3GPPSA4#121 S4-221560
14 November 2022, Toulouse

Source:
NTT

Title:
Discussion on versioning and delivery of WebRTC signalling for iRTCW
Document for:
Discussion and Agreement
Agenda item:
10.5
1. Overview
Future enhancement is important and is a requirement for WebRTC signalling as proposed in S4-221194. However, problems may occur in future enhancements if the consideration about protocol versioning, proposed as an item for protocol design in S4aR220041, is insufficient.
This contribution examines several methods of protocol versioning and proposes one to be used for WebRTC signalling in iRTCW and FS_eiRTCW.
2. Description
When several versions of a protocol exist, there are two typical ways to identify the version and deliver the signals:
· Method 1 (per signal): The destination of the message is set independently from its protocol version. The version is indicated in a signal separately and independently from the destination information. After receiving the signal, the receiver checks the protocol version and settles version’s difference if any. SIP, STUN, and QUIC can be classified in this method. SIP and STUN have been forced to introduce “tricky” features because the initial protocol designs were not sufficient for later versions.
· Method 2 (per connection): The destination of the signal reflects its protocol version. By the proper version-aware deliver, the receiver is supposed to only receive version-matched signals. 3GPP’s Northbound IF can be classified into this method.
Note: Only server-client model is assumed because the target of this contribution is WebRTC signalling.
2.1 Method 1 (per signal)

Typical process of method 1 is described below.

[image: image1.emf]Protocol ver=1(version 䇾ver=1䇿explicit in signal)Process with ver=1 logicServerver=1Clientver=1(i)Protocolver=2(version 䇾ver=2䇿explicit in signal)Process with ver=2 logicServerver=2Clientver=2(ii)Protocol ver=1(version 䇾ver=1䇿explicit in signal)Process with ver=1 logicServerver=2Clientver=1(iii)Protocolver=2(version 䇾ver=2䇿 explicit in signal)Process correctly with ver=1 logicServerver=1Clientver=2(iv)Protocol ver=2(version 䇾ver=2䇿 explicit in signal)with ver=2 featurerequiredReject with ver=1 logicServerver=1Clientver=2(v)

i. Server is ver=1 and Client is ver=1. When the client (ver=1) sends a message (ver=1) to a server (ver=1), the server processes the message with ver=1 logic. This will be the typical case of protocol version 1.

ii. Server is ver=2 and Client is ver=2. When the client (ver=2) sends a message (ver=2) to a server (ver=2), the server processes the message with ver=2 logic. This will be the typical case of protocol version 2.

iii. Server is ver=2 and Client is ver=1. When the client (ver=1) sends a message (ver=2) to a server (ver=2), the server processes the message with ver=1 logic.
iv. Server is ver=1 and Client is ver=2. When the client (ver=2) sends a message (ver=2) to a server (ver=1), the server processes correctly the message within ver=1 logic.
v. Server is ver=1 and Client is ver=2. When the client (ver=2) sends a message (ver=2) to a server (ver=1) with ver=2 feature required, the server reject the message correctly within ver=1 logic.

The case (iii) implies that the newer protocol versions of servers are required to support older protocol versions for backward compatibility. Supporting old protocol versions makes server’s implementation more complex and development and/or testing cost higher. Also, branching due to supporting multiple versions may cause processing overhead.
The case (iv) implies that the flexibility of message format of newer protocol versions is restricted in order to keep compatibility with the older versions. The initial format of message should be defined carefully because the format will be used for the future.

The case (v) implies that capability negotiation mechanisms shall be defined in the initial version of the protocol for future enhancements to work correctly. The server will process incorrectly the ver=2 required message with ver=1 procedures if the requirement feature is not defined in the first version of the protocol.

Clauses 2.1.1 and 2.1.2 are the case studies of existing protocols categorized in method 1. They work correctly probablistically in most cases, but the change is tricky and may cause contains potential incompatibility.

2.1.1 Case study of SIP

An example of a SIP message is shown below (quoted from RFC3261, a later version).

INVITE INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

(…)

The first line of a SIP message contains protocol version, “SIP/2.0”. The receiver of the message recognizes the protocol version by the string.

However, the version string “SIP/2.0” is also used in the former version of SIP. An example of a former version of SIP message is shown below (quoted from RFC2543, a former version).

INVITE sip:schooler@cs.caltech.edu SIP/2.0

Via: SIP/2.0/UDP csvax.cs.caltech.edu;branch=8348;maddr=239.128.16.254;ttl=16

Via: SIP/2.0/UDP north.east.isi.edu
From: Mark Handley <sip:mjh@isi.edu>

To: Eve Schooler <sip:schooler@caltech.edu>

Call-ID: 2963313058@north.east.isi.edu

CSeq: 1 INVITE

Subject: SIP will be discussed, too

Content-Type: application/sdp

Content-Length: 187

(…)

The version strings are the same for two different protocol versions. In order to distinguish them, “magic cookie” has been introduced in “branch” parameter of “Via” header.

RFC3261: “branch” parameter begins with “z9hG4bK” magic cookie.
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

RFC2543: “branch” parameter does not begin with “z9hG4bK” magic cookie.
Via: SIP/2.0/UDP csvax.cs.caltech.edu;branch=8348;maddr=239.128.16.254;ttl=16

The magic cookie is the feature described “tricky” in clause 2.

In contrast, requirement feature is implemented well from the first version of SIP. “Require” and “Supported” headers are used for capability negotiation.

INVITE sip:watson@bell-telephone.com SIP/2.0

Require: 100rel
If one or more features stated in “Require” header are not supported by the receiver, the receiver responds with specific error response that means the receiver does not support the require feature. This feature of capability negotiation enables future enhancements in a safe way.

2.1.2 Case study of STUN

The first version of STUN is defined in RFC3489. It does not contain a protocol identifier or version fields in the message. The header definition of STUN in RFC3489 is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | STUN Message Type | Message Length |

 +-+

 |

 +-+

 +-+

 Transaction ID

 +-+

 |

 +-+
However, the newer version of STUN protocol becomes quite complex and needs a version identifier. RFC8489, the latest version of STUN says:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |0 0| STUN Message Type | Message Length |

 +-+

 | Magic Cookie |

 +-+

 | |

 | Transaction ID (96 bits) |

 | |

 +-+
The part of “Transaction ID” is redefined into a magic cookie that described “tricky” in clause 2. This change is safe probablistically, but the versioning should be considered from the first version.

2.2 Method 2 (per connection)

The method 2 can be divided into two minor types depending on the way of signal delivery.
· Method 2-a: Server’s hostname is given to show the protocol version. Different host names are assigned to the servers depending on the version. A client identifies servers and their supporting version by the hostname and sends signals to the appropriate server.

· Method 2-b: Server’s URI is given to show the protocol version. A client sends signals to a dispatcher (a load balancer in most cases) in the middle. Based on the URI in the signal, the dispatcher sends the signal to the servers with the appropriate version.
2.2.1 Method 2-a

[image: image2.emf]Protocolver=1(version may be implicit)Process with ver=1 logicServerver=1Clientver=1(i)Protocolver=2(version may be implicit)Process with ver=2 logicServerver=2Clientver=2(ii)v1.hostname.domainv2.hostname.domain

i. Both of the server and client are ver=1. The client (ver=1) connect to server (ver=1) identified by its hostname “v1.hostname.domain” and sends a signal (ver=1) to the server.

ii. Both of the server and client are ver=2. The client (ver=2) connect to server (ver=2) identified by its hostname “v2.hostname.domain” and sends a signal (ver=2) to the server.
In this method 2-a, the format of the ver=2 signal can be completely different from that of ver=1. The flexibility of the protocol is very high, and the signal format of the later versions is not required to have backward compatibility.
The load and implementation of the server will be light because version information is not included in the signal and the server is required to process only single version of the protocol.

2.2.2 Method 2-b

[image: image3.emf]Protocolver=1(version may be implicit)Process with ver=1 logicServerver=1Clientver=1(i)Protocolver=2(version may be implicit)Process with ver=2 logicServerver=2Clientver=2(ii)api.hostname.domainDispatcher(Load Balancer)api.hostname.domain/apiname/v2/...api.hostname.domain/apiname/v1/.../apiname/v2/.../apiname/v1/...

i. Both of the server and client are ver=1. The client (ver=1) connect to the dispatcher “api.hostname.domain” with URI “api.hostname.domain/apiname/v1/…”, and the dispatcher determines the version with URI string “v1” and connects to the final destination (backend server) server (ver=1).
ii. Both of the server and client are ver=2. The client (ver=2) connect to the dispatcher “api.hostname.domain” with URI “api.hostname.domain/apiname/v2/…”, and the dispatcher determines the version with URI string “v2” and connects to the final destination (backend server) server (ver=2).

Note: The dispatcher handles any signals in any versions.

Note: The hostname of the connection destination does not change depending on the version number, but the URI is different.
2.2.2.1 Case study for 3GPP Common API / Northbound API

There are 3GPP API specifications that signals are sent and received in JSON format over a connection (e.g., TS29.222: Common API Interface, TS29.122: Northbound API Interface). They are REST based APIs sending and receiving data in JSON over a http/https connection that are similar to WebRTC signalling.
The structure of Request-URI of the 3GPP APIs are below:
{apiRoot}/<apiName>/<apiVersion>/<apiSpecificSuffixes>/<custOpName>
A Client establishes a http/https connection to the dispatcher as specified in {apiRoot} (e.g., https://api.hostname.domain), and the dispatcher select a final destination server that supports the protocol version specified in <apiVersion> field and establishes a http/https connection to the server.
After a connection established between a client and a server via a dispatcher, the client sends an API request in JSON format and the server may send an API response in JSON. The request and response in JSON format are sent over the existing connection.
3. Comparison and Evaluation
3.1 Comparison
The table below shows the characteristics of the methods depicted from the method descriptions. The methods are compared in view of ease of extension and signal processing.
Table 1: Comparison
	Method
	Ease of extension
	Signal processing

	1
	· The signal format of the later versions is restricted by the first version’s message format.

· Methods for capability negotiation should be defined in the first version of the protocol.
	· Clients don’t have to care about which server to connect.
· Signals to process include version information and become longer. For backward compatibility, the server should process multiple versions of the longer signals. Thus, signal processing at the server becomes complex.

	2-a
	· The message format of the later versions is not required to have backward compatibility.
	· Signals to process do not include version information and become shorter. The server is enough to process only a single version of the shorter messages. Thus, signal processing at the server is light.

	2-b
	· The message format of the later versions is not required to have backward compatibility except for the first line.
	· (Same as 2-a)

· Dispatcher is required; but load balancers that act as dispatchers are deployed in practical cases.

3.2 Evaluation
The WebRTC signalling protocol in iRTCW and FS_eiRTCW is expected to be JSON message transactions over a WebSocket connection. The UE establishes a WebSocket connection to the signalling server, and sends/receives JSON messages as requests or responses.

Method 1 has disadvantage of overhead due to the version processing for each signal. If the method 1 is adopted, version information (e.g., version=”1.0”) is transmitted in every request and response. The server is required to process the version information string in every signal even if all messages are in the same version and comes from a single WebSocket. The server is also required to be ready for process of other protocol versions at any time. This is simply wasteful for computing resource.

Method 2 does not have such disadvantage. The server is enough to support only one version. Version information is transmitted only once at most when a WebSocket is set up. Therefore, the method 2 is appropriate for WebRTC signalling protocol in iRTCW and FS_eiRTCW.

Among the methods 2-a/b, 2-b should be appropriate for the signalling protocol. The method 2-a will perform well but there are no examples in 3GPP-related protocols. The method 2-b has a good predecessor of 3GPP Common API and Northbound API. The APIs are based on method 2-b and the version of APIs are distinguished by looking at the first line of a signal.
3.3 Versioning method for WebRTC signalling
This clause describes how to modify the specification of 3GPP Common API and Northbound API, which is a good predecessor of method 2-b, into WebRTC signalling in iRTCW and FS_eiRTCW.
The structure of Request-URI of the 3GPP APIs are below:

{apiRoot}/<apiName>/<apiVersion>/<apiSpecificSuffixes>/<custOpName>
The scheme field of {apiRoot} should be changed into “wss://” (i.e., WebSocket Secure) because the WebRTC signalling in iRTCW and FS_eiRTCW is based on WebSocket and used via potentially unsecure network around UEs (e.g., wireless or wired LAN).

The <apiName> should changed into single keyword “rtc” and <apiSpecificSuffixes> and <custOpName> should be changed into none. The 3GPP APIs use different strings of <apiName>, <apiSpecificSuffixes> and <custOpName> for different operations. On the other hand, the information equivalent to the strings should be transmitted as JSON elements in the WebRTC signalling because the WebRTC connection will be kept alive during the client is active.
The structure of Request-URI of the WebRTC signalling in iRTCW and FS_eiRTCW will be as described below:

{apiRoot}/rtc/<apiVersion>/
An example of Request-URI is:

wss://api.hostname.domain/rtc/v1/
4. Proposal

It is requested to agree that the protocol versioning method, Method 2, which is described in clause 2.2.1, 2.2.2, and 3.3 should be used for WebRTC signalling protocol in iRTCW and FS_eiRTCW.

There should be no requirement on backward compatibility for versions of the signaling protocol.
[image: image4.png][image: image5.jpg]
- 5/9 -

Protocol
ver=1
(version may be implicit)

Process with ver=1 logic
Server
ver=1

Client
ver=1

(i)
Protocol
ver=2
(version may be implicit)

Process with ver=2 logic
Server
ver=2

Client
ver=2

(ii)

api.hostname.domain
Dispatcher
(Load Balancer)

api.hostname.domain/apiname/v2/...
api.hostname.domain/apiname/v1/...
/apiname/v2/...
/apiname/v1/...

Protocol ver=1
(version
“ver=1”
explicit in signal)

Process with ver=1 logic
Server
ver=1

Client
ver=1

(i)
Protocol
ver=2
(version “ver=2”
explicit in signal)

Process with ver=2 logic
Server
ver=2

Client
ver=2

(ii)
Protocol ver=1
(version “ver=1”
explicit in signal)

Process with ver=1 logic
Server
ver=2

Client
ver=1

(iii)
Protocol
ver=2
(version “ver=2” explicit in signal)

Process correctly with ver=1 logic
Server
ver=1

Client
ver=2

(iv)
Protocol ver=2
(version “ver=2” explicit in signal)
with ver=2 feature
required

Reject with ver=1 logic
Server
ver=1

Client
ver=2

(v)

Protocol
ver=1
(version may be implicit)

Process with ver=1 logic
Server
ver=1

Client
ver=1

(i)
Protocol
ver=2
(version may be implicit)

Process with ver=2 logic
Server
ver=2

Client
ver=2

(ii)
v1.hostname.domain
v2.hostname.domain

