
3GPP TSG-SA5 (Telecom Management)

Meeting #13, Washington, D.C., 24 - 28 July 2000
S5F0000x02

CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

32.111
CR
02
Current Version:
V3.0.1a

GSM (AA.BB) or 3G (AA.BBB) specification number (

(CR number as allocated by MCC support team

For submission to:
SA#8
for approval
X

strategic

(for SMG

list expected approval meeting # here (
for information

non-strategic

use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM

ME

UTRAN / Radio
X
Core Network

(at least one should be marked with an X)

Source:
Lucent Technologies
Date:
July 2000

Subject:
Corrections to TS 32.111-3 Alarm IRP CORBA Solution Set

Work item:
32.111 3G Fault Management

Category:
F
Correction
X
Release:
Phase 2

A
Corresponds to a correction in an earlier release

Release 96

(only one category
B
Addition of feature

Release 97

shall be marked
C
Functional modification of feature

Release 98

with an X)
D
Editorial modification

Release 99
X

Release 00

Reason for
change:

This contribution requests the following updates to the Alarm Integration Reference Point CORBA Solution Set document:

1. Clarification on the filtering of sets in the Filterable Body Field.

2. Changing of Notify Alarm List Rebuilt from an Extended Event Type to an Event Type.

3. Clarification of NV pairs name.

4. Clarification on Alarm Acknowledge State.

5. Adding #pragma statement.

6. Clarification on AttributeChangeSetType.
7. Correcting push_structured_events references.

8. Clarification of maintaining iterators and iterator contents

9. Clarification of Get Alarm IRP Version exceptions.

Clauses affected:
5.1, 5.2, 5.3, 6 and Annex A

Other specs
Other 3G core specifications
X
(List of CRs:
S5C0000x02

affected:
Other GSM core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:
See further explanations in accompanying document

5
Mapping

5.1
Operation and Notification mapping

Alarm IRP: IS [9] defines semantics of operation and notification visible across the Alarm IRP. The table below indicates mapping of these operations and notifications to their equivalents defined in this SS.

Table 1: Mapping from IS Notification/Operation to SS equivalents

IS Operation/ notification [9]
SS Method
Qualifier

acknowledgeAlarms
acknowledge_alarms
M

unacknowledgeAlarms
unacknowledge_alarms
O

getAlarmList
get_alarm_list
M

getAlarmIRPVersion
get_alarm_IRP_version
M

getAlarmCount
get_alarm_count
O

notifyNewAlarm
push_structured_events
Note that OMG Notification Service [6] defines this method. See clause 8.1
M

notifyClearedAlarm
push_structured_events
See clause 8.1
M

notifyChangedAlarm
push_structured_events
See clause 8.1
M

notifyAckStateChanged
push_structured_events
See clause 8.1
M

notifyAlarmListRebuilt
push_structured_events
See clause 8.1
M

5.2
Operation parameter mapping

Reference [9] defines semantics of parameters carried in operations across the Alarm IRP. Tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IS acknowledgeAlarms parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

alarmInformation ReferenceList
AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list
M

ackUserId
string ack_user_id
M

ackSystemId
string ack_system_id
O

bad AlarmInformation ReferenceList
AlarmIRPConstDefs::AlarmInformationIdSeq bad_alarm_information_id_list
M

status
CommonIRPConstDefs::Signal

Exceptions:

AcknowledgeAlarms, ParameterNotSupported, InvalidParameter
M

Table 3: Mapping from IS unacknowledgeAlarms parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

alarm InformationReferenceList
AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list
M

ackUserId
string ack_user_id
M

ackSystemId
string ack_system_id
O

badAlarm Information ReferenceList
AlarmIRPConstDefs::AlarmInformationIdSeq bad_alarm_information_id_list
M

status
CommonIRPConstDefs::Signal

Exceptions:

UnacknowledgeAlarms, OperationNotSupported, ParameterNotSupported, InvalidParameter
M

Table 4: Mapping from IS getAlarmList parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

alarmAckState, filter
string filter
O

alarmInformation List
Return value of type

AlarmIRPConstDefs::AlarmInformationSeq
M

status
Exceptions:
GetAlarmList, ParameterNotSupported, InvalidParameter
M

The get_alarm_list method uses an iterator to iterate through the list of alarms. It is the IRPAgent’s responsibility to fix the alarms returned through the iterator at one moment in time. It is the IRPManager’s responsibility to maintain the iterator reference and to eventually destroy the iterator.

The alarmAckState parameter is not required in the getAlarmList and getAlarmCount operations because the supplied filter may contain checks for the filterable_body_fields ackState.

Table 5: Mapping from IS getAlarmCount parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

alarmAckState, filter
string filter
O

criticalCount, majorCount, minorCount, warningCount, indeterminateCount,clearedCount
long critical_count, long major_count, long minor_count, long warning_count, long indeterminate_count, long cleared_count
M

status
Exceptions:

GetAlarmCount, OperationNotSupported, ParameterNotSupported, InvalidParameter
M

Table 6: Mapping from IS getAlarmIRPVersion parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

versionNumberList
Return value of type CommonIRPConstDefs::VersionNumberSet
M

status
Exceptions:

GetAlarmIRPVersion
M

5.3
Notification parameter mapping

Reference [9] defines semantics of parameters carried in notifications across the Alarm IRP. Tables in this sub clause indicate the mapping of these parameters, as per notification, to their equivalents defined in this SS.

The following tables are relevant for notifyNewAlarm, notifyChangedAlarm, notifyClearedAlarm, notifyAckStateChanged.

Table 5: Mapping from IS notify[New,Changed,Cleared]Alarm and notifyAckStateChanged parameters to SS equivalents

IS Notification parameter
SS Notification parameter
Comment

notification Header
structuredEvent

Note that OMG Notification Service [6] defines this structuredEvent. See Clause 4 as well.
Attributes of notificationHeader are mapped to attributes of structuredEvent. See clause 6.4 for attributes related to notificationHeader. See Table 9 for qualifiers for the parameter-attributes.

For notifyNewAlarm, notifyChangedAlarm, notifyClearedAlarm and notifyAckStateChanged, the extendedEventType shall contain a string of extendedEventTypeValue.NOTIFY_FM_NEW_ALARM, extendedEventTypeValue.NOTIFY_FM_CHANGED_ALARM, extendedEventTypeValue.NOTIFY_FM_CLEARED_ALARM, extendedEventTypeValue.NOTIFY_FM_ACK_STATE_CHANGED respectively.

alarm Information Body
structuredEvent
Attributes of alarmInformationBody are mapped to attributes of structuredEvent. See clause 6.4 for attributes related to alarmInformationBody. See table 10 for qualifiers for the parameter-attributes.

The following table is relevant for notifyAlarmListRebuilt.

Table 6: Mapping from IS notifyAlarmListRebuilt parameters to SS equivalents

IS Notification parameter
SS equivalent
Comment

notification Header
structuredEvent
The managedObjectClass and managedObjectInstance shall contain the MO representing the IRPAgent defined in [11].
The systemDN shall carries the DN of the IRPAgent whose Alarm List has been rebuilt. Syntax and semantics of this string conform to the Managed Object string representation specified in [8].
The eventType shall contain ET_NOTIFY_FM_ALARM_LIST_REBUILT.
The extendedEventType shall contain an empty string.
See clause 6.4 for attributes related to notificationHeader. See Table 9 for qualifiers for the parameter-attributes.

reason
reason
One NV pair of filterable_body_fields.

Name of NV pair is a string, NotificationIRPConstDefs::NV_REASON.

Value of NV pair is a string indicating the Alarm List rebuilt reason.

5.4
Parameter Attribute mapping

Notification IRP: IS [10] defines the semantics of attributes for notificationHeader parameter. Alarm IRP: IS [9] identifies notificationHeader for use for its IRP. Reference [9] also qualifies the attributes of the notificationHeader parameter. The following table shows the mapping of these IS attributes to SS equivalents.

Table 7: Mapping from IS notificationHeader attributes to SS equivalents

IS Attribute of notificationHeader in [10]
SS Attribute
Qualifier

managedObjectClass
managedObjectClass
O

managedObjectInstance
managedObjectInstance
M

notificationID
notificationID
M

eventTime
eventTime
M

systemDN
systemDN
M

eventType
eventType
M

extendedEventType
extendedEventType
M

Alarm IRP: IS [9] defines and qualifies the semantics of attributes for alarmInformationBody parameter. The following table shows the mapping of these IS attributes to SS equivalents.

Table 8: Mapping from IS alarmInformationBody attributes to SS equivalents

IS Attribute of alarmInformationBody in [9]
SS Attribute
Qualifier

probableCause
probableCause
M

perceivedSeverity
perceivedSeverity
M

specificProblem
specificProblem
O

correlatedNotifications
correlatedNotifications
O

backedUpStatus
backedUpStatus
O

backUpObject
backUpObject
O

trendIndication
trendIndication
O

thresholdInfo
thresholdInfo
O

stateChangeDefinition
stateChangeDefinition
O

monitoredAttributes
monitoredAttributes
O

proposedRepairActions
proposedRepairActions
O

additionalText
additionalText
O

additionalInformation.alarmId
alarmId
M

additionalInformation. ackTime
ackTime
note 1

additionalInformation. ackUserId
ackUserId
note 1

additionalInformation. ackSystemId
ackSystemId
note 1

additionalInformation. ackState
ackState
note 1

NOTE 1: See qualification information in [9], Table 13: Parameter-Attributes of alarmInformationBody.

6
Use of OMG Structured Event

Operation notify defined in [9] carries parameters, such as notificationHeader and alarmInformationBody. In CORBA SS, OMG defined StructuredEvent [2] is used to carry notification. This clause identifies the OMG defined StructuredEvent attributes that carry the attributes of parameters defined in [9].

The composition of OMG Structured Event, as defined in [6], is:

Header

 Fixed Header

 domain_name

 type_name

 event_name

 Variable Header

Body

 filterable_body_fields

 remaining_body
The table below lists all OMG Structured Event attributes in the second column. The first column identifies the SS attributes, if any, that shall be carried in the Structured Event attributes.

Table 9: Use of OMG Structured Event

SS Attribute
OMG CORBA Structured Event attribute
Comment

There is no corresponding SS attribute.
domain_name
It contains a string defined by interface IRPNotificationCategoryValue.alarmIRPVersion_1_1. It indicates the syntax and semantics of this Structured Event is defined by Alarm IRP: CORBA SS 1:1.

eventType
type_name
Attribute eventType is an attribute of notificationHeader.

It shall indicate one of the following ITU-T defined semantics: communications alarm, processing error alarm, environmental alarm, quality of service alarm and equipment alarm.

It is a string. See block of const string definitions starting with “ET_” in the IDL.

extendedEvent Type
event_name
Attribute extendedEventType is an attribute of notificationHeader.

It shall identify one of the following:

· notify a new alarm

· notify changes in alarm state

· notify changes in alarm acknowledgement state

· notify alarm cleared

· notify Alarm List has been successfully rebuilt

It is a string. See block of const string definitions starting with “NOTIFY_FM_” in the IDL.

There is no corresponding SS attribute.
variable Header

managedObject Class, managedObjectInstance
One NV pair of filterable_ body_fields
NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

They are attributes of notificationHeader.

Name of NV pair is a string, NotificationIRPConstDefs::NV_MANAGED_OBJECT_INSTANCE.

Value of NV pair is a string. See corresponding table in Notification IRP: CORBA SS [1].

notification Id
One NV pair of filterable_ body_fields
It is an attribute of notificationHeader.

Name of NV pair is a string, NotificationIRPConstDefs::NV_NOTIFICATION_ID.

Value of NV pair is a long. See corresponding table in Notification IRP: CORBA SS [11].

eventTime
One NV pair of filterable_ body_fields
It is an attribute of notificationHeader.

Name of NV pair is NotificationIRPConstDefs::NV_EVENT_TIME.

Value of NV pair is a IRPTime. See corresponding table in Notification IRP: CORBA SS [11].

systemDN
One NV pair of filterable_ body_fields
It is an attribute of notificationHeader.

Name of NV pair is a string, NotificationIRPConstDefs::NV_SYSTEM_DN.

Value of NV pair is a string. See corresponding table in Notification IRP: CORBA SS [11].

probableCause
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_PROBABLE_CAUSE.

Value of NV pair is a short defined by ProbableCauseValue.

perceived Severity
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_PERCEIVED_SEVERITY.

Value of NV pair is a short defined by PerceivedSeverityValue.

specific Problem
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_SPECIFIC_PROBLEM.

Value of NV pair is a string.

correlated Notifications
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_CORRELATED_NOTIFICATIONS.

Value of NV pair is a CorrelatedNotificationSetType.

backed UpStatus
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_BACKED_UP_STATUS.

Value of NV pair is a boolean BackedUpStatusType.

backUpObject
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_BACK_UP_OBJECT.

Value of NV pair is a string carrying of DN of the back-up object. See [8] for the DN string representation.

trend Indication
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_TREND_INDICATION.

Value of NV pair is an enum TrendIndicationType.

thresholdInfo
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_THRESHOLD_INFO.

Value of NV pair is an enum ThresholdIndicationType.

stateChange Definition
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_STATE_CHANGE_DEFINITION.

Value of NV pair is an AttributeValueChangeSetType.

monitored Attributes
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_MONITORED_ATTRIBUTES.

Value of NV pair is an AttributeSetType.

proposed RepairActions
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_PROPOSED_REPAIR_ACTIONS.

Value of NV pair is a string.

additional Text
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_ADDITIONAL_TEXT.

Value of NV pair is a string.

additional Information.alarmId
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_ALARM_ID.

Value of NV pair is a string.

If the string is a zero-length string or if this NV pair is absent, the default semantics is that alarmId is a concatenation of managedObjectInstance, eventType, probableCause and specificProblem, if present, of this Structured Event. Since probableCuase is encoded as a short, it shall be converted into string before concatenation. The resultant string shall not contain spaces.

additional Information. ackTime
One NV pair of filterable_ body_fields
It is an attribute of notificationHeader.

Name of NV pair is a string, NotificationIRPConstDefs::NV_ACK_TIME.

Value of NV pair is a IRPTime.

additional Information. ackUserId
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_ACK_USER_ID.

Value of NV pair is a string.

additional Information. ackSystemId
One NV pair of filterable_ body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_ACK_SYSTEM_ID.

Value of NV pair is a string.

additional Information. ackState
One NV pair of filterable_body_fields
It is an attribute of alarmInformationBody.

Name of NV pair is a string, NotificationIRPConstDefs::NV_ACK_STATE.

Value of NV pair is a short defined by AlarmAckState.

There is no corresponding SS attribute.
remaining_ body

While correlatedNotifications, stateChangeDefinition and monitoredAttributes are contained in the Filterable Body Field, they are variable length sets, and as such, are typically not directly filterable using the OMG Notification Extended TCL grammar.

7
AlarmIRPNotifications Interface

OMG CORBA Notification push operation is used to realise the notification of AlarmIRPNotifications. All the notifications in this interface are implemented using this push_structured_events method.

7.1
Method push (M)

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

Notes:

· The push_structured_events method takes an input parameter of type EventBatch as defined in the OMG CosNotification module [6]. This data type is the same as a sequence of Structured Events. Upon invocation, this parameter will contain a sequence of Structured Events being delivered to IRPManager by IRPAgent to which it is connected.

· The maximum number of events that will be transmitted within a single invocation of this operation is controlled by IRPAgent wide configuration parameter.

· The amount of time the supplier (IRPAgent) of a sequence of Structured Events will accumulate individual events into the sequence before invoking this operation is controlled by IRPAgent wide configuration parameter as well.

· IRPAgent may push EventBatch with only one Structured Event.

Annex A (normative):
IDL specification

/* ## Module: AlarmConstDefs

This module contains commonly used definitions.

===

 */

#ifndef AlarmIRPConstDefs_idl

#define AlarmIRPConstDefs_idl

#include "CosNotification.idl"
#pragma prefix "3gpp.org"
module AlarmIRPConstDefs {

 /*

 This block identifies all TMN ITU-T defined event types used by Alarm

 IRP of this version. Their semantics are defined by ITU-T. Their

 encodings for this version of Alarm IRP are defined here. Other IRP

 documents, or other versions of Alarm IRP, shall identify their own

 ITU-T defined event types for their use. They shall define their encodings

 as well. Note all values are unique among themselves. Other IRP documents

 can use the same values.

 */

 const string ET_COMMUNICATIONS_ALARM = "x1";

 const string ET_PROCESSING_ERROR_ALARM = "x2";

 const string ET_ENVIRONMENTAL_ALARM = "x3";

 const string ET_QUALITY_OF_SERVICE_ALARM = "x4";

 const string ET_EQUIPMENT_ALARM = "x5";
 const string ET_NOTIFY_FM_ALARM_LIST_REBUILT = "x6";
 /*

 This block identifies IRP defined, and not ITU-T defined, event types

 used by this Alarm IRP version.

 */

 const string NOTIFY_FM_NEW_ALARM = "x1";

 const string NOTIFY_FM_CHANGED_ALARM = "x2";

 const string NOTIFY_FM_ACK_STATE_CHANGED = "x3";

 const string NOTIFY_FM_CLEARED_ALARM = "x4";

 /*

 It indicates if an object has a back up.

 True implies backep up. False implies not backed up.

 */

 typedef boolean BackedUpStatusType;

 /*

 It indicates if the threshold crossed was in the up or down direction.

 */

enum ThresholdIndicationType {Up, Down};

 /*

 It indicates if some observed condition is getting better, worse,

 or not changing.

 */

 enum TrendIndicationType {LessSevere, NoChange, MoreSevere};

 /*

 It is used in a notification to report a changed attribute value.

 */

struct AttributeValueChangeType {

string attributeName;

any oldValue;
// type depends on attribute

any newValue;
// type depends on attribute

};

 typedef sequence <AttributeValueChangeType> AttributeValueChangeSetType;

 /*

 It is used in a notification to report a changed attribute value.

 */

 struct AttributeValueType {

string
attributeName;

any
value;

// type will depend on the attribute

};

typedef sequence <AttributeValueType> AttributeSetType;

 /*

 It indicates the level of severity.

 */

 enum PerceivedSeverityValue {

Indeterminate, Critical, Major, Minor, Warning, Cleared

 };

 /*

 This block identifies the probable cause of a reported alarm.

 */

const short PC_INDETERMINATE = 0;

const short PC_ALARM_INDICATION_SIGNAL = 1;

const short PC_CALL_SETUP_FAILURE = 2;

const short PC_DEGRADED_SIGNAL_M3100 = 3;

const short PC_FAR_END_RECEIVER_FAILURE = 4;

const short PC_FRAMING_ERROR_M3100 = 5;

const short PC_LOSS_OF_FRAME = 6;

const short PC_LOSS_OF_POINTER = 7;

const short PC_LOSS_OF_SIGNAL = 8;

const short PC_PAYLOAD_TYPE_MISMATCH = 9;

const short PC_TRANSMISSION_ERROR = 10;

const short PC_REMOTE_ALARM_INTERFACE = 11;

const short PC_EXCESSIVE_BIT_ERROR_RATE = 12;

const short PC_PATH_TRACE_MISMATCH = 13;

const short PC_UNAVAILABLE = 14;

const short PC_SIGNAL_LABEL_MISMATCH = 15;

const short PC_LOSS_OF_MULTI_FRAME = 16;

const short PC_BACK_PLANE_FAILURE = 51;

const short PC_DATA_SET_PROBLEM = 52;

const short PC_EQUIPMENT_IDENTIFIER_DUPLICATION = 53;

const short PC_EXTERNAL_DEVICE_PROBLEM = 54;

const short PC_LINE_CARD_PROBLEM = 55;

const short PC_MULTIPLEXER_PROBLEM_M3100 = 56;

const short PC_NE_IDENTIFIER_DUPLICATION = 57;

const short PC_POWER_PROBLEM_M3100 = 58;

const short PC_PROCESSOR_PROBLEM_M3100 = 59;

const short PC_PROTECTION_PATH_FAILURE = 60;

const short PC_RECEIVER_FAILURE_M3100 = 61;

const short PC_REPLACEABLE_UNIT_MISSING = 62;

const short PC_REPLACEABLE_UNIT_TYPE_MISMATCH = 63;

const short PC_SYNCHRONISATION_SOURCE_MISMATCH = 64;

const short PC_TERMINAL_PROBLEM = 65;

const short PC_TIMING_PROBLEM_M3100 = 66;

const short PC_TRANSMITTER_FAILURE_M3100 = 67;

const short PC_TRUNK_CARD_PROBLEM = 68;

const short PC_REPLACEABLE_UNIT_PROBLEM = 69;

const short PC_AIR_COMPRESSOR_FAILURE = 101;

const short PC_AIR_CONDITIONING_FAILURE = 102;

const short PC_AIR_DRYER_FAILURE = 103;

const short PC_BATTERY_DISCHARGING = 104;

const short PC_BATTERY_FAILURE = 105;

const short PC_COMMERICAL_POWER_FAILURE = 106;

const short PC_COOLING_FAN_FAILURE = 107;

const short PC_ENGINE_FAILURE = 108;

const short PC_FIRE_DETECTOR_FAILURE = 109;

const short PC_FUSE_FAILURE = 110;

const short PC_GENERATOR_FAILURE = 111;

const short PC_LOW_BATTERY_THRESHOLD = 112;

const short PC_PUMP_FAILURE_M3100 = 113;

const short PC_RECTIFIER_FAILURE = 114;

const short PC_RECTIFIER_HIGH_VOLTAGE = 115;

const short PC_RECTIFIER_LOW_F_VOLTAGE = 116;

const short PC_VENTILATION_SYSTEM_FAILURE = 117;

const short PC_ENCLOSURE_DOOR_OPEN_M3100 = 118;

const short PC_EXPLOSIVE_GAS = 119;

const short PC_FIRE = 120;

const short PC_FLOOD = 121;

const short PC_HIGH_HUMIDITY = 122;

const short PC_HIGH_TEMPERATURE = 123;

const short PC_HIGH_WIND = 124;

const short PC_ICE_BUILD_UP = 125;

const short PC_LOW_FUEL = 127;

const short PC_LOW_HUMIDITY = 128;

const short PC_LOW_CABLE_PRESSURE = 129;

const short PC_LOW_TEMPERATURE = 130;

const short PC_LOW_WATER = 131;

const short PC_SMOKE = 132;

const short PC_TOXIC_GAS = 133;

const short PC_STORAGE_CAPACITY_PROBLEM_M3100 = 151;

const short PC_MEMORY_MISMATCH = 152;

const short PC_CORRUPT_DATA_M3100 = 153;

const short PC_OUT_OF_CPU_CYCLES = 154;

const short PC_SOFTWARE_ENVIRONMENT_PROBLEM = 155;

const short PC_SOFTWARE_DOWNLOAD_FAILURE = 156;

const short PC_ADAPTER_ERROR = 301;

const short PC_APPLICATION_SUBSYSTEM_FAILURE = 302;

const short PC_BANDWIDTH_REDUCTION = 303;

const short PC_COMMUNICATION_PROTOCOL_ERROR = 305;

const short PC_COMMUNICATION_SUBSYSTEM_FAILURE = 306;

const short PC_CONFIGURATION_OR_CUSTOMIZING_ERROR = 307;

const short PC_CONGESTION = 308;

const short PC_CPU_CYCLES_LIMIT_EXCEEDED = 310;

const short PC_DATA_SET_OR_MODEM_ERROR = 311;

const short PC_DTE_DCE_INTERFACE_ERROR = 313;

const short PC_EQUIPMENT_MALFUNCTION = 315;

const short PC_EXCESSIVE_VIBRATION = 316;

const short PC_FILE_ERROR = 317;

const short PC_HEATING_OR_VENTILATION_OR_COOLING_SYSTEM_PROBLEM = 321;

const short PC_HUMIDITY_UNACCEPTABLE = 322;

const short PC_INPUT_OUTPUT_DEVICE_ERROR = 323;

const short PC_INPUT_DEVICE_ERROR = 324;

const short PC_LAN_ERROR = 325;

const short PC_LEAK_DETECTION = 326;

const short PC_LOCAL_NODE_TRANSMISSION_ERROR = 327;

const short PC_MATERIAL_SUPPLY_EXHAUSTED = 330;

const short PC_OUT_OF_MEMORY = 332;

const short PC_OUTPUT_DEVICE_ERROR = 333;

const short PC_PERFORMANCE_DEGRADED = 334;

const short PC_PRESSURE_UNACCEPTABLE = 336;

const short PC_QUEUE_SIZE_EXCEEDED = 339;

const short PC_RECEIVE_FAILURE = 340;

const short PC_REMOTE_NODE_TRANSMISSION_ERROR = 342;

const short PC_RESOURCE_AT_OR_NEARING_CAPACITY = 343;

const short PC_RESPONSE_TIME_EXCESSIVE = 344;

const short PC_RETRANSMISSION_RATE_EXCESSIVE = 345;

const short PC_SOFTWARE_ERROR = 346;

const short PC_SOFTWARE_PROGRAM_ABNORMALLY_TERMINATED = 347;

const short PC_SOFTWARE_PROGRAM_ERROR = 348;

const short PC_TEMPERATURE_UNACCEPTABLE = 350;

const short PC_THRESHOLD_CROSSED = 351;

const short PC_TOXIC_LEAK_DETECTED = 353;

const short PC_TRANSMIT_FAILURE = 354;

const short PC_UNDERLYING_RESOURCE_UNAVAILABLE = 356;

const short PC_VERSION_MISMATCH = 357;

const short PC_A_BIS_TO_BTS_INTERFACE_FAILURE = 501;

const short PC_A_BIS_TO_TRX_INTERFACE_FAILURE = 502;

const short PC_ANTENNA_PROBLEM = 503;

const short PC_BATTERY_BREAKDOWN = 504;

const short PC_BATTERY_CHARGING_FAULT = 505;

const short PC_CLOCK_SYNCHRONISATION_PROBLEM = 506;

const short PC_COMBINER_PROBLEM = 507;

const short PC_DISK_PROBLEM = 508;

const short PC_EXCESSIVE_RECEIVER_TEMPERATURE = 510;

const short PC_EXCESSIVE_TRANSMITTER_OUTPUT_POWER = 511;

const short PC_EXCESSIVE_TRANSMITTER_TEMPERATURE = 512;

const short PC_FREQUENCY_HOPPING_DEGRADED = 513;

const short PC_FREQUENCY_HOPPING_FAILURE = 514;

const short PC_FREQUENCY_REDEFINITION_FAILED = 515;

const short PC_LINE_INTERFACE_FAILURE = 516;

const short PC_LINK_FAILURE = 517;

const short PC_LOSS_OF_SYNCHRONISATION = 518;

const short PC_LOST_REDUNDANCY = 519;

const short PC_MAINS_BREAKDOWN_WITH_BATTERY_BACKUP = 520;

const short PC_MAINS_BREAKDOWN_WITHOUT_BATTERY_BACKUP = 521;

const short PC_POWER_SUPPLY_FAILURE = 522;

const short PC_RECEIVER_ANTENNA_FAULT = 523;

const short PC_RECEIVER_MULTICOUPLER_FAILURE = 525;

const short PC_REDUCED_TRANSMITTER_OUTPUT_POWER = 526;

const short PC_SIGNAL_QUALITY_EVALUATION_FAULT = 527;

const short PC_TIMESLOT_HARDWARE_FAILURE = 528;

const short PC_TRANSCEIVER_PROBLEM = 529;

const short PC_TRANSCODER_PROBLEM = 530;

const short PC_TRANSCODER_OR_RATE_ADAPTER_PROBLEM = 531;

const short PC_TRANSMITTER_ANTENNA_FAILURE = 532;

const short PC_TRANSMITTER_ANTENNA_NOT_ADJUSTED = 533;

const short PC_TRANSMITTER_LOW_VOLTAGE_OR_CURRENT = 535;

const short PC_TRANSMITTER_OFF_FREQUENCY = 536;

const short PC_DATABASE_INCONSISTENCY = 537;

const short PC_FILE_SYSTEM_CALL_UNSUCCESSFUL = 538;

const short PC_INPUT_PARAMETER_OUT_OF_RANGE = 539;

const short PC_INVALID_PARAMETER = 540;

const short PC_INVALID_POINTER = 541;

const short PC_MESSAGE_NOT_EXPECTED = 542;

const short PC_MESSAGE_NOT_INITIALISED = 543;

const short PC_MESSAGE_OUT_OF_SEQUENCE = 544;

const short PC_SYSTEM_CALL_UNSUCCESSFUL = 545;

const short PC_TIMEOUT_EXPIRED = 546;

const short PC_VARIABLE_OUT_OF_RANGE = 547;

const short PC_WATCH_DOG_TIMER_EXPIRED = 548;

const short PC_COOLING_SYSTEM_FAILURE = 549;

const short PC_EXTERNAL_EQUIPMENT_FAILURE = 550;

const short PC_EXTERNAL_POWER_SUPPLY_FAILURE = 551;

const short PC_EXTERNAL_TRANSMISSION_DEVICE_FAILURE = 552;

const short PC_REDUCED_ALARM_REPORTING = 561;

const short PC_REDUCED_EVENT_REPORTING = 562;

const short PC_RECUCED_LOGGING_CAPABILITY = 563;

const short PC_SYSTEM_RESOURCES_OVERLOAD = 564;

const short PC_BROADCAST_CHANNEL_FAILURE = 565;

const short PC_CALL_ESTABLISHMENT_ERROR = 566;

const short PC_INVALID_MESSAGE_RECEIVED = 567;

const short PC_INVALID_MSU_RECEIVED = 568;

const short PC_LAPD_LINK_PROTOCOL_FAILURE = 569;

const short PC_LOCAL_ALARM_INDICATION = 570;

const short PC_REMOTE_ALARM_INDICATION = 571;

const short PC_ROUTING_FAILURE = 572;

const short PC_SS7_PROTOCOL_FAILURE = 573;

const short PC_TRANSMISSION_FAILURE = 574;

typedef sequence <string> AlarmInformationIdSeq;

typedef CosNotification::EventBatch AlarmInformationSeq;

enum AlarmAckState {

ActiveAndAcknowledged, ActiveAndUnacknowledged, ClearedAndUnacknowledged, ClearedAndUnacknowledged, All

 };

};

#endif

/* ## Module: AlarmIRPSystem

This module contains the specification of all operations of Alarm IRP Agent

specified in Alarm IRP: IS version 1 and Alarm IRP: CORBA SS version 1:1.

== */

#ifndef AlarmIRPSystem_idl

#define AlarmIRPSystem_idl

#include "CosNotification.idl"

#include "AlarmIRPConstDefs.idl"

#include "CommonIRPConstDefs.idl"

module AlarmIRPSystem {

 /*

 System fails to complete the operation. System provides

 reasons whose semantics is outside the scope of this IRP.

 */

 exception AcknowledgeAlarms { string reason; };

 exception UnacknowledgeAlarms { string reason; };

 exception GetAlarmList {
string reason; };

 exception GetAlarmIRPVersion { string reason; };

 exception GetAlarmCount { string reason; };

 exception ParameterNotSupported { string parameter; };

 //name of the unsupported parameter as defined in IDL.

 exception InvalidParameter { string parameter; };

 //name of the parameter as defined in IDL

 exception OperationNotSupported {};

 exception NextAlarmInformations { string reason; };

 /**

 The AlarmInformationIterator is used to iterate through a set of Alarm

 Informations in Alarm List. Method get_alarm_list contains it as

 output parameter.

 IRPManager uses it to pace the return of Alarm Informations. IRPManager

 cannot use it to pace when IRPAgent should retrieve Alarm Informations

 from Alarm List.

 */

 interface AlarmInformationIterator {

 /**

 This method returns up to "how_many" Alarm Informations.

 If 1 or more Alarm Information is returned, return TRUE.

 Return FALSE if there is no more Alarm Information to be returned.

 */

 boolean next_alarmInformations (

 in unsigned long how_many,

 out AlarmIRPConstDefs::AlarmInformationSeq alarm_informations

)

 raises (NextAlarmInformations,InvalidParameter);

 /**

 This method destroys the iterator.

 */

 void destory ();

 }; // end of AlarmInformationIterator

/*

 This interface specifies all methods supported by System as

specified in 3GPP AlarmIRP: CORBA Solution Set version 1:1.

 */

interface AlarmIRPOperations {

CommonIRPConstDefs::Signal acknowledge_alarms (

in AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list,

in string ack_user_id,

in string ack_system_id,

out AlarmIRPConstDefs::AlarmInformationIdSeq

 bad_alarm_information_id_list

)

 raises (AcknowledgeAlarms,ParameterNotSupported,InvalidParameter);

CommonIRPConstDefs::Signal unacknowledge_alarms (

in AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list,

in string ack_user_id,

in string ack_system_id,

out AlarmIRPConstDefs::AlarmInformationIdSeq

bad_alarm_information_id_list

)

 raises (UnacknowledgeAlarms, OperationNotSupported, ParameterNotSupported,

InvalidParameter);

 /*

 This method returns Alarm Informations.

 If flag is TRUE, all returned Alarm Informations shall be

 in AlarmInformationSeq that contains 0,1 or more Alarm Informations.

 Output parameter iter shall be useless.

 If flag is FALSE, no Alarm Informations shall be in AlarmInformationSeq.

 IRPAgent needs to use iter to retrieve them.

 */

AlarmIRPConstDefs::AlarmInformationSeq get_alarm_list (

 in string filter,

 out boolean flag,

 out AlarmInformationIterator iter

)

 raises (GetAlarmList,ParameterNotSupported,InvalidParameter);

void get_alarm_count (

in string filter,

out long critical_count,

out long major_count,

out long minor_count,

out long warning_count,

out long indeterminate_count,

out long cleared_count

)

 raises (GetAlarmCount, OperationNotSupported, ParameterNotSupported,

InvalidParameter);

CommonIRPConstDefs::VersionNumberSet get_alarm_IRP_version ()

raises (GetAlarmIRPVersion);

};

};

#endif

3GPP

