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Decision/action requested

Approve pCR to TR 33.841 below.
2
Detailed proposal: pCR to TR 33.841
*** BEGIN CHANGES ***
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 *** NEXT CHANGES ***
11
Study the desired performance aspects for the new 256-bit algorithms
11.1 
Peak Data Rates 

An essential requirement for the new 256-bit algorithms are their ability to achieve the peak data rates of the radio access network they are protecting. If not, the ciphering algorithms may become a latency and/or throughput bottleneck. The minimum requirement for downlink peak data rates in 5G/IMT-2020 is 20 Gbps [X1]. The 256-bit algorithms should be able to achieve such peak rates both when implemented in hardware and when implemented in software on commodity CPUs. However, all previous 128-bit algorithms standardized for 3G and 4G have been used also in later generations. The 256-bit algorithms should therefore not only be able to achieve the peak data rates of 20 Gbps in 5G/IMT-2020, but preferable also the peak data rates of future generations of mobile networks.
11.2 
Latency

One of the requirements of 5G/IMT-2020 [X1] is ultra-low latency communication with only 1 ms end-to-end latency. To achieve this, it is important that the 256-bit algorithms have as low latency as possible. As the traffic is typically encrypted and decrypted several times, the latency of the 256-bit algorithms will be added several times to the end-to-end latency. 

11.3 
AEAD Algorithms

Many security protocols have in the last decade transitioned partly (e.g. TLS 1.2, IPsec, SRTP) or completely (e.g. TLS 1.3) to AEAD (Authenticated Encryption with Associated Data) algorithms such as AES-GCM. For protocols like TLS and SSH, which used insecure compositions of encryption and integrity algorithms, this transition was partly driven by security and partly by performance aspects. For other protocols like IPsec and SRTP, the transition has purely been driven by performance. One performance benefit of AEAD algorithms is that they use a single key, another benefit is that integrity protection can be done almost for free when done together with encryption.  Some properties of AEAD algorithms are summarized below:

-
AEAD algorithms use a single key. Just like in TLS and IPsec, AEAD algorithms could be introduced in 5G by only using the encryption key and not using the integrity key.

-
AEAD algorithms provide both confidentiality and integrity protection. Current radio algorithms allow the use of integrity without encryption. SA3 would need to study whether 256-bit integrity protection combined with null encryption is required. This is for example accomplished by the CCM* algorithm used in 802.15.4 [X2].

-
AEAD algorithms perform encryption and integrity protection as a single function. SA3 should study how this would work with all uses in the 5G system (5GS currently uses both encrypt-then-MAC and MAC-then-encrypt), and if introduction of AEAD would require any other changes.


-
AEAD algorithms such as AES-GCM have significant performance benefits over non-AEAD algorithms 



such as 128-NEA2 + 128-NIA2. 
*** END CHANGES ***
