

	
3GPP TSG-SA4 Meeting #129-e	S4-241572
Online, , 19th Aug 2024 - 23rd Aug 2024
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	26.804
	CR
	0019
	rev
	-
	Current version:
	18.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	New clause 5.X QUIC-based Media Delivery

	
	

	Source to WG:
	Xiaomi

	Source to TSG:
	

	
	

	Work item code:
	FS_AMD
	
	Date:
	2024-08-13

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-19

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	FS_AMD includes a new topic about opportunities with QUIC for segmented streaming (topic “m)”). After updating the clause on HTTP/3 (clause 5.4) of TR 26.804 with up-to-date information since some parts are common to the new topic, we introduce a new section with QUIC-specific media delivery aspects.

	
	

	Summary of change:
	The following changes are proposed:
· Add clause X.X QUIC-based Media Delivery

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc63784936]Change #1
2	References
[2]	Akamai Blog, "A QUICk Introduction to HTTP/3", April 2020, https://www.akamai.com/blog/developers/a-quick-introduction-http3 HYPERLINK "https://developer.akamai.com/blog/2020/04/14/quick-introduction-http3" https://developer.akamai.com/blog/2020/04/14/quick-introduction-http3	Comment by Emmanouil Potetsianakis: Spotted a dead link in the references – updated it with the new URL	Comment by Richard Bradbury (2024-08-20): Great!
[5]	draft-ietf-quic-http-34, "Hypertext Transfer Protocol Version 3 (HTTP/3)", February 2021IETF RFC 9114: "HTTP/3", June 2022	Comment by Richard Bradbury (2024-08-20): This one already exists in TR 26.804, so we should just replace the I-D with the published RFC.
[W3C-WT]	W3C Working Draft: "WebTransport", May 2024,
https://www.w3.org/TR/webtransport/#web-transport
Change #2
5.X	QUIC-based media delivery
[bookmark: _Toc61872331][bookmark: _Toc131150988]5.X.1	Description
[bookmark: _Toc131150989]5.X.1.1	General
QUIC, as specified in RFC 9000 [32], is a secure, reliable, multiplexed, connection-oriented transport protocol built on top of UDP. It is widely available and its impact on media streaming requires further study. In this clause we study QUIC-specific media streaming, not necessarily based on HTTP/3 [5] that is studied in clause 5.4.
A QUIC client establishes a connection with a server, and within this connection can transport data through multiple streams. Thanks to a more efficient implementation of the TLS initial handshake, a QUIC connection is typically established faster than a TCP + TLS connection, therefore reducing initialization time. Additionally, by allowing logical streams to be multiplexed into a single QUIC connection, they can operate independently of each other, each with its own separate congestion window. Because QUIC is layered on top of UDP, a stall in one stream does not block progress in any others. Similarly, packet loss in one logical stream does not affect the progress of data transfer in other streams multiplexed in the same QUIC connection. Finally, QUIC, like HTTP/2 [4], supports prioritisation capabilities at a stream level.	Comment by Richard Bradbury (2024-08-15): I'm not sure this is true.
It is true that a QUIC connection can be established faster than a TLS session, though, which is what you were maybe thinking about?	Comment by Emmanouil Potetsianakis: Yes, I tried to make it more clear in the text	Comment by Richard Bradbury (2024-08-20): Looks good now. Thanks.
Editor's Note: Further content to be provided.
[bookmark: _Toc131150995]
Even though QUIC solves many issues compared to TCP (and HTTP/3 compared to HTTP/2 respectively), there are some open issues and shortcomings when it comes to media content delivery.
5.X.1.2	Application access to QUIC protocol features
Typically access to QUIC is mediated through a QUIC-enabled application protocol such as HTTP/3 [5] or WebTransport [W3C-WT]. For that reason, the set of QUIC features available to an application is the subset exposed by the chosen application protocol (typically invoked via the public API of a client or server library). This approach facilitates efficient application development and integration of new features but at the cost of limiting management of the connections and streams.	Comment by Richard Bradbury (2024-08-15): This statement isn't true.
First of all, there is no such thing as a standardised QUIC API, only QUIC implementations.
Secondly, unlike TCP, which is typically implemented in the kernel and can only be accessed via the socket API, QUIC is almost always implemented as a user space library. To this extent, it is perfectly possible to access QUIC protocol features directly from any application simply by sending and receiving UDP datagrams. In practice, applications usually just link against a QUIC library to do all the tedious stream framing/parsing for them.
Suggest deleting this misleading sentence altogether since it doesn't affect the valid points that.	Comment by Emmanouil Potetsianakis: On your first point, we agree that there is no QUIC API – and we wanted to emphasize that.

Regarding using QUIC, features can be indeed accessed by sending/receiving datagrams, however some literature search showed us that most segmented media delivery implementations do not take this approach – which is observed only in some academic testbeds.

In any case, we agree on deleting the sentence.
5.X.1.3	Connection and stream management
Most applications use QUIC because they are using HTTP/3 [5]. The mechanism for handling streams is tightly specified by the HTTP/3 protocol: each HTTP transaction consumes one logical stream in the QUIC connection.	Comment by Richard Bradbury (2024-08-15): I don't think this statement is inherently true either.
It's very much implementation-dependent.
For example, an HTTP/3 library may choose to expose all kinds of 	Comment by Emmanouil Potetsianakis: From RFC 9114 (added reference):

“When HTTP fields and data are sent over QUIC, the QUIC layer handles most of the stream management. HTTP does not need to do any separate multiplexing when using QUIC: data sent over a QUIC stream always maps to a particular HTTP transaction or to the entire HTTP/3 connection context.”

To my understanding, this results when delivering segmented media over H/3 to not be able to know which (media) stream goes to what (QUIC) stream	Comment by Richard Bradbury (2024-08-20): Your understanding is correct.
But you don't explain why this (perceived) lack of control is a problem.
I don't see it as being in any way problematic.
To my mind it is perfectly fit for purpose.
I have proposed a more neutral wording.	Comment by Emmanouil Potetsianakis: You are right, neutral wording is more appropriate since H/3 is not inherently “better” or “worse”.
Applications are encouraged to keep QUIC connections alive when it makes sense to do so, and HTTP/3 client libraries typically facilitate connection keep-alive behaviour for efficiency reasons. In addition, QUIC's "0-RTT" connection establishment procedure allows a client to reconnect to a server it has previously connected to, and to reuse a security context negotiated during a previous connection and cached by both parties to send application payload data to the server in the first UDP datagram of the new QUIC connection.
WebTransport [W3C-WT] allows more explicit management of connections and streams without however being studied yet in the context of segmented media delivery. WebTransport allows the application to request streams and directly write datagrams on the available streams. Finally, WebTransport supports different congestion control algorithms and unreliable connections. 	Comment by Richard Bradbury (2024-08-15): I'm pretty doubtful about this statement too.	Comment by Emmanouil Potetsianakis: Added reference and details for clarification	Comment by Richard Bradbury (2024-08-20): When you say "without however being studied in the context of segmented media delivery" do you mean that it has not been studied by others, or that you don't intend to study it further in this Key Issue?	Comment by Richard Bradbury (2024-08-20): It would be good at least to describe the mechanism by which WebTransport offers a greater degree of control over connections and streams	Comment by Emmanouil Potetsianakis: For the first comment: I mean that it has not been studied by others, I think it is relevant for us to study it.

I added a couple of lines on WebTransport controls
Editor's Note: Further content to be provided.
5.X.1.4	Stream prioritisation
Even though QUIC supports prioritisation at a stream level, the way this prioritisation is applied is not standardised and it is left to implementation. Additionally, stream priority is nominated by the sender, and as such neither the network nor the recipient are aware of the applied mechanism.
5.X.1.5	Key Issue objectives
5.X.1.5.1	Introduction
The key issues mentioned here are targeting QUIC-specific delivery aspects, those relevant to HTTP/3 have are addressed in Clause 5.4.
5.X.1.5.2	Application access to QUIC connections
Editor's Note: Further content to be provided.
5.X.1.5.3	Variability of QUIC implementations
Editor's Note: Further content to be provided.

Editor's Note: Focus the preceding set of open issues into a set of clear questions that this Key Issue aims to address.
5.X.2	Collaboration scenarios
Editor's Note: Further content to be provided - in TDoc S4-241571.
[bookmark: _Toc131150999]5.X.3	Architecture mapping
[bookmark: _Toc131151000]5.X.3.1	General
Editor's Note:	Mapping against 4.1.2 Generalized Media Delivery architecture of TS26.501 [15] is to be provided.
[bookmark: _Toc131151003]5.X.4	High-level call flow
[bookmark: _Toc131151004]5.X.4.1	General
[bookmark: _Toc131151005]Editor's Note: Further content to be provided.
5.X.5	Gap analysis and requirements
[bookmark: _Toc131151013]5.X.6	Candidate Solutions
Editor’s Note: Provide candidate solutions (including call flows) for each of the identified issues.
5.X.7	Summary and Conclusions
The study of this Key Issue has explored the ways in which QUIC can be deployed to support the 5G Media Streaming architecture, and the potential open issues arising from this deployment.
Editor's Note: Further content to be provided.
END OF CHANGES
