S5-FM???

Alarm IRP: CORBA SS

3GPP TSG-SA5 (Telecom Management)

Meeting #11bis, Sophia Antipolis, France 9–12 May 2000

Tdoc S5F000015



[image: image1.wmf]



Alarm Integration Reference Point (IRP)

Specification: CORBA Solution Set

A Proposal for 3GPP TSG SA WG5

Version 1:1

2000-04-12

(Revision C with IDL file)

Document Status History


First release: 1999-09-14


Revision B: input to FM ad hoc meeting in Montreal, March 2000.

Revision C: output of Paris meeting, April 2000.
Table of Contents


41
Introduction

1.1
Document Structure
4
1.2
Key Terms
4
1.3
IRP Solution Set version
4
1.4
Glossary
4
2
Architectural Features
4
2.1
Notification Services
4
2.2
Push and Pull Style
5
2.3
Support multiple notifications in one push operation
5
2.4
Filter
5
3
Mapping
5
3.1
Operation and Notification mapping
5
3.2
Operation parameter mapping
6
3.3
Notification parameter mapping
8
3.4
Attribute mapping
9
4
Use of OMG Structured Event
10
5
AlarmIRPNotifications Interface
14
5.1.1
Method push (M)
14
6
References
16
Appendix:  IDL
17




































Tables

6Table 1: Mapping from IS Notification/Operation to SS equivalents

Table 2: Mapping from IS acknowledgeAlarms parameters to SS equivalents
6
Table 3: Mapping from IS unacknowledgeAlarms parameters to SS equivalents
7
Table 4: Mapping from IS getAlarmList parameters to SS equivalents
7
Table 5: Mapping from IS selectAlarmIRPVersion parameters to SS equivalents
7
Table 6: Mapping from IS getAlarmCount parameters to SS equivalents
8
Table 7: Mapping from IS notify parameters to SS equivalents
8
Table 8: Mapping from IS notify (to convey alarmList rebuilt) parameters to SS equivalents
9
Table 9: Mapping from IS notificationHeader attributes to SS equivalents
9
Table 10: Mapping from IS alarmInformationBody attributes to SS equivalence
10
Table 11: Use of OMG Structured Event
11







1 Introduction

This document specifies the CORBA Solution Set (SS) for the IRP whose semantics is specified in Alarm IRP: Information Service (IS) [9].

1.1 Document Structure

Clause 1 provides background information.  Clause 2 provides key architectural features supporting the SS.  Clause 3 defines the mapping of operations, notification, parameters and attributes defined in IS to their SS equivalents.  Clause 4 defines the usage of OMG CORBA Structured Event to carry information defined in notifications carrying alarm information.  Clause 5 describes the notification interface containing the push method.  Clause 6 contains references.  Appendix contains the IDL specification.
1.2 Key Terms

See clause “Key Terms” in Reference [9].

1.3 IRP Solution Set version

The version of this CORBA SS is 1:1, where the first “1” indicates the version number of the Alarm IRP: Information Service [9]; and the second “1” indicates the version number of this document.  

1.4 Glossary

Glossary of terms and acronyms 

CORBA: Common Object Request Broker Architecture

IDL: Interface Definition Language

NE: Network Element

OMG: Object Management Group

UML: Unified Model Language

2 Architectural Features

The overall architectural feature of Alarm IRP is specified in Reference [9].  This clause specifies features that are specific to the CORBA SS.

2.1 Notification Services

In implementations of CORBA SS, System conveys Alarm Information to Manager via OMG Notification Service [6].  This SS does not recommend the use of OMG Event Service [7].  

OMG Event Service provide event routing and distribution capabilities.  OMG Notification Service provides, in addition to Event Service, event filtering and quality of service as well.

A necessary and sufficient sub set of OMG Notification Services shall be used to support AlarmIRPNotifications notifications as specified in [9].  
2.2 Push and Pull Style

OMG Notification Services define two styles of interaction.  One is called push style.  In this style, System pushes notifications to Manager as soon as they are available.  The other is called pull style.  In this style, System keeps the notifications till Manager requests for them.  

This CORBA SS specifies that support of push style is mandatory and that support of pull style is optional.

2.3 Support multiple notifications in one push operation

For efficiency reasons, System may send multiple notifications using one single push operation.  To pack multiple notifications into one push operation, System may wait and not invoke the push operation as soon as notifications are available.  To avoid System to wait for an extended period of time that is objectionable to Manager, this IRP recommends that System implements a system wide timer configurable by administrator.  On expiration of this timer, System must invoke push if there is at least one notification to be conveyed to Manager.  This timer is re-started after each push invocation.

2.4 Filter

System can optionally support alarm filtering based on Manager’s supplied alarm filter constraints (e.g., as parameter in subscribe() of [10].)  Alarm filtering can be applied in the following cases:

· It is applicable to alarms emitted by System via AlarmIRPNotifications.  Manager supplies alarm filter constraint via the subscribe method.  This filter is effective during the period of subscription and is only applicable to alarms emitted via AlarmIRPNotifications.

· It is applicable to alarms returned by System via the out parameter of get_alarm_list method.  Manager supplies alarm filter constraint via the get_alarm_list method.  This filter is effective only for this method invocation.

· It is applicable to the calculation of alarm counts returned by System via the out parameters of get_alarm_count method.  Manager supplies alarm filter constraint via the get_alarm_count method.  This filter is effective only for this method invocation.

System manages filter objects based on the filter constraints supplied by Manager.  This management is internal within System and is not visible via the Alarm IRP.

This SS recommends the use of filter constraint grammar specified by reference [6].  The name of the grammar is called “EXTENDED_TCL” 
.

3 Mapping

3.1 Operation and Notification mapping

Alarm IRP: IS [9] defines semantics of operation and notification visible across the Alarm IRP.  Manager
The table below indicates mapping of these operations and notifications to their equivalents defined in this SS.
Table 1: Mapping from IS Notification/Operation to SS equivalents
IS Operation/ notification [9]
SS Method 
Qualifier

acknowledgeAlarms
acknowledge_alarms
M

unacknowledgeAlarms
unacknowledge_alarms
O

getAlarmList
get_alarm_list
M

selectAlarmIRPVersion
select_alarm_IRP_version
M

getAlarmCount
get_alarm_count
O

notify( to convey new alarm)
push_structured_event

M

notify( to convey cleared alarm)
push_structured_event
M

notify( to convey changed alarm)
push_structured_event
M

notify( to convey acknowledgement state)
push_structured_event
M

notify( to convey alarm list rebuilt)
push_structured_event
M

3.2 Operation parameter mapping

Reference [9] defines semantics of parameters carried in operations across the Alarm IRP.  The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.
Table 2: Mapping from IS acknowledgeAlarms parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

alarmInformation ReferenceList
in AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list 
M

ackUserId
in string ack_user_id
M

ackSystemId
in string ack_system_id
O

subscriptionId
This SS supports the non-subscription-based mode only.  It does not support the subscription-based mode that requires the use of subscriptionId.  See [9] on detail of the two modes, subscription-based and non-subscription based modes.  

This parameter is absent.


bad AlarmInformation ReferenceList
out AlarmIRPConstDefs::AlarmInformationIdSeq bad_alarm_information_id_list
O

status
CommonIRPConstDefs::Signal

AcknowledgeAlarmsException, ParameterNotSupportedException, InvalidParameterException
M

Table 3: Mapping from IS unacknowledgeAlarms parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

alarm InformationReferenceList
in AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list
M

ackUserId
in string ack_user_id
M

ackSystemId
in string ack_system_id
O

subscriptionId
This parameter is absent.  See corresponding box in table 2.


badAlarm Information ReferenceList
out AlarmIRPConstDefs::AlarmInformationIdSeq bad_alarm_information_id_list
O

status
CommonIRPConstDefs::Signal

UnacknowledgeAlarmsException, OperationNotSupportedException, ParameterNotSupportedException, InvalidParameterException
M

Table 4: Mapping from IS getAlarmList parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

alarmInformation List
out AlarmIRPConstDefs::AlarmInformationSeq alarm_information_list
M

alarmAckState, filter
in string filter
O

subscriptionId
This parameter is absent.  See corresponding box in table 2.


status
CommonIRPConstDefs::Signal
GetAlarmListException, ParameterNotSupportedException, InvalidParameterException
M

Table 5: Mapping from IS selectAlarmIRPVersion parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

versionNumber
in string version_number
M

versionNumberList
out CommonIRPConstDefs::VersionNumberSeq version_number_list
M

status
CommonIRPConstDefs::Signal

SetAlarmIRPVersionException, InvalidParameterException
M

Table 6: Mapping from IS getAlarmCount parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

alarmAckState, filter
in string filter
O

subscriptionId
This parameter is absent.  See corresponding table in table 2.


criticalCount, majorCount, minorCount, warningCount, indeterminateCount, clearedCount 
out long critical_count, out long major_count, out long minor_count, out long warning_count, out long indeterminate_count, out long cleared_count
M

status
CommonIRPConstDefs::Signal

GetAlarmCountException, OperationNotSupportedException, ParameterNotSupportedException, InvalidParameterException
M

3.3 Notification parameter mapping
Reference [9] defines semantics of parameters carried in notifications across the Alarm IRP.  The tables in this sub clause indicate the mapping of these parameters, as per notification, to their equivalents defined in this SS.
The following tables are relevant for notify (to convey new alarm, to convey changed alarm, to convey alarm acknowledgement state and to convey cleared alarm).  
One attribute of notificationHeader is called extendedEventType.  Its value is one of the following: NOTIFY_FM_NEW_ALARM, NOTIFY_FM_CHANGED_ALARM, NOTIFY_FM_ACK_STATE_CHANGED and NOTIFY_FM_CLEARED_ALARM.  
Table 7: Mapping from IS notify parameters to SS equivalents
IS Notification parameter
SS Notification parameter
Comment

notification  Header
structured Event

Attributes of notificationHeader are mapped to attributes of structuredEvent.  See clause 3.4 for attributes related to notificationHeader.

alarm Information Body
structured Event
Attributes of alarmInformationBody are mapped to attributes of structuredEvent.  See clause 3.4 for attributes related to alarmInformationBody.

The following table is relevant for notify (to convey System’s Alarm List rebuilt).

Table 8: Mapping from IS notify (to convey alarmList rebuilt) parameters to SS equivalents

IS Notification parameter
SS equivalent
Qualifier
Comment

notification Id
notification Id
M
It is a string.

extendedEventType
extended EventType
M
It indicates System has rebuilt the Alarm List successfully.  Value is a string, ExtendedEventTypeValue.NOTIFY_FM_ALARM_LIST_REBUILT.  See module CommonIRPConstDefs.  

eventTime
eventTime
M
It indicates the time System has successfully rebuilt the Alarm List.

reason
reason
O
It is a string indicating the Alarm List rebuilt reason.

systemDN
systemDN
O
It is a string carries the DN of system whose Alarm List has been rebuilt.  Syntax and semantics of this string conform to the Managed Object string representation specified in [8].

3.4 Attribute mapping

Notification IRP: IS [10] defines the semantics of attributes for notificationHeader parameter.  Alarm IRP: IS [9] identifies notificationHeader for use for its IRP.  Reference [9] also qualifies the attributes of the notificationHeader parameter.  The following table shows the mapping of these IS attributes to SS equivalents. 

Table 9: Mapping from IS notificationHeader attributes to SS equivalents

IS Attribute of notificationHeader in [10]
SS Attribute
Qualifier

managedObjectClass 
managedObjectClass
O

managedObjectInstance
managedObjectInstance
M

notificationID
notificationID
M

eventTime
eventTime
M

systemDN
systemDN
O

eventType
eventType
M

extendedEventType
extendedEventType
M

Alarm IRP: IS [9] defines and qualifies the semantics of attributes for alarmInformationBody parameter.  The following table shows the mapping of these IS attributes to SS equivalents.


Table 10: Mapping from IS alarmInformationBody attributes to SS equivalence
IS Attribute of alarmInformationBody in [9]
SS Attribute
Qualifier

probableCause
probableCause
M

perceivedSeverity
perceivedSeverity
M

specificProblem
specificProblem
O

correlatedNotifications
correlatedNotifications
O

backedUpStatus
backedUpStatus
O

backUpObject
backUpObject
O

trendIndication
trendIndication
O

thresholdInfo
thresholdInfo
O

stateChangeDefinition
stateChangeDefinition
O

monitoredAttributes
monitoredAttributes
O

proposedRepairActions
proposedRepairActions
O

additionalText
additionalText
O

additionalInformation. alarmId
alarmId
M

additionalInformation. ackTime
ackTime
O

additionalInformation. ackUserId
ackUserId
O

additionalInformation. ackSystemId
ackSystemId
O

additionalInformation. ackState
ackState
O

4 Use of OMG Structured Event 

Operation n

otify defined in [9] carries parameters, such as notificationHeader and alarmInformationBody.  In CORBA SS, OMG defined StructuredEvent [2] is used to carry notification.  This clause identifies the OMG defined StructuredEvent attributes that carry the attributes of parameters defined in [9].

The composition of OMG Structured Event, as defined in [6], is:

Header

      Fixed Header

           domain_name

           type_name

           event_name

      Variable Header

Body

      filterable_body_fields

      remaining_body
The table below lists all OMG Structured Event attributes in its leftmost column.  The second column identifies the SS attributes, if any, that shall be carried there. 
Table 11: Use of OMG Structured Event

OMG CORBA Structured Event attribute
SS Attribute
Comment

domain_name
It is not used to hold SS attribute.
It contains “3GPP FM IRP 1:1”.  

type_name
eventType
Attribute eventType is an attribute of notificationHeader.

It shall indicate one of the following ITU-T defined semantics: 
EVENT_PHYSICAL_VIOLATION, EVENT_COMMUNICATIONS_ALARM, EVENT_PROCESSING_ERROR_ALARM, EVENT_ENVIRONMENTAL_ALARM, EVENT_QUALITY_OF_SERVICE_ALARM, EVENT_EQUIPMENT_ALARM, EVENT_INTEGRITY_VIOLATION, EVENT_SECURITY_VIOLATION, EVENT_TIME_DOMAIN_VIOLATION, EVENT_OPERATIONAL_VIOLATION.
It is a string.  See interface EventTypeValue in module CommonIRPConstDefs.


event_name
extendedEventType
Attribute extendedEventType is an attribute of notificationHeader.  

It shall identify one of the following: 
NOTIFY_FM_NEW_ALARM, NOTIFY_FM_CHANGED_ALARM, NOTIFY_FM_ACK_STATE_CHANGED, NOTIFY_FM_CLEARED_ALARM and NOTIFY_FM_ALARM_LIST_REBUILT
.

It is a string.  See interface ExtendedEventTypeValue in module CommonIRPConstDefs.


variable Header
It is not used to hold SS attribute.


One NV
 pair of filterable_ body_fields
managedObject Instance, managedObjectInstance
They are attributes of notificationHeader.  
Name of NV pair is a string, AttributeNameValue.managedObjectInstance
.  
Value of NV pair is a string.  Syntax and semantics of this string conform to the Managed Object string representation specified in [8].

One NV pair of filterable_ body_fields
notification Id
It is an attribute of notificationHeader.  
Name of NV pair is a string, AttributeNameValue.notificationId.  
Value of NV pair is a long.  See corresponding table in Notification IRP: CORBA SS [11].  

One NV pair of filterable_ body_fields
eventTime
It is an attribute of notificationHeader.  
Name of NV pair is AttributeNameValue.eventTime.  
Value of NV pair is a string.  See corresponding table in Notification IRP: CORBA SS [11].

One NV pair of filterable_ body_fields 
systemDN
It is an attribute of notificationHeader.  
Name of NV pair is a string, AttributeNameValue.systemDN.  
Value of NV pair is a string.  See corresponding table in Notification IRP: CORBA SS [11].  

One NV pair of filterable_ body_fields
probableCause
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.probableCause.  
Value of NV pair is a short defined by ProbableCauseValue.

One NV pair of filterable_ body_fields
perceived Severity
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.perceivedSeverity.  
Value of NV pair is a short defined by PerceivedSeverityValue. 

One NV pair of filterable_ body_fields
specific Problem
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.specificProblem.  
Value of NV pair is a string.  

One NV pair of filterable_ body_fields
correlated Notifications
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.correlatedNotifications.  
Value of NV pair is of type CorrelatedNotificationSetType.

One NV pair of filterable_ body_fields
backed UpStatus
It is an attribute of alarmInformationBody.  
Name of NV pair is a string,  AttributeNameValue.backedUpStatus.  
Value of NV pair is of boolean BackedUpStatusType.

One NV pair of filterable_ body_fields
backUpObject
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.backedUpStatus.  
Value of NV pair is a string carrying of DN of the backed up object.  See [8] for the DN string representation.

One NV pair of filterable_ body_fields
trend Indication
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.trendIndication.  
Value of NV pair is an enum TrendIndicationType.

One NV pair of filterable_ body_fields
thresholdInfo
It is an attribute of alarmInformationBody.  
Name of NV pair is a string,  ParameterNameValue.thresholdInfo. 
Value of NV pair is an enum ThresholdIndicationType.

One NV pair of filterable_ body_fields
stateChange Definition
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.stateChangeDefinition.  
Value of NV pair is a AttributeChangeSetType.

One NV pair of filterable_ body_fields
monitored Attributes
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.monitoredAttributes.  
Value of NV pair is an AttributeSetType.

One NV pair of filterable_ body_fields
proposed RepairActions
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.proposedRepairActions.  
Value of NV pair is a string.

One NV pair of filterable_ body_fields
additional Text
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.additionalText.  
Value of NV pair is a string.  

One NV pair of filterable_ body_fields
additional Information. alarmId
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.alarmId.  
Value of NV pair is a short.  

One NV pair of filterable_ body_fields
additional Information. ackTime
It is an attribute of notificationHeader.  
Name of NV pair is a string, AttributeNameValue.ackTime.  
Value of NV pair is a structure defined for use by eventTime.  

One NV pair of filterable_ body_fields
additional Information. ackUserId
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.ackUserId.  
Value of NV pair is a string.

One NV pair of filterable_ body_fields
additional Information. ackSystemId
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.ackSystemId.  
Value of NV pair is a string.  

One NV pair of filterable_body_fields
additional Information. ackState
It is an attribute of alarmInformationBody.  
Name of NV pair is a string, AttributeNameValue.ackState.  
Value of NV pair is a short defined by AlarmAckState.  

remaining_ body
It is not used to hold SS attribute.


4.1 






· 
· 
· 
· 












· 
· 
· 



4.2 

4.3 


4.4 









5 

6 AlarmIRPNotifications Interface

OMG CORBA Notification push operation is used to realize the notification of AlarmIRPNotifications.  This interface supports the notify (to convey new alarm, to convey changed alarm, to convey cleared alarm, to convey acknowledgement state changes, to convey Alarm List rebuilt) operation defined in [8].
6.1.1 Method push (M)

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)



raises( CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

Notes:

· The push_structured_events operation takes an input parameter of type EventBatch as defined in the OMG CosNotification module [6].  This data type is the same as a sequence of Structured Events.  Upon invocation, this parameter will contain a sequence of Structured Events being delivered to Manager by System to which it is connected. 

· The maximum number of events that will be transmitted within a single invocation of this operation is controlled by System wide configuration parameter.

· The amount of time the supplier (System) of a sequence of Structured Events will accumulate individual events into the sequence before invoking this operation is controlled by System wide configuration parameter as well.

· System may push EventBatch with only one Structured Event.

6.1.2 
















































6.2 


7 References

 AUTONUM 

ITU-T Recommendation X.721: Information Technology - Open Systems Interconnection  -Structure Of Management Information: Definition Of Management Information
 AUTONUM 
ITU-T Recommendation X.736: Security Alarm Reporting Function

 AUTONUM 
ITU-T Recommendation X.732: Relationship Management Function
 AUTONUM 
ITU-T Recommendation X.731: State Management Function

 AUTONUM 
ITU-T Recommendation X.730: Object Management Function

 AUTONUM 
OMG Notification Service, OMG TC Document telecom/98-11-01

 AUTONUM 
OMG CORBA services: Common Object Services Specification, Update: November 22, 1996.  (Clause 4 contains the Event Service Specification.)

8.

8. Name Convention for Managed Objects. 
9. 
10. Alarm IRP: Information Service, Version 1 
11. Notification IRP: Information Service, Version 1
Notification IRP: CORBA Solution Set 

Appendix:  IDL 






















































































































































































































































































































































































































































































































































/* ## Module: AlarmConstDefs

## Source file:  C:\Program Files\Rational\Rational Rose 2000 Enterprise Edition\AlarmConstDefs.idl

 ===============================================================================

 */

#ifndef  AlarmIRPConstDefs_idl

#define  AlarmIRPConstDefs_idl

#include "CosNotification.idl"

module AlarmIRPConstDefs {

  // Backed Up Status Type is used to indicate if an object has a back up.

  // True implies backep up. False implies not backed up.

  typedef boolean BackedUpStatusType;

  // Threshold indication describes if the threshold crossed was in the

  // up or down direction.


enum ThresholdIndicationType {up, down};

  // TrendIndication values indicate if some observed condition is getting

  // better, worse, or not changing.

  enum TrendIndicationType {lessSevere, noChange, moreSevere};

  // An Attribute Value Change structure is used in a notification to report an

  // attribute that has been changed.


struct AttributeValueChangeType {



string

attributeName;



any
    
oldValue;
// type depends on attribute



any

newValue;
// type depends on attribute


};

  // An Attribute Change Set is used to report the attributes that have been

  // changed in an attribute value change notification.


typedef sequence <AttributeValueChangeType> AttributeChangeSetType;

  struct AttributeValueType {



string
attributeName;



any
value;

// type will depend on the attribute


};


typedef sequence <AttributeValueType> AttributeSetType;

  // A Correlated Notification is identified by the object that emitted the

  // notification and the notification ID.


struct CorrelatedNotificationType {



string source;



unsigned long
notifID;


};

  // Correlated Notification set is a set of Correlated Notification structures.


typedef sequence <CorrelatedNotificationType> CorrelatedNotificationSetType;


interface PerceivedSeverityValue {



const short INDETERMINATE = 0;



const short CRITICAL = 1;



const short MAJOR = 2;



const short MINOR = 3;



const short WARNING = 4;



const short CLEARED = 5;


};


interface ProbableCauseValue {



const short INDETERMINATE = 0;



const short ALARM_INDICATION_SIGNAL = 1;



const short CALL_SETUP_FAILURE = 2;



const short DEGRADED_SIGNAL_M3100 = 3;



const short FAR_END_RECEIVER_FAILURE = 4;



const short FRAMING_ERROR_M3100 = 5;



const short LOSS_OF_FRAME = 6;



const short LOSS_OF_POINTER = 7;



const short LOSS_OF_SIGNAL = 8;



const short PAYLOAD_TYPE_MISMATCH = 9;



const short TRANSMISSION_ERROR = 10;



const short REMOTE_ALARM_INTERFACE = 11;



const short EXCESSIVE_BIT_ERROR_RATE = 12;



const short PATH_TRACE_MISMATCH = 13;



const short UNAVAILABLE = 14;



const short SIGNAL_LABEL_MISMATCH = 15;



const short LOSS_OF_MULTI_FRAME = 16;



const short BACK_PLANE_FAILURE = 51;



const short DATA_SET_PROBLEM = 52;



const short EQUIPMENT_IDENTIFIER_DUPLICATION = 53;



const short EXTERNAL_DEVICE_PROBLEM = 54;



const short LINE_CARD_PROBLEM = 55;



const short MULTIPLEXER_PROBLEM_M3100 = 56;



const short NE_IDENTIFIER_DUPLICATION = 57;



const short POWER_PROBLEM_M3100 = 58;



const short PROCESSOR_PROBLEM_M3100 = 59;



const short PROTECTION_PATH_FAILURE = 60;



const short RECEIVER_FAILURE_M3100 = 61;



const short REPLACEABLE_UNIT_MISSING = 62;



const short REPLACEABLE_UNIT_TYPE_MISMATCH = 63;



const short SYNCHRONISATION_SOURCE_MISMATCH = 64;



const short TERMINAL_PROBLEM = 65;



const short TIMING_PROBLEM_M3100 = 66;



const short TRANSMITTER_FAILURE_M3100 = 67;



const short TRUNK_CARD_PROBLEM = 68;



const short REPLACEABLE_UNIT_PROBLEM = 69;



const short AIR_COMPRESSOR_FAILURE = 101;



const short AIR_CONDITIONING_FAILURE = 102;



const short AIR_DRYER_FAILURE = 103;



const short BATTERY_DISCHARGING = 104;



const short BATTERY_FAILURE = 105;



const short COMMERICAL_POWER_FAILURE = 106;



const short COOLING_FAN_FAILURE = 107;



const short ENGINE_FAILURE = 108;



const short FIRE_DETECTOR_FAILURE = 109;



const short FUSE_FAILURE = 110;



const short GENERATOR_FAILURE = 111;



const short LOW_BATTERY_THRESHOLD = 112;



const short PUMP_FAILURE_M3100 = 113;



const short RECTIFIER_FAILURE = 114;



const short RECTIFIER_HIGH_VOLTAGE = 115;



const short RECTIFIER_LOW_F_VOLTAGE = 116;



const short VENTILATION_SYSTEM_FAILURE = 117;



const short ENCLOSURE_DOOR_OPEN_M3100 = 118;



const short EXPLOSIVE_GAS = 119;



const short FIRE = 120;



const short FLOOD = 121;



const short HIGH_HUMIDITY = 122;



const short HIGH_TEMPERATURE = 123;



const short HIGH_WIND = 124;



const short ICE_BUILD_UP = 125;



const short LOW_FUEL = 127;



const short LOW_HUMIDITY = 128;



const short LOW_CABLE_PRESSURE = 129;



const short LOW_TEMPERATURE = 130;



const short LOW_WATER = 131;



const short SMOKE = 132;



const short TOXIC_GAS = 133;



const short STORAGE_CAPACITY_PROBLEM_M3100 = 151;



const short MEMORY_MISMATCH = 152;



const short CORRUPT_DATA_M3100 = 153;



const short OUT_OF_CPU_CYCLES = 154;



const short SOFTWARE_ENVIRONMENT_PROBLEM = 155;



const short SOFTWARE_DOWNLOAD_FAILURE = 156;



const short ADAPTER_ERROR = 301;



const short APPLICATION_SUBSYSTEM_FAILURE = 302;



const short BANDWIDTH_REDUCTION = 303;



const short COMMUNICATION_PROTOCOL_ERROR = 305;



const short COMMUNICATION_SUBSYSTEM_FAILURE = 306;



const short CONFIGURATION_OR_CUSTOMIZING_ERROR = 307;



const short CONGESTION = 308;



const short CPU_CYCLES_LIMIT_EXCEEDED = 310;



const short DATA_SET_OR_MODEM_ERROR = 311;



const short DTE_DCE_INTERFACE_ERROR = 313;



const short EQUIPMENT_MALFUNCTION = 315;



const short EXCESSIVE_VIBRATION = 316;



const short FILE_ERROR = 317;



const short HEATING_OR_VENTILATION_OR_COOLING_SYSTEM_PROBLEM = 321;



const short HUMIDITY_UNACCEPTABLE = 322;



const short INPUT_OUTPUT_DEVICE_ERROR = 323;



const short INPUT_DEVICE_ERROR = 324;



const short LAN_ERROR = 325;



const short LEAK_DETECTION = 326;



const short LOCAL_NODE_TRANSMISSION_ERROR = 327;



const short MATERIAL_SUPPLY_EXHAUSTED = 330;



const short OUT_OF_MEMORY = 332;



const short OUTPUT_DEVICE_ERROR = 333;



const short PERFORMANCE_DEGRADED = 334;



const short PRESSURE_UNACCEPTABLE = 336;



const short QUEUE_SIZE_EXCEEDED = 339;



const short RECEIVE_FAILURE = 340;



const short REMOTE_NODE_TRANSMISSION_ERROR = 342;



const short RESOURCE_AT_OR_NEARING_CAPACITY = 343;



const short RESPONSE_TIME_EXCESSIVE = 344;



const short RETRANSMISSION_RATE_EXCESSIVE = 345;



const short SOFTWARE_ERROR = 346;



const short SOFTWARE_PROGRAM_ABNORMALLY_TERMINATED = 347;



const short SOFTWARE_PROGRAM_ERROR = 348;



const short TEMPERATURE_UNACCEPTABLE = 350;



const short THRESHOLD_CROSSED = 351;



const short TOXIC_LEAK_DETECTED = 353;



const short TRANSMIT_FAILURE = 354;



const short UNDERLYING_RESOURCE_UNAVAILABLE = 356;



const short VERSION_MISMATCH = 357;



const short AUTHENTICATION_FAILURE = 401;



const short BREACH_OF_CONFIDENTIALITY = 402;



const short CABLE_TAMPER = 403;



const short DELAYED_INFORMATION = 404;



const short DENIAL_OF_SERVICE = 405;



const short DUPLICATE_INFORMATION = 406;



const short INFORMATION_MISSING = 407;



const short INFORMATION_MODIFICATION_DETECTED = 408;



const short INFORMATION_OUT_OF_SEQUENCE = 409;



const short INTRUSION_DETECTED = 410;



const short KEY_EXPIRED = 411;



const short NON_REPUDIATION_FAILURE = 412;



const short OUT_OF_HOURS_ACTIVITY = 413;



const short OUT_OF_SERVICE = 414;



const short PROCEDURAL_ERROR = 415;



const short UNAUTHORIZED_ACCESS_ATTEMPT = 416;



const short UNEXPECTED_INFORMATION = 417;



const short UNSPECIFIED_REASON = 418;



const short A_BIS_TO_BTS_INTERFACE_FAILURE = 501;



const short A_BIS_TO_TRX_INTERFACE_FAILURE = 502;



const short ANTENNA_PROBLEM = 503;



const short BATTERY_BREAKDOWN = 504;



const short BATTERY_CHARGING_FAULT = 505;



const short CLOCK_SYNCHRONISATION_PROBLEM = 506;



const short COMBINER_PROBLEM = 507;



const short DISK_PROBLEM = 508;



const short EXCESSIVE_RECEIVER_TEMPERATURE = 510;



const short EXCESSIVE_TRANSMITTER_OUTPUT_POWER = 511;



const short EXCESSIVE_TRANSMITTER_TEMPERATURE = 512;



const short FREQUENCY_HOPPING_DEGRADED = 513;



const short FREQUENCY_HOPPING_FAILURE = 514;



const short FREQUENCY_REDEFINITION_FAILED = 515;



const short LINE_INTERFACE_FAILURE = 516;



const short LINK_FAILURE = 517;



const short LOSS_OF_SYNCHRONISATION = 518;



const short LOST_REDUNDANCY = 519;



const short MAINS_BREAKDOWN_WITH_BATTERY_BACKUP = 520;



const short MAINS_BREAKDOWN_WITHOUT_BATTERY_BACKUP = 521;



const short POWER_SUPPLY_FAILURE = 522;



const short RECEIVER_ANTENNA_FAULT = 523;



const short RECEIVER_MULTICOUPLER_FAILURE = 525;



const short REDUCED_TRANSMITTER_OUTPUT_POWER = 526;



const short SIGNAL_QUALITY_EVALUATION_FAULT = 527;



const short TIMESLOT_HARDWARE_FAILURE = 528;



const short TRANSCEIVER_PROBLEM = 529;



const short TRANSCODER_PROBLEM = 530;



const short TRANSCODER_OR_RATE_ADAPTER_PROBLEM = 531;



const short TRANSMITTER_ANTENNA_FAILURE = 532;



const short TRANSMITTER_ANTENNA_NOT_ADJUSTED = 533;



const short TRANSMITTER_LOW_VOLTAGE_OR_CURRENT = 535;



const short TRANSMITTER_OFF_FREQUENCY = 536;



const short DATABASE_INCONSISTENCY = 537;



const short FILE_SYSTEM_CALL_UNSUCCESSFUL = 538;



const short INPUT_PARAMETER_OUT_OF_RANGE = 539;



const short INVALID_PARAMETER = 540;



const short INVALID_POINTER = 541;



const short MESSAGE_NOT_EXPECTED = 542;



const short MESSAGE_NOT_INITIALISED = 543;



const short MESSAGE_OUT_OF_SEQUENCE = 544;



const short SYSTEM_CALL_UNSUCCESSFUL = 545;



const short TIMEOUT_EXPIRED = 546;



const short VARIABLE_OUT_OF_RANGE = 547;



const short WATCH_DOG_TIMER_EXPIRED = 548;



const short COOLING_SYSTEM_FAILURE = 549;



const short EXTERNAL_EQUIPMENT_FAILURE = 550;



const short EXTERNAL_POWER_SUPPLY_FAILURE = 551;



const short EXTERNAL_TRANSMISSION_DEVICE_FAILURE = 552;



const short REDUCED_ALARM_REPORTING = 561;



const short REDUCED_EVENT_REPORTING = 562;



const short RECUCED_LOGGING_CAPABILITY = 563;



const short SYSTEM_RESOURCES_OVERLOAD = 564;



const short BROADCAST_CHANNEL_FAILURE = 565;



const short CALL_ESTABLISHMENT_ERROR = 566;



const short INVALID_MESSAGE_RECEIVED = 567;



const short INVALID_MSU_RECEIVED = 568;



const short LAPD_LINK_PROTOCOL_FAILURE = 569;



const short LOCAL_ALARM_INDICATION = 570;



const short REMOTE_ALARM_INDICATION = 571;



const short ROUTING_FAILURE = 572;



const short SS7_PROTOCOL_FAILURE = 573;



const short TRANSMISSION_FAILURE = 574;


};


interface DomainTypeValue {



const string THIS_DOMAIN_NAME_AND_VERSION = "3GPP FM IRP 1:1";


};


typedef sequence <string> AlarmInformationIdSeq;


typedef CosNotification::EventBatch AlarmInformationSeq;


interface AlarmAckState {



const short ACTIVE_AND_ACKNOWLEDGED = 1;



const short ACTIVE_AND_UNACKNOWLEDGED = 2;



const short CLEARED_AND_UNACKNOWLEDGED = 3;



const short ALL = 4;


};

};

#endif

/* ## Module: AlarmIRPSystem

## Source file:  C:\Program Files\Rational\Rational Rose 2000 Enterprise Edition\AlarmIRPSystem.idl

===================================================================================================

 */

#ifndef  AlarmIRPSystem_idl

#define  AlarmIRPSystem_idl

#include "AlarmIRPConstDefs.idl"

#include "CosNotification.idl"

#include "CommonIRPConstDefs.idl"

module AlarmIRPSystem {


// System fails to complete the operation.  System provides


// reasons whose semantics is outside the scope of this IRP.


exception AcknowledgeAlarmsException { string reason; };

  exception UnacknowledgeAlarmsException { string reason; };


exception GetAlarmListException {
string reason; };


exception SetAlarmIRPVersionException { string reason; };


exception GetAlarmCountException { string reason; };

  exception ParameterNotSupportedException { string parameter; };

  exception InvalidParameterException { string parameter; };


exception OperationNotSupportedException {};


// This interface specifies all methods supported by System as


// specified in 3GPP AlarmIRP: CORBA Solution Set version 1:1.


interface AlarmIRPOperations {



/* ## Operation: acknowledge_alarms

       ## Documentation:

       Manager invokes this operation to acknowledge

       one or more alarms. Manager does not supply time

       of acknowledgement. If operation is successful,

       System registers the time of operation in ack_time

       in Alarm Information in Alarm List. System register

       ack_user_id and ack_system_id in Alarm Information.

       It set ack_state to "acknowledge" as well. System shall

       consider the acknowledgement request on a specific alarm

       a failure if that alarm is already in acknowledged state.

       This operation is mandatory.

       Parameters:

       (in) alarm_information_id_list: It carries one or more

       identifiers identifying Alarm Information(s) in Alarm List.

       Each identifier identifies at most one Alarm Information

       in Alarm List.

       (in) ack_user_id: It identities the user acknowledging or

       un-acknowledging the alarm. It may contain NULL

       information implying that Manager does not wish this

       information be kept in Alarm Information in Alarm List.

       (in) ack_system_id: It identifies the processing system on

       which the subject Manager runs.  It may contain NULL

       information implying that Manager does not wish this

       information be kept in Alarm Information in Alarm List.

       (out) bad_alarm_information_id_list: It identifies the Alarm

       Information that are not present in Alarm List or that they

       are present, but their Acknowledgement State has not

       been changed according to Manager's request.  This

       parameter shall contain at least one identifier in case

       the output status indicates partial failure.  Otherwise, it

       shall contain NULL information.

       Returned status: (a) Operation succeeded.  Alarm

       Information (in Alarm List) identified by

       alarm_information_id_list are in acknowledged state

       (b) Operation failed.  No change is made in any Alarm Information

       in Alarm List.  Example of one such failure is when

       parameter alarm_information_id_list contains no identifier

       or no valid identifier.

       (d) Operation partially failed.  It indicates that at least

       one but not all Alarm Information(s) (in Alarm List)

       identified by parameter alarm_information_id_list has

       changed its Acknowledgement State. In this case, the output parameter,

       called bad_alarm_information_id_list, shall contain a subset

       of the identifiers carried in parameter

       alarm_information_id_list.  They identify Alarm

       Information(s), that may be present in Alarm List.  If the

       Alarm Information(s) is present in Alarm List, their

       Acknowledgement State shall remain unchanged.



@roseuid 38A07E7401A8 */



CommonIRPConstDefs::Signal acknowledge_alarms (




in AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list,




in string ack_user_id,




in string ack_system_id,




out AlarmIRPConstDefs::AlarmInformationIdSeq bad_alarm_information_id_list




)




raises (AcknowledgeAlarmsException,ParameterNotSupportedException,InvalidParameterException);

    /* ## Operation: unacknowledge_alarms

       ## Documentation:

       Manager invokes this operation to unacknowledge

       one or more alarms. If operation is successful,

       System shall remove all Acknowledgement Information in

       Alarm Information in Alarm List. It shall send notifications

       carrying Acknowledgement Information to all Managers (including

       the subject Manager) in subscriptions. The Acknowledgement

       Information carried shall contain ack_user_id, ack_system_id,

       ack_time and ack_state. System shall consider the request to

       unacknowledge a particular alarm a failure if the alarm is

       not in acknowledged state.

       This operation is optional.

       Parameters:

       (in) alarm_information_id_list: It carries one or more

       identifiers identifying Alarm Information(s) in Alarm List.

       Each identifier identifies at most one Alarm Information

       in Alarm List.

       (in) ack_user_id: It identities the user acknowledging or

       un-acknowledging the alarm. It may contain NULL

       information implying that Manager does not wish this

       information be kept in Alarm Information in Alarm List.

       (in) ack_system_id: It identifies the processing system on

       which the subject Manager runs.  It may contain NULL

       information implying that Manager does not wish this

       information be kept in Alarm Information in Alarm List.

       (out) bad_alarm_information_id_list: It identifies the Alarm

       Information that are not present in Alarm List or that they

       are present, but their Acknowledgement State has not

       been changed according to Manager's request.  This

       parameter shall contain at least one identifier in case

       the output status indicates partial failure.  Otherwise, it

       shall contain NULL information.

       Returned status: (a) Operation succeeded.  Alarm

       Information (in Alarm List) identified by

       alarm_information_id_list are in unacknowledged state.

       (b) Operation failed.  No change is made in any Alarm Information

       in Alarm List.  Example of one such failure is when

       parameter alarm_information_id_list contains no identifier

       or no valid identifier.

       (d) Operation partially failed.  It indicates that at least

       one but not all Alarm Information(s) (in Alarm List)

       identified by parameter alarm_information_id_list has

       changed its Acknowledgement State. In this case, the output parameter,

       called bad_alarm_information_id_list, shall contain a subset

       of the identifiers carried in parameter

       alarm_information_id_list.  They identify Alarm

       Information(s), that may be present in Alarm List.  If the

       Alarm Information(s) is present in Alarm List, their

       Acknowledgement State shall remain unchanged.



@roseuid 38A07E7401A8 */



CommonIRPConstDefs::Signal unacknowledge_alarms (




in AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list,




in string ack_user_id,




in string ack_system_id,




out AlarmIRPConstDefs::AlarmInformationIdSeq bad_alarm_information_id_list




)




raises (UnacknowledgeAlarmsException,OperationNotSupportedException,ParameterNotSupportedException,InvalidParameterException);



/* ## Operation: get_alarm_list

       ## Documentation:

       Manager requests System to provide a list of alarms in

       Alarm List.  This operation is mandatory.

       Parameters:

       (in) filter: It specifies the filter constraint that System shall

       use to apply on alarms in Alarm List.  System shall return

       Alarm Information(s) that satisfy the filter constraint.

       The filter constraint shall be based on Alarm Information

       attribute names and values.  System shall apply this filter

       instance for this invocation only.  An absent parameter

       or null parameter implies that no filter constraint shall be

       applied.

       (out) alarm_information_list: It carries Alarm Information(s)

       in Alarm List.

       Returned status: (a) Operation succeeded in that

       alarm_information_list contains the required Alarm

       Information(s).

       (b) Operation failed because of specified or unspecified

       reason.



@roseuid 38A07E7502DF */



CommonIRPConstDefs::Signal get_alarm_list (




out AlarmIRPConstDefs::AlarmInformationSeq alarm_information_list,




in string filter




)




raises (GetAlarmListException,ParameterNotSupportedException,InvalidParameterException);



/* ## Operation: get_alarm_count

       ## Documentation:

       Manager wishes to know the amount of Alarm

       Information(s)  kept in System.  Manager requests System

       to provide the counts via this operation.  Possible usage

       is for Manager to find out the number of Alarm Information(s)

       in Alarm List before invoking get_alarm_list operation.

       This operation is optional.

       Parameters:

       (in) filter:  It specifies the filter constraint that shall

       be applied to alarm records kept in the System's

       Alarm List.  Only those alarms that satisfy the

       constraints shall be counted.   An absent parameter

       implies that no filter constraint shall be applied.

       (out) The next six parameters specify the numbers of

       alarms whose Perceived Severity are critical,

       major, minor, warning, indeterminate and cleared respectively.

       Returned status:(a) Operation succeeded in that the

       counts returned are valid.

       (b) Operation failed because of specified or unspecified

       reason.



@roseuid 38A07E7600CE */



CommonIRPConstDefs::Signal get_alarm_count (




in string filter,




out long critical_count,




out long major_count,




out long minor_count,




out long warning_count,




out long indeterminate_count,




out long cleared_count




)




raises (GetAlarmCountException,OperationNotSupportedException,ParameterNotSupportedException,InvalidParameterException);



/* ## Operation: set_alarm_IRP_version

       ## Documentation:

       Manager wishes to communicate with System using a

       particular IRP version.  System shall respond with

       operation failure in case System does not support the

       requested version.  In this case, System shall return with

       a list of (one or more) version numbers currently

       supported by System.  In this case, if Manager supports the

       some of the versions listed by System, Manager must invoke

       invoke again this operation using one of the versions supported

       by both System and Actor.

       System shall respond with operation successful in case

       System supports the requested version.  In this case,

       System shall not return to Manager with a list of version

       number currently supported by System.  This operation

       is mandatory.

       Parameters:

       (in) version_number: It indicates the solution set version

       number supported by Manager.

       (out) version_number_list: It indicates one or more

       solution set version numbers supported by the System.

       This value should be NULL if status is successful,

       indicating that System is accepting the version number

       provided by Manager.

       Returned status: (a) Operation

       succeeded in that System is supporting the solution set

       version indicated in the  input parameter.  In this case,

       the output parameter version_number_list shall be NULL.

       (b) Operation failed in that the System is not supporting

       the solution set version indicated  in the input

       parameter.  In this case, the output parameter

       version_number_list shall contain one or more solution

       set version numbers currently supported by the System.



@roseuid 38A07E770116 */



CommonIRPConstDefs::Signal select_alarm_IRP_version (




in string version_number,




out CommonIRPConstDefs::VersionNumberSeq version_number_list




)




raises (SetAlarmIRPVersionException,InvalidParameterException);



/* ##begin AlarmIRPOperations.additionalDeclarations preserve=yes



##end AlarmIRPOperations.additionalDeclarations */


};

};

#endif























































































































































































� It stands for Extended Trader Constraint Language.  For details, see sectionclause 2.4, Default Filter Constraint Language in [6]reference � REF ReferenceOMGNotificationService \h �� specification.

� OMG Notification Service [6] defines this method.

� OMG Notification Service [6] defines this structuredEvent.  See Clause 4 as well.

� NV stands for name-value.  Order arrangement of NV pairs is not significant.  The name of NV-pair is always encoded in string.

� AttributeNameValue is defined in module NotificationIRPConstDefs of Notification IRP IDL.

� It stands for Extended Trader Constraint Language.  For details, see sectionclause 2.4, Default Filter Constraint Language in reference � REF ReferenceOMGNotificationService \h �� specification.



03/05/2000

Page 28

