth
Bandwidth
NIC
Docker’s
VIM

Docker’s
VIM
MEC Platform Layer
SRF
CPCF
UDM
ASF
NRF
MEC NFs
UPF
Traffic Offloading
Computing Offloading
Content Caching

image2.emf
MANOKubernetesSBIEdge Computing APPEdge Caching APPHTTP

Microsoft_Visio___1.vsdx
MANO
Kubernetes
SBI
CPCF
SRF
ASF
UDM
UPF
NRF
SBI
Edge
 Computing APP
Edge
Caching APP
SBI
HTTP

image3.emf
HTTP/2TCPIPMACPHYHTTP/2TCPIPMACPHYNetworkNF1NF2RESTful APIRESTful API

Microsoft_Visio___2.vsdx
HTTP/2
TCP
IP
MAC
PHY
HTTP/2
TCP
IP
MAC
PHY
Network
Physical connection
NF1
NF2
RESTful API
RESTful API

image4.emf
APPVirtualization LayerNFVIVNFVNFVNFContainerControl Plane (MANO)Edge Computing APPEdge Cache APPTemplates(select & pre-define)ContainerNF¶s MANOVIM (Resource Orchestration)VNFService-based MEC LayerSRFCPCFUDMNRFASFAPI ServerSchedulerControllerKubeletPod(Docker)Pod(Docker)EtcdServiceMaster NodeSlave NodeInstantiation

Microsoft_Visio___3.vsdx
APP
Virtualization Layer

NFVI
VNF
VNF
VNF
Container
Control Plane (MANO)
Edge Computing APP
Edge Cache APP
Templates
(select & pre-define)
Container
NF’s MANO
VIM (Resource Orchestration)
VNF
Service-based MEC Layer
SRF
CPCF
UDM
NRF
ASF
API Server
Scheduler
Controller
Kubelet
Pod
(Docker)
Pod
(Docker)
Etcd
Service
Master Node
Slave Node
Instantiation

image5.emf
Edge Computing TemplateManaged NFsNFs OrchestrationStatus MonitoringAttributesService infoUser infoCachingResource infoPopularity infoIP:Port info NFs info ActionsService RegistrationProtocol Conversion ComputeChargeComputing Resource AllocateVideo CachePopularity AnalyzeCachingResource AllocateData Update Charging info ComputingResource infoEdge Cache Template Computing app info Caching app info

Microsoft_Visio___4.vsdx

Edge Computing Template
Managed NFs
NFs Orchestration
Status Monitoring
Attributes
Service info
User info
Caching
Resource info
Popularity info
IP:Port info
NFs info
Actions
Service Registration
Protocol Conversion
Compute
Charge
Computing Resource Allocate
Video Cache
Popularity Analyze
Caching
Resource Allocate
Data Update
Charging info
Computing
Resource info
Edge Cache Template
Computing app info
Caching app info

image6.emf
Instantiation flowMEC dedicatedtemplatesMEC dedicatedinstancesResourceallocationEnvironmentalconfigurationRun NFs&App

Microsoft_Visio___5.vsdx
Instantiation flow
MEC dedicated
templates
MEC dedicated
instances
Resource
allocation
Environmental
configuration
Run NFs&App

image7.png

