3GPP TSG SA WG3 (Security) Meeting #93
S3-183747
12 - 16 November, 2018, Spokane (USA)
revision of S3-183420
Source:
Huawei, Hisilicon
Title:
Solution for bootstrapping authentication of AKMA
Document for:
Approval
Agenda Item:
8.5
1
Decision/action requested

It is requested to approve the proposal into TS 33.835.
2
References

 [1]
3GPP TR 33.835 Study on authentication and key management for applications based on 3GPP credential in 5G

3
Rationale

One key issue in TR 33.835 proposes that the UE and the anchor function shall be able to mutually authenticate each other based on 5G credentials using the 5G authentication framework, i.e., 5G AKA and EAP-AKA'. In addition, during the authentication between UE and anchor function, a shared key Ks between UE and anchor function is derived. It is assumed that the anchor function is connected to the AUSF.
4
Detailed proposal

*************** Start of Change 1 ****************
6.X
Solution #X: Bootstrapping authentication of AKMA
6.X.1 Introduction
This solution addresses key issue #3: Mutual authenticate between UE and anchor function.
The key issue proposes that the UE and the anchor function shall be able to mutually authenticate each other based on 5G credentials using the 5G authentication framework, i.e., 5G AKA and EAP-AKA'. In addition, during the authentication between UE and anchor function, a shared key Ks between UE and anchor function is derived. It is assumed that the anchor function is connected to the AUSF.
6.X.2 Security details
When a UE wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it shall first perform a bootstrapping authentication (see Figure 6.X). The authentication frameworks 5G AKA and EAP-AKA' in TS 33.501 are leveraged.
6.X.2.1 Authentication procedure for 5G AKA

[image: image1.emf]UE

Anchor

Function

AUSF UDM/ARPF

7. Authentication Request (RAND,

AUTN)

4. Nudm_UEAuthentication_

Get Response

(5G HE AV=RAND, AUTN,

XRES*, and K

AUSF

)

8. Verity AUTN, compute RES,

RES*

9. Authentication Response (RES*)

10. Calculate HRES* and

compare to HXRES*

15. Response

[B-TID, key lifetime]

1. Request (user identity)

2. Nausf_UEAuthentication_

Authenticate Request

(user identity, Anchor Function

identifier)

3. Nudm_UEAuthentication_

Get Request

 (user identity, Anchor Function

identifier)

14. Ks=K

Anchor Function

5. Store XRES*, Calculate

HXRES*

12. RES* Verification

16. Ks=K

Anchor Function

Figure 6.X-1: The bootstrapping authentication procedure for 5G AKA

Editor’s Note: How the anchor function key is derived, what it is bound to (e.g. node, identity, nothing etc.) and the key hierarchy are FFS.
The authentication procedure for 5G AKA works as follows, cf. also Figure 6.X-1:
1.
The UE sends a request towards the Anchor Function.
2.
The Anchor Function shall invoke the Nausf_UEAuthentication service by sending a Nausf_UEAuthentication_Authenticate Request message to the AUSF, in which the user identity and Anchor Function identifier shall be included.
3.
The AUSF shall send a Nudm_UEAuthentication_Get Request to the UDM.

4.
The UDM/ARPF shall create a 5G HE AV from RAND, AUTN, XRES*, and KAUSF. The UDM shall then return the 5G HE AV to the AUSF.
5.
The AUSF shall store the XRES* temporarily. The AUSF shall compute the HXRES* from XRES* and KAnchor Function from KAUSF. The AUSF shall then generate the 5G AV from the 5G HE AV received from the UDM/ARPF by replacing the XRES* with the HXRES* and KAUSF with KAnchor Function in the 5G HE AV.

6.
The AUSF shall return the 5G SE AV (RAND, AUTN, HXRES*) to the SEAF.

7.
The SEAF shall send RAND, AUTN to the UE.

8.
At receipt of the RAND and AUTN, the USIM shall verify AUTN and compute a response RES. The ME then shall compute RES* from RES. The ME shall calculate KAUSF from CK||IK and KAnchor Function from KAUSF.
9.
The UE shall return RES* to the Anchor Function.

10.
The Anchor Function shall then compute HRES* from RES*, and the Anchor Function shall compare HRES* and HXRES*. If they coincide, the SEAF shall consider the authentication successful from the Anchor Function point of view.

11.
The Anchor Function shall send RES* as received from the UE to the AUSF.

12.
When the AUSF receives the RES*, it shall compare the received RES* with the stored XRES*. If the RES* and XRES* are equal, the AUSF shall consider the authentication as successful.

13.
The AUSF shall indicate to the Anchor Function whether the authentication was successful or not from the home network point of view. If the authentication was successful, the KAnchor Function shall be sent to the Anchor Function in the Nausf_UEAuthentication_Authenticate Response.
14.
The Anchor Function generates key material Ks= KAnchor Function.

15.
The Anchor Function shall send a response message to the UE to indicate the success of the authentication.
16.
The UE generates key material Ks= KAnchor Function.
6.X.2.2 Authentication procedure for EAP-AKA'

[image: image2.emf]UE

 Anchor

Function

AUSF UDM/ARPF

6. EAP Request / AKA′-Challenge

(RAND, AUTN)

4. Nudm_UEAuthentication_

Get Response

(EAP-AKA′ AV=RAND, AUTN,

XRES, CK', IK')

5. EAP Request / AKA′-Challenge

(RAND, AUTN

)

7. Verity AUTN, compute

RES

8. EAP Response / AKA′-Challenge

(RES)

10. AUSF checks the

given RES, if it is correct.

13. Response (EAP Success, B-TID,

key lifetime]

1. Request (user identity)

2. Nausf_UEAuthentication_

Authenticate Request

(user identity, Anchor Function

identifier)

3. Nudm_UEAuthentication_

Get Request

 (user identity, Anchor Function

identifier)

12. Ks=K

Anchor Function

14. Ks=K

Anchor Function

9. Auth-Req (RES)

11. Auth-Resp. (EAP Success,

K

Anchor Function

)

Figure 6.X-2: The bootstrapping authentication procedure for EAP-AKA'

Editor’s Note: How the anchor function key is derived, what it is bound to (e.g. node, identity, nothing etc.) and the key hierarchy are FFS.
The authentication procedure for EAP-AKA' works as follows, cf. also Figure 6.X-2:
1.
The UE sends a request towards the Anchor Function.
2.
The Anchor Function shall invoke the Nausf_UEAuthentication service by sending a Nausf_UEAuthentication_Authenticate Request message to the AUSF, in which the user identity and Anchor Function identifier shall be included.

3.
The AUSF shall send a Nudm_UEAuthentication_Get Request to the UDM.

4.
The UDM shall subsequently send this transformed authentication vector AV' (RAND, AUTN, XRES, CK', IK') to the AUSF.
5.
The AUSF shall send the EAP-Request/AKA'-Challenge message to the SEAF.
6.
The SEAF shall transparently forward the EAP-Request/AKA'-Challenge message to the UE.
7.
At receipt of the RAND and AUTN, the USIM shall verify AUTN and compute a response RES. The ME shall derive CK' and IK'.
8.
The UE shall send the EAP-Response/AKA'-Challenge message to the Anchor Function.
9.
The Anchor Function shall transparently forwards the EAP-Response/AKA'-Challenge message to the AUSF.
10.
The AUSF shall verify the message, and if the AUSF has successfully verified this message it shall continue as follows, otherwise it shall return an error.
11.
The AUSF derives EMSK from CK’ and IK’. The AUSF uses the first 256 bits of EMSK as the KAUSF and then calculates KAnchor Function from KAUSF. The AUSF shall send an EAP Success message to the SEAF inside Nausf_UEAuthentication_Authenticate Response, which shall forward it transparently to the UE. Nausf_UEAuthentication_Authenticate Response message contains the KAnchor Function.
12.
The Anchor Function generates key material Ks= KAnchor Function.

13.
The Anchor Function shall send the EAP Success message to the UE.
14.
The UE generates key material Ks= KAnchor Function.

6.X.3 Evaluation
TBA.
*************** End of Change 1 ****************
UE
Anchor Function
AUSF
UDM/ARPF
7. Authentication Request (RAND, AUTN)
4. Nudm_UEAuthentication_
Get Response
(5G HE AV=RAND, AUTN, XRES*, and KAUSF)
6. Nausf_UEAuthentication_Authenticate Response (5G AV=RAND, AUTN, HXRES*)
8. Verity AUTN, compute RES, RES*
9. Authentication Response (RES*)
10. Calculate HRES* and compare to HXRES*
15. Response
[B-TID, key lifetime]
1. Request (user identity)
2. Nausf_UEAuthentication_
Authenticate Request
(user identity, Anchor Function identifier)
3. Nudm_UEAuthentication_
Get Request
 (user identity, Anchor Function identifier)
14. Ks=KAnchor Function
5. Store XRES*, Calculate HXRES*
11. Nausf_UEAuthentication_Authenticate Request (RES*)
12. RES* Verification
13. Nausf_UEAuthentication_Authenticate Response (Result, KAnchor Function)
16. Ks=KAnchor Function

UE
Anchor Function
AUSF
UDM/ARPF
6. EAP Request / AKA′-Challenge (RAND, AUTN)
4. Nudm_UEAuthentication_
Get Response
(EAP-AKA′ AV=RAND, AUTN, XRES, CK', IK')
5. EAP Request / AKA′-Challenge (RAND, AUTN)
7. Verity AUTN, compute RES
8. EAP Response / AKA′-Challenge (RES)
10. AUSF checks the given RES, if it is correct.
13. Response (EAP Success, B-TID, key lifetime]
1. Request (user identity)
2. Nausf_UEAuthentication_
Authenticate Request
(user identity, Anchor Function identifier)
3. Nudm_UEAuthentication_
Get Request
 (user identity, Anchor Function identifier)
12. Ks=KAnchor Function
14. Ks=KAnchor Function
9. Auth-Req (RES)
11. Auth-Resp. (EAP Success,
KAnchor Function)

