3GPP TSG-SA5 Meeting #146Bis-e
S5-231105
Electronic meeting, 16 - 19 January 2023
Source:
Ericsson
Title:
Clarifying multilevel attribute properties
Document for:
Endorsement
Agenda Item:
6.1.1
1
Decision/action requested

Endorsement
2
References

[1]
3GPP TS 32.156 Telecommunication management; Fixed Mobile Convergence (FMC) Model repertoire
3
Rationale

TS 32.156 needs clarification about attribute type and attribute properties for structured datatypes.

For attributes with structured datatypes attribute properties can be defined on multiple leves. Once for the attribute itself but also for the individual attribute fields (subparts). There was confusion about how attribute properties declared on different levels affect each other. E.g., if the whole attribute is declared readOnly, but a subpart is declared readWrite, is it possible to modify that subpart?
It was not even described that attributes may have both a simple and a structured datatype.
It is proposed to enhance 32.156 by describing

· attributes may have both a simple and a structured datatypes
· how attribute properties declared on different levels interact

· defining terminology for attributes, subparts and individual values as copied over from 28.532 clause 11.1.1.11.1
Note: The meaning of the properties isNullable and passedById is not well defined, so they are not considered in this document.
4
Detailed proposal

First change

5.3.4
<<dataType>>

5.3.4.1
Description

It represents an attribute property type (see Table 5.2.1.1-1: Attribute properties).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The former is defined in subclause 5.4.3. The latter is defined by the specifications by authors using a <<dataType>> model element.

The names of predefined data types and user-defined data types must be chosen such that they do not clash.
User-defined data types can be simple types containing one or more values of a single simple type like integer or string or they can be structured types containing one or more named attribute fields each having properties similar to an attribute as described in table 5.2.1.1-1. The individual attribute fields may have different property values e.g., different types, multiplicity or supportQualifier. A named attribute field itself can be of a simple or a structured datatype. Structured datatypes can be embedded in any depth.
The user-defined data types support the modelling of structured data types (see <<dataType>> PLMNId in 5.3.4.2).
When an attribute is of a structured datatype attribute properties may be declared on multiple levels: declared for the attribute as a whole and also for each attribute field. As an attributed field itself may be of a structured datatype, properties may be declared on 2, 3 or more levels.
Properties "documentation", "multiplicity", "isOrdered", "isUnique", "type" and "allowedValues" are always relevant and should be enforced on the attribute or attribute field level where they are declared.

The property "supportQualifier" always applies to the level where it is declared. However the support for a model element is always conditional on the support of the higher level. E.g.; if an attribute is optional but one of its fields is mandatory, that means the field is mandatory if the attribute itself is supported; if the attribute is not supported this results in none of its fields(subparts) being supported.
If the property "defaultValue" is defined on multiple levels the defaultValue defined on the top-most level for which there is no value provided at object creation shall have precedence. The defaultValue property does not have any effect when an attribute value is modified, e.g., creating a new individual attribute value (attribute element) of a structured type and not providing one attribute field will not result in the default value of that attribute field being used to set the value of the individual attribute filed; the attribute field will not be set.
For other properties the principle is that if the attribute level property is restrictive (e.g, isWritable=False or isInvariant=True) that means the full structured attribute and all its fields are restricted. If the attribute is permissive the fields property settings is effective.
For properties isReadable, isWritable, isNotifyable the following rules apply:

- If an attribute specifies the property as False then the False value shall be used for the attribute and all of its fields (if any).

- If an attribute field specifies the property as False then the False value shall be used for the attribute field and all of its fields (if any).

- If all higher levels (attribute level and any higher attribute field level) specify the property as True then the property value on the attribute field shall be used.
For the isInvariant property the following rules apply:

- If an attribute specifies the property as True then the True value shall be used for the attribute and all of its fields (if any).

- If an attribute field specifies the property as True then the True value shall be used for the attribute field and all of its fields (if any).

- If all higher levels (attribute level and any higher attribute field level) specify the property as False then the property value on the attribute field shall be used.
When a user-defined or predefined data type is used to apply type (see property named type in Table 5.2.1.1‑1: Attribute properties) information to a class attribute, the data type name is shown along with the class attribute. See Example below.

5.3.4.2
Example

The following examples are two user-defined data types.

The left-most user-defined data type is named PLMNId . It has two attributes. One is the Mobile Country Code (MCC) of predefined data type String. The other is the Mobile Network Code (MNC) of predefined data type String as well.

 The right-most user-defined data type is named Xyz. It has three attributes. The attribute1 uses predefined data type String. The attribute2 uses predefined data type Integer. The attribute3 uses user-defined data type PLMNId.

[image: image1.png]“dataTyper “dataTyper
PLMNId %

mCC: String attributel: String

MNG: String attribute2: Integer

attribute3: PLVNId

Figure 5.3.4.2-1: <<dataType>> notations

The following example shows a ZClass which has four attributes. Two attributes (i.e. attribute1, attribute4) use the user-defined data types (i.e. PLMNId, Xyz) and the other two attributes use the predefined data types.

[image: image2.png]nformationObjectClass>
ZClass

attributeL: PLMNIA
attrbute3: String
attributed: Xyz
attrbute2: Integer

Figure 5.3.4.2-2: Usage example of <<dataType>>

The third column of the following shows some of the properties of an attribute attribute1 of ZClass. It shows the attribute1 attribute property type is PLMNId, a user-defined data type.

	attribute1

	It is a PLMN identifiers.
	type: PLMNId
multiplicity: 1

isOrdered: N/A

isUnique: N/A

defaultValue: None

isNullable: False

5.3.4.3
Definitions

To allow referencing attributes, individual values of attributes and subparts the following terminology is defined:
simple type: A value defined by a simple type is a scalar, e.g., an integer or a string.

complex type: A value defined by a complex type is either a set of multiple (sub-)values (of the same simple or complex type), or a value containing one or more attribute fields.

attribute: An information element composed of an attribute name and an attribute value.

attribute name: The name of an attribute.

attribute value: The value of an attribute. The value is defined by a simple type or a complex type and can include zero, one or more individual value elements.

attribute field: An attribute contained inside an (top-level) attribute. Attribute fields can also contain attribute fields.

attribute field name: The name of an attribute field.

attribute field value: The value of an attribute field. The value is defined by a simple type or a complex type and can include zero, one or more individual value elements.

simple attribute: Attribute whose value is defined by a simple type.

complex attribute: Attribute whose value is defined by a complex type.

structured attribute: Special kind of complex attribute containing at least one attribute field, but usually multiple attribute fields with different data types.

multi-value attribute: Special kind of complex attribute with multiplicity greater than "1", i.e. an attribute whose value is composed of multiple (sub-)values (of the same simple or complex type).

attribute element: Single (sub-) value of the value of a multi-value attribute.

attribute field element: Single (sub-) value of the value of a multi-value attribute field.

End of changes
�Copied over from 28.532 clause 11.1.1.11.1

