3GPP TSG SA4#41 meeting
 Tdoc S4-060646
6-10th November, 2006

Athens, Greece

Source:

Streamezzo
Title:
State and preference management for DIMS
Agenda Item
6, 13.4
Document for:
Approval
1 Introduction

This proposal provide text for section 6.4 of DIMS specification
2 text for section 6.4
To manage user state and preferences on a persistent basis according to the DIMS/RME requirements we proposed the three following mechanisms that allow to interface with a persistent storage area on the terminal:
DIMS defines an interface to persistent storage. The DIMS engine has the ability to cache selected scene information, using specific LASeR commands, on a best effort basis. The principles behind this caching closely follow the state caching mechanism in HTTP, commonly called cookies [RFC 2965]. Within the DIMS streams, there are two commands that may be used. One command saves, associated with a string name called groupID, the values of some attributes of some nodes. This storage is scoped by the domain-name and path computed from the source using the fields in the LASeR header. The other command restores the attributes (if any) previously saved under the given groupID, as scoped by the domain-name and path.

The stored values are scoped by the domain-name and path. That is, it is possible for both “.acme.com” and “.widget.com” to store data under the same groupID and for that storage to be distinct; similarly for “/user/laser-expert/” and “/user/laser-novice/” at “.acme.com” to save state under the same groupID, and for those saved states to be distinct.

It is possible that there is state saved under the same groupID for more than one domain-name/path pair, and that more than one of these match the request-URI. For example, if the request URI has domain “x.y.z.com” and path “/demos/acme”, and there is state saved under the same groupID for domain “.y.z.com” and “.z.com” then both sets of state apply. Under these circumstances, the saved states are ordered primarily by preferring more specific domains (with more components) over less-specific, and then for states with the same domain, and preferring more specific paths (with more components) over less-specific. Once the saved states have been so ordered all the saved states are restored, starting with the least specific (least preferred) and ending with the most specific (most preferred).

For example, if there is saved state under the same groupID for

1) domain-name “.acme.com”, path “/user/laser-expert/”;

2) domain-name “.acme.com”, path “/user/laser-expert/demo”;

3) domain-name “www.acme.com”, path “/user/laser-expert/”;

4) domain-name “www.acme.com”, path “/user/laser-expert/demo”

Then state (1) is restored, then state (2), (3) and (4), in that order. It is possible that these saved states do not overwrite each other (different attributes or nodes), partially overwrite each other (some attributes in common) or completely overwrite each other.
The following attributes of LASeRHeader configure the resolution of saved information:
· useFullRequestHost: this Boolean attribute indicates whether the full domain name of the request-host is used (1) or the first component of the domain name is elided (0). For example, if the source material came from “www.laser.com”, then this differentiates between associating the “service” with “www.laser.com” and “.laser.com”. (Note the definition of local names in the RFC, and the possibility to associate the “service” with locally loaded files, and that the domain name may be either “<hostname>.local” or “.local” in that case.). Together with pathComponents, this attribute defines the “service”.

· pathComponents: this integer attribute indicates how much of the source path is used. If this takes the value 0, then the “service” is not associated with a path, and if it takes the special value 15 (or any value equal to or greater than the number of components in the path) then the entire path is used up to but excluding the final file-name. For example, if the source was “/user/laser-expert/demo/art.mp4” then a value of 4 or greater selects “/user/laser-expert/demo/art.mp4” as the path, the value 2 selects “/user/laser-expert” and the value zero sets no path. Together with useFullRequestHost, this attribute defines the “service”.

Save
Semantics

The Save command stores in memory a selection of attributes from elements contained in the current scene graph. The saved value is the decoded (or DOM) value.

The useFullRequestHost and pathComponents attributes defined in the LASeRHeader specify a unique memory area where the element information will be stored. The groupID allows for the same element information to be saved in different areas at different times.

Attributes

· groupID: this string attribute defines a label for the saved information.

· elements: this attribute defines a list of element ids.

· attributes: this attribute defines a list of attribute names, one per element id in the previous list, each pair (element id, attribute name) defining one of the attributes to be saved. The following attributes are not allowed in the attributes list: children, begin, end.
Restore
Semantics

The Restore command restores attributes that have been stored by the Save command. The retrieved values will replace the current attributes in the scene graph. If any saved and restored attribute type does not match, the whole restore command is ignored.

Attributes

· groupID: this string attribute defines the label under which the information was saved.

Clean
Semantics

The Clean command erases the storing area identified by the attribute groupID with the most specific matching. The element information stored in the corresponding memory area is not available anymore.

Attributes

· groupID: this string attribute defines the label under which the information was saved.

These commands are described in ISO/IEC 14496-20:2006, subclauses 6.6 and 6.7
