[bookmark: bmS4-0-e_(AH)_Video_SW--2023-10-10]3GPP TSG-SA WG4 Meeting #129-e	S4-241552Rev02
Online, 19 – 23 August 2024
	
	
Source:	Interdigital Finland Oy
Title:	[FS_AI4Media] pCR on intermediate data compression editor’s note
Spec:	3GPP TR 26.927 v0.8.0
Agenda item:	9.6
Document for:	Agreement

1. Introduction
This contribution updates the MPEG-FCM related work by adding more descriptive text and figures to the MPEG-FCM framework, adding also current performances achieved from the latest developments. It also updates the reference section with referenced MPEG documents.
[bookmark: _Int_WXTW372q]The contribution also addresses the editor’s note on clause 6.3.4 about compression related function.
2. Reason for Change
Update MPEG developments in related work and solves the editor’s note

3. Proposal
It is proposed to agree and document the following changes to the 3GPP TR 26.927 v0.8.0.

* * * first Change * * * *
[bookmark: _Toc167447197]2	References
 
[x1]	 Matsubara, Yoshitomo, Davide Callegaro, Sameer Singh, Marco Levorato, and Francesco Restuccia. "Bottlefit: Learning compressed representations in deep neural networks for effective and efficient split computing." In 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 337-346. IEEE, 2022.


* * * End of first change * * * *


* * * second Change * * * *



4.3.3	MPEG Feature Compression for Machines 

MPEG related work, FCM (Feature Compression for Machines) addresses features compression. FCM is based on existing video compression standards. At the encoder, feature tensors are reduced, converted, and mapped onto packed video frames that may be encoded using encoders such as VVC, HEVC, or AVC, e.g., monochrome 10 bits video frames where the tensor channels are spatially packed. The video decoder outputs the packed video frames which are then processed to restore the feature tensors in their original shape, where the conversion, unpacking and feature restoration may use additional metadata transmitted along with the video bitstream. 
Figure 4.3.3-1 shows a FCM encoder and decoder framework where the original selected trained model is split into two parts NN part1 and NN part 2. The current FCM framework under study includes a trained bottleneck, also called NN feature reduction at the encoder side and NN feature restoration at the decoder side. The parameters need to be trained for each split model and each split point, based on the end accuracy or the quality of reconstructed intermediate data after decoding, e.g. with an MSE-based metric. The NN feature reduction and restoration can be trained while keeping the parameters of the split AI model frozen. The FCM encoder and FCM decoder includes a Feature conversion function mapping features data onto packed video frames and vice versa. 
The training of the feature reduction and feature restoration models may not require access to the original training set nor access to the same level of computational power. Current training strategies involve different training sets and using a loss based on metrics such as Mean Square Error to compare reconstructed features with the original intermediate features. Light trained codecs may be designed to fit existing large pre-trained split models without having to perform heavy computations involving the backpropagation of gradient from the final prediction of the tail of the model back to the original intermediate features. These strategies lead to the promising compression the performances detailed below.  
The MPEG-FCM group is also considering untrained feature reduction methods that are computed online, enabling a more versatile codec that does not require retraining for each split model, but at the cost of lower compression efficiency. 

[image: ]
Figure 4.3.3-1: FCM framework
The current performance of FCM comparing to a remote inferencing anchor is 75% overall bitrate reduction over the same range of task performance as the remote inferencing anchor. The tasks include instance segmentation, object detection and object tracking. Remote inferencing refers to the compression of the input content using VVC reference software VTM-12.0 and the inference of the task model at the receiver on the decoded content. The compression ratio of the uncompressed feature size verses the compressed feature size in near lossless setting ranges from 6000:1 to 40000:1 on instance segmentation, object detection and object tracking. The obtained compression ratio of intermediate data while preserving near lossless accuracy is defined within a tolerance of 1% drop in task accuracy, relative to the performance achieved by the original task model operating directly on the input data. 

* * * End of second change * * * *

* * * Third Change * * * *
[bookmark: _Toc163673436]6.3	Intermediate data
[bookmark: _Toc163673437]6.3.1	Introduction
[bookmark: _Toc167447276]6.3.2	Intermediate data size delivery

6.3.4	 Compression related functions 
Depending on the AI media service use case (and the required AI task) some compression approaches (e.g., quantization, entropy coding, transformations) can be used to reduce the size of the transferred intermediate data and to adapt the split AI/ML operations between the UE and the network to changing conditions. 
Compression functions such as quantization, entropy coding, pruning may be applicable to any intermediate data tensors. Some of these functions require corresponding decompression processesIt still requires a symmetric decompression function to decode and readapt the intermediate data for the inference of the second part of the model. This introduces Ddifferent ratios of reduction of intermediate data size can be reached depending onfor each split point configuration, for instance by varying quantization parameterss. Theseis agnostic compression functions can be available used for any model, any split point, any type of model task with different input media data (image, video, audio, text). Agnostic compression evaluations with on-the shelfves compression functions providesprovide promising performances in terms of intermediate data size relative to the accuracy of the results . 
[Editor’s note: The following text to be refined for clarification. 
Another approach to further compress intermediate data is to inject a so-called bottleneck to create smaller intermediate data with an auto-encoder-like structure. Two main cases can be distinguished. 
· An original design of the split model can include natural split points, i.e. intermediate layers where the dimensions of intermediate output are reduced by design and their entropy is controlled. The training of this model can be done using a loss function which includes both the end accuracy and the estimation of the size of the bitstream of intermediate data. [x3] shows an example of intermediate data bottlenecks using an embedded autoencoder. 
· A compression function including bottleneck can be inserted at the encoder side and a corresponding decompression function at the decoder side without modifying the original structure of the split model. The model including the bottleneck may need to be designed and trained for each split model and each split point. Envisioned frameworks may enable a sender to select an optimised function from a set of adaptive compression/decompression functions based on different trained bottlenecks applying different compression factors. The encoder may need to send an indication of the compression profile used for the intermediate data transfer to the decoder side to select and use the corresponding decompression function. For instance,
· Compression approaches including an intermediate data bottleneck may be designed to adapt an AI/ML trained model to reduce the amount of intermediate data at least at an identified split point of a model. This requires training for the new bottleneck model. The bottleneck trained model can be selected to replace the original trained model. The compression results can be better, but design is limited to a single split point of a specific model. [ad] shows an example  of intermediate data bottlenecks using an embedded autoencoder.]
· MPEG-FCM as mentioned in clause 4.3 is working on the standardization of such codec, with a current model that includes both the bottleneck concept with trained feature reduction at the encoder and restoration at the decoder. In addition to the feature reduction, the current design maps resulting reduced feature tensors to video frames in order to utilize existing video codecs such as H.264 AVC, H.265/HEVC or H.266/VVC to further compress the features and take advantage of advance temporal compression methods in the case of feature streaming. MPEG-FCM currently delivers very promising performances on intermediate data compression applied to video making use of video decoders such as HEVC as shown in table 6-3.4.1    
The table 6.3.4-1 below summarizes the different approaches and their characteristics under consideration by MPEG. The reported ratios is  the size difference between the original  intermediate data and the compressed intermediate data, at near lossless compression accuracy, defined as a final accuracy drop of less than 1% of the original (un-split) model. 

Table 6.3.4-1: Approaches and characteristics considered by MPEG FCM. 
	Approaches
	Agnostic 
	Training required
	Number of split points
	Compression ratio
	Reference

	Bottleneck model
	No
	Yes
	One to several
	Unknown
	research [adx1]

	Basic quantization
	Yes
	No
	Any
	2:1 to 4:1
	TBD26.847

	Quantization with Entropy coding with NNC (Neural Network Coding) Codec 
	Yes
	No
	Any
	5:1 to 10:1(**)
	TBD26.847

	MPEG-FCM (current)
	No
	Yes (*)
	One
	6000:1 to 40000:1
	TBDTBD


NOTE: The MPEG-FCM results have not been verified.
(*) A retraining is only required for MPEG-FCM feature reduction and restoration functions (see clause 4.3.3).
(**) At this 10:1 ratio, the accuracy is above the 1% loss.
* * * End of third change * * * *
 
image1.png

image2.svg
    NN Part 1  NN Feature  reduction  Feature  conversion  Inner  encoder (AVC o r HEVC or VVC)  NN Part 2  Feature  conversion  NN Feature  restoration  Inner  decoder (AVC or  HEVC VVC)        Selected trained NN model for a target split point      Selected trained Split AI model Common methods, no offline training   FCM decoder FCM encoder


