3GPP TSG SA WG3 (Security) Meeting #82
S3-160014
Feb 1-5 February 2016 Dubrovnik, CR

revision of S3-16abcd

Source:
Motorola Solutions, Alcatel Lucent and Nokia Networks
Title:
33.179 OpenID Connect Profile for MCPTT
Document for:
Discussion and Approval

Agenda Item:
MCPTT

Work Item / Release: MCPTT/Rel-13

Abstract of the contribution: This pCR provides the OpenID Connect profile for MCPTT
1. Introduction
This pCR presents an MCPTT Connect Authentication and Authorisation framework which is a profile of the OpenID Connect specification defined by the OpenID Foundation. It is used to authenticate an MCPTT user to an MCPTT service provider and authorise the MCPTT client access to MCPTT resource servers such as the MCPTT server and the Key Management server. OpenID Connect builds upon the OAuth 2.0 framework defined in IETF RFC 6749 and defines MCPTT specific token types and functionality. OpenID Connect has been chosen as the building block of MCPTT authentication and authorisation for the following reasons:

· supports all authentication and authorisation requirements defined in 33.179

· interoperability between different networks and different manufacturers' clients and servers

· satisfies requirements for MCPTT roaming and migration

· flexibility in deployment models (see TS 23.179 [2])

· support all deployment models listed in TS 23.179 [2]

· interchangeable MCPTT user authentication solutions

· allow implementations to use different means to authenticate the user, e.g. Web SSO, SIP digest, GBA, biometric identifiers, username+password.

· scalable (number of users)

· provides efficient support for small MCPTT systems with few users, to large MCPTT systems with hundreds of thousands of users.

· Extensible to provide authorisation for further mission critical services including group aware services, additional interfaces etc.

· Lightweight and mobile friendly

· It is an open standard

· It has seen massive adoption by app developers

· Leverages investments already made by both mobile network operators (Mobile Connect) and public safety enterprises (Identity Management, GFIPM NIEF, etc.)

· Supports a variety of MCPTT client types including MCPTT clients installed as native apps on a mobile computing platform such as smartphone or tablet, MCPTT clients running on web servers, and MCPTT clients downloaded into and running within a web browser.

A key advantage of this MCPTT Connect profile is that it can be extended to support future Mission Critical features such as MC Data and MC Video.

The MCPTT Connect profile of OpenID Connect enables an end user to prove their identity to an MCPTT service provider using any means desired by the service provider. Once the MCPTT user is authenticated, the MCPTT service provider (through the IdM server acting as an OpenID Provider) issues several credentials to the MCPTT client including: an access token, a refresh token, and an ID token.

The ID Token is a JSON Web Token (JWT) - specified by the IETF - and authenticates the MCPTT user to the MCPTT client. The ID Token may contain other attributes about the MCPTT user useful to the MCPTT client, such as the user’s MCPTT ID.

The access token is used by the MCPTT client to access one or more backend MCPTT resource servers, such as the MCPTT server and the Key Management server. Access tokens are typically short lived, so the MCPTT client uses the refresh token to request an updated access token from the MCPTT IdM server.

This pattern is extremely powerful because it gives each service provider the ability to authenticate its users in the manner it chooses, while at the same time abstracting this from the MCPTT resource servers, which only need to consume a single credential (the access token).
2. pCR to TR 33.179

************* Start of change 1 **
Annex B (normative):
OpenID Connect Profile for MCPTT
The information in this annex provides a normative description of the MCPTT Connect Authentication and Authorisation framework based on the OpenID Connect 1.0 standard. Characterization of the id token, access token, how to obtain tokens, how to validate tokens, and how to use the refresh token is explained.

The OpenID Connect 1.0 standard provides the source of the information contained in this annex. MCPTT Connect profiles the OpenID Connect standard and includes the MCPTT ID in the id token and the access token, as well as the definition of MCPTT specific scopes for key management, MCPTT service, configuration management, and group management. This profile is completely standard compliant with OpenID Connect.
B.1 MCPTT tokens

B.1.1 ID token

The ID Token shall be a JSON Web Token (JWT) and contain the following standard and MCPTT token claims. Token claims provide information pertaining to the authentication of the MCPTT user by the IdM server as well as additional claims. This subclause profiles the required standard and MCPTT claims for the MCPTT Connect profile.
B.1.1.1 Standard claims

These standard claims are defined by the OpenID Connect 1.0 specification and are REQUIRED for MCPTT. Other claims defined by OpenID Connect are optional. The standards-based claims for an MCPTT id token are shown in table B.1.1.1-1.
	Parameter
	Description

	iss
	REQUIRED. The URL of the IdM server.

	sub
	REQUIRED. A case-sensitive, never reassigned string (not to exceed 255 bytes), which uniquely identifies the MCPTT user within the MCPTT server provider’s domain.

	aud
	REQUIRED. The OAuth 2.0 client_id of the MCPTT client

	exp
	REQUIRED. Implementers MAY provide for some small leeway, usually no more than a few minutes, to account for clock skew (not to exceed 30 seconds)

	iat
	REQUIRED. Time at which the ID Token was issued. Its value is a JSON number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

Table B.1.1.1-1: ID token standard claims
B.1.1.2 MCPTT claims

The MCPTT Connect profile extends the OpenID Connect standard claims with the additional claims shown in table B.1.1.2-1.
	Parameter
	Description

	mcptt_id
	REQUIRED. The MCPTT ID of the current MCPTT user of the MCPTT client.

Table B.1.1.2-1: ID token MCPTT claims
B.1.2 Access token

The access token is opaque to MCPTT clients and is consumed by the MCPTT resource servers (i.e. KMS, MCPTT server, etc). The access token shall be encoded as a JSON Web Token as defined in IETF RFC 7519.
B.1.2.1 Standard claims

MCPTT access tokens shall convey the following standards-based claims as defined in IETF RFC 7662.
	Parameter
	Description

	exp
	REQUIRED. Implementers MAY provide for some small leeway, usually no more than a few minutes, to account for clock skew (not to exceed 30 seconds)

	scope
	REQUIRED. A JSON string containing a space-separated list of the MCPTT authorisation scopes associated with this token.

	client_id
	REQUIRED. The identifier of the MCPTT client making the API request as previously registered with the IdM server.

Table B.1.2.1-1: Access token standard claims
B.1.2.2 MCPTT claims

The MCPTT Connect profile extends the standard claims defined in IETF RFC 7662 with the additional claims shown in table B.1.2.2-1.
	Parameter
	Description

	mcptt_id
	REQUIRED. The MCPTT ID of the current MCPTT user of the MCPTT client.

Table B.1.2.2-1: Access token MCPTT claims
B.2 MCPTT Client Registration

Before an MCPTT client can obtain ID tokens and access tokens (required to access MCPTT resource servers) it shall first be registered with the IdM server of the server provider as required by OpenID Connect 1.0. The method by which this is done is not specified by this profile. For native MCPTT clients, the following information shall be registered:

· The client is issued a client identifier. The client identifier represents the client’s registration with the authorisation server, and enables the IdM server to reference parameters associated with that client’s registration when being requested for an access token by the MCPTT client.
· Registration of the client’s redirect URIs

Other information about the MCPTT client such as (for example): application name, website, description, logo image, legal terms to be consented to, may optionally be registered.

B.3 Obtaining Tokens

Once an MCPTT client has been successfully registered with the IdM server of the MCPTT service provider, the MCPTT client may request ID tokens and access tokens (as required to access MCPTT resource servers such as PTT and KMS). MCPTT Connect will support a number of different MCPTT client types, including: native, web-based, and browser-based. Only native MCPTT clients are defined in this first version of the MCPTT Connect profile. The exact method in which an MCPTT client requests the access token depends upon the client profile. The MCPTT client profiles, along with steps required from them to obtain OAuth access tokens, are explained in technical detail below.

B.3.1 Native MCPTT client

This conforms to the Native Application profile of OAuth 2.0 as per IETF RFC 6749.
MCPTT clients fitting the Native application profile utilize the authorisation code grant type with the PKCE extension for enhanced security as shown in figure B.3.1-1.

[image: image1.emf]Authentication Request

IdMS UE

Authentication Response

4. Token Request

5. Token Response

<user authentication>

Figure B.3.1-1 Authorisation Code flow

B.3.1.1 Authentication Request

As described in OpenID Connect 1.0, the MCPTT client constructs a request URI by adding the following parameters to the query component of the authorisation endpoint’s URI using the "application/x-www-form-urlencoded" format, redirecting the user’s web browser to the authorisation endpoint of the IdM server. The standard parameters shown in table B.3.1.1-1 are required by the MCPTT Connect profile. Other parameters defined by the OpenID Connect specification are optional.

	Parameter
	Values

	response_type
	REQUIRED. For native MCPTT clients the value shall be set to “code”

	client_id
	REQUIRED. The identifier of the MCPTT client making the API request. It must match the value that was previously registered with the IdM server of the MCPTT service provider.

	scope
	REQUIRED. Scope values are expressed as a list of space-delimited, case-sensitive strings which indicate which MCPTT resource servers the client is requesting access to (e.g. MCPTT, KMS, etc.) If authorized, the requested scope values will be bound to the access token returned to the client.

The scope value “openid” is defined by the OpenID Connect standard and is mandatory, to indicate that the request is an OpenID Connect request, and that an ID token should be returned to the MCPTT client.

This profile further defines the following additional authorisation scopes:
 “3gpp:mcptt:ptt_server” (service authorisation)

 “3gpp:mcptt:key_management_server” (key management authorisation)

 “3gpp:mcptt:config_management_server” (config mgmt authorisation)

 “3gpp:mcptt:group_management_server” (group mgmt authorisation)

Others may be added in the future as new MCPTT resource servers are introduced by 3GPP. (Note: the order in which they are expressed does not matter).

	redirect_uri
	REQUIRED. The URI of the MCPTT client to which the IdM server will redirect the MCPTT client’s user agent in order to return the authorization code to the MCPTT client. The URI must match the redirect URI registered with the IdM server during the client registration phase.

	state
	REQUIRED. An opaque value used by the MCPTT client to maintain state between the authorization request and authorization response. The IdM server includes this value in its authorization response back to the MCPTT client.

	acr_values
	REQUIRED. Space-separated string that specifies the acr values that the IdM server is being requested to use for processing this authorisation request, with the values appearing in order of preference. For minimum interoperability requirements, a password-based ACR value is mandatory to support. ”3gpp:acr:password”.

	code_challenge
	REQUIRED. The base64url-encoded SHA-256 challenge derived from the code verifier that is sent in the authorisation request, to be verified against later.

	code_challenge_method
	REQUIRED. The hash method used to transform the code verifier to produce the code challenge. This profile current requires the usage of “S256”

Table B.3.1.1-1: Authentication Request standard required parameters
An example of an authentication request for MCPTT Connect might look like:
	GET/as/authorization.oauth2?response_type=code&client_id=mcptt_client&code_challenge=0x123456789abcdef&scope=openid3gpp:mcptt_server&redirect_uri=http://3gpp.mcptt/cb&state=abc123&acr_values=3gpp:acr:password&code_challange=0x123456789abcdef&code_challenge_method=S256

HTTP/1.1
Host: IdMS.server.com:9031
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded

Upon receiving the authentication request from the MCPTT client, the IdM server performs user authentication. Note that user authentication is completely opaque to the MCPTT client (which never sees any of it, as it is run directly between the IdM server and the user-agent on the UE).

B.3.1.2 Authentication Response

The authorization endpoint running on the IdM server issues an authorisation code and delivers it to the MCPTT client. The authorization code is used by the MCPTT client to obtain an ID token, access token and refresh token from the IdM server. The authorisation code is added to the query component of the redirection URI using the "application/x-www-form-urlencoded" format. The authorisation code standard parameters are shown in table B.3.1.2-1.
	Parameter

	Values

	code
	REQUIRED. The authorization code generated by the authorization endpoint and returned to the MCPTT client via the authorization response.

	state
	REQUIRED. The value must match the exact value used in the authorization request. If the state does not match exactly, then the NGMI API client is under a Cross-site request forgery attack and MUST reject the authorization code by ignoring it and must not attempt to exchange it for an access token. No error is returned.

Table B.3.1.2-1: Authentication Response standard required parameters

An example of an authentication response for MCPTT Connect might look like:

	HTTP/1.1 302 Found
Location:http://mcptt_client/cb?

code=SplxlOBeZQQYbYS6WxSbIA

&state=abc123

B.3.1.3 Token Request

In order to exchange the authorization code for an ID token, access token and refresh token, the MCPTT client makes a request to the authorization server’s token endpoint by sending the following parameters using the "application/x-www-form-urlencoded" format, with a character encoding of UTF-8 in the HTTP request entity-body. Note that client authentication is REQUIRED for native applications (using PKCE) in order to exchange the authorization code for an access token. Assuming that client secrets are used, the client secret is sent in the HTTP Authorization Header. The token request standard parameters are shown in table B.3.1.3-1.
	Parameter

	Values

	grant_type
	REQUIRED. The value shall be set to ”authorization_code”.

	code
	REQUIRED. The authorization code previously received from the IdM server as a result of the authorisation request and subsequent successful authentication of the MCPTT user.

	client_id
	REQUIRED. The identifier of the client making the API request. It must match the value that was previously registered with the OAuth Provider during the client registration phase of deployment, or as obtained by the Motorola Solutions development portal

	redirect_uri
	REQUIRED. The value MUST be identical to the "redirect_uri" parameter included in the authorization request

	code_verifier
	REQUIRED. A cryptographically random string that is used to correlate the authorization request to the token request.

Table B.3.1.3-1: Token Request standard required parameters

An example of a token request for MCPTT Connect might look like:
	POST /as/token.oauth2 HTTP/1.1
Host: IdM.server.com:9031
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=&client_id=myNativeApp&code_verifier=0x123456789abcdef&redirect_uri=http%3A%2F%2F3gpp.mcptt%2Fcb

B.3.1.4 Token Response

If the access token request is valid and authorized, the IdM server returns an ID token, access token and refresh token to the MCPTT client; otherwise it will return an error.

An example of a successful response might look like:
	HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{
 "access_token":"eyJhbGciOiJSUzI1NiJ9.eyJtY3B0dF9pZCI6ImFsaWNlQG9yZy5jb20iLCJleHAiOjE0NTM1MDYxMjEsInNjb3BlIjpbIm9wZW5pZCIsIjNncHA6bWNwdHQ6cHR0X3NlcnZlciJdLCJjbGllbnRfaWQiOiJtY3B0dF9jbGllbnQifQ.XYIqai4YKSZCKRNMLipGC_5nV4BE79IJpvjexWjIqqcqiEx6AmHHIRo0mhcxeCESrXei9krom9e8Goxr_hgF3szvgbwl8JRbFuv97XgepDLjEq4jL3Cbu41Q9b0WdXAdFmeEbiB8wo_xggiGwv6IDR1b3TgAAsdjkRxSK4ctIKPaOJSRmM7MKMcKhIug3BEkSC9-aXBTSIv5fAGN-ShDbPvHycBpjzKWXBvMIR5PaCg-9fwjELXZXdRwz8C6JbRM8aqzhdt4CVhQ3-Arip-S9CKd0tu-qhHfF2rvJDRlg8ZBiihdPH8mJs-qpTFep_1-kON3mL0_g54xVmlMwN0XQA",
 "refresh_token":"Y7NSzUJuS0Jp7G4SKpBKSOJVHIZxFbxqsqCIZhOEk9",
"id_token":"eyJhbGciOiJSUzI1NiJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwiYXVkIjoibWNwdHRfY2xpZW50IiwiaXNzIjoiSWRNUy5zZXJ2ZXIuY29tOjkwMzEiLCJpYXQiOjE0NTM0OTgxNTgsImV4cCI6MTQ1MzQ5ODQ1OCwibWNwdHRfaWQiOiJhbGljZUBvcmcuY29tIn0.Dpn7AhIMaqMEgg12NYUUfJGSFJMPG8M2li9FLtPotDlHvwU2emBws8z5JLw81SXQnoLqZ8ZF8tIhZ1W7uuMbufF4Wsr7PAadZixz3CnV2wxFV9qR_VA1-0ccDTPukUsRHsic0SgZ3aIbcYKd6VsehFe_GDwfqysYzD7yPwCfPZo",
"token_type": "Bearer",
"expires_in": 7199
}

The MCPTT client may now validate the user with the ID token and configure itself for the user (e.g. by extracting the MCPTT ID from the ID Token). The MCPTT client then uses the access token to make authorised requests to the MCPTT resource servers (MCPTT server, KMS, etc.) on behalf of the end user.
B.4 Refreshing an Access Token

To protect against leakage or other compromise, access token lifetimes are typically short lived (though it is ultimately a matter of security policy & configuration by the service provider). Some client types can be issued longer-lived refresh tokens, which enable them to refresh the access token and avoid having to prompt the user for authentication again when the access token expires. Refresh tokens are available only to clients utilizing the authorisation code grant type (native MCPTT clients and web-based MCPTT clients). Refresh tokens are not given to clients utilizing the implicit grant type (browser-based MCPTT clients). Figure B.4-1 shows how Native MCPTT clients can use the refresh token as a grant type to obtain new access tokens.

[image: image2.emf]Access Token Request

IdMS UE

Access Token Response

Figure B.4-1: Requesting a new access token
B.4.1 Access Token Request

To obtain an access token from the MCPTT IdM server using a refresh token, the MCPTT client makes an access token request to the token endpoint of the IdM server. The MCPTT client does this by adding the following parameters using the "application/x-www-form-urlencoded” format, with a character encoding of UTF-8 in the HTTP request entity-body. The access token request standard parameters are shown in table B.4.1-1.
	Parameter
	Values

	grant_type
	REQUIRED. The value shall be set to ”refresh_token”.

	scope
	Space-delimited set of permissions that the MCPTT client requests. Note that the scopes requested using this grant type must be of equal to or lesser than scope of the original scopes requested by the MCPTT client as part of the original authorization request.

Table B.4.1-1: Access token request standard required parameters
An example of a token request for MCPTT Connect might look like:
	POST /as/token.oauth2 HTTP/1.1
Host: IdM.server.com:9031
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=Y7NSzUJuS0Jp7G4SKpBKSOJVHIZxFbxqsqCIZhOEk9&scope=3gpp%3Amcptt%3Aptt_server

If the MCPTT client was provided with client credentials by the MCPTT IdM server, then the client shall authenticate with the token endpoint of the IdM server utilizing the client credential (shared secret or public-private key pair) established during the client registration phase.
B.4.2 Access Token Response

In response to the access token request (above) the token endpoint on the IdM server will return an access token to the MCPTT client, and optionally another refresh token.

An example successful response for MCPTT Connect might look like:

	HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache
{
 "access_token":"eyJhbGciOiJSUzI1NiJ9.eyJtY3B0dF9pZCI6ImFsaWNlQG9yZy5jb20iLCJleHAiOjE0NTM1MDYxMjEsInNjb3BlIjpbIm9wZW5pZCIsIjNncHA6bWNwdHQ6cHR0X3NlcnZlciJdLCJjbGllbnRfaWQiOiJtY3B0dF9jbGllbnQifQ.XYIqai4YKSZCKRNMLipGC_5nV4BE79IJpvjexWjIqqcqiEx6AmHHIRo0mhcxeCESrXei9krom9e8Goxr_hgF3szvgbwl8JRbFuv97XgepDLjEq4jL3Cbu41Q9b0WdXAdFmeEbiB8wo_xggiGwv6IDR1b3TgAAsdjkRxSK4ctIKPaOJSRmM7MKMcKhIug3BEkSC9-aXBTSIv5fAGN-ShDbPvHycBpjzKWXBvMIR5PaCg-9fwjELXZXdRwz8C6JbRM8aqzhdt4CVhQ3-Arip-S9CKd0tu-qhHfF2rvJDRlg8ZBiihdPH8mJs-qpTFep_1-kON3mL0_g54xVmlMwN0XQA",
 "refresh_token": "iTxQYALqlc7uLyFGpnl8tR8Y9gkw91mFy2qC9Yywkz",
 "token_type": "Bearer",
 "expires_in": 7199
}

It is possible to configure the IdM server to confirm that the user account is still valid each time the refresh token is presented, and to revoke the refresh token if not. This security practice is RECOMMENDED.
B.5 Using the Token to Access MCPTT resource servers

MCPTT Connect shall initially support the bearer access token type. Access tokens of type “bearer” are communicated from the MCPTT client to MCPTT resource servers by including the access token in the HTTP Authorization Header, per IETF RFC 6750.
The access token is opaque to the MCPTT client, meaning that the client does not have any knowledge of the access token itself. The client will be given some metadata corresponding to the access token, such as its expiration time, so that it does not send an expired access token to MCPTT resource servers. If the access token is presented to an MCPTT resource server and the scope is invalid or the token is expired or revoked, the MCPTT resource server should return an error message indicating such to the MCPTT client.
B.6 Token validation

B.6.1 ID Token validation

The MCPTT client shall validate the id token as per section 3.1.3.7 of the OpenID Connect 1.0 specification.
B.6.2 Access Token validation

MCPTT resource servers shall validate access tokens received from the MCPTT client according to IETF RFC 7519.
************* End of change 1 ***

3. Conclusion

We kindly ask SA3 to accept the above pCR.

Authentication Request
IdMS
UE
Authentication Response
4. Token Request
5. Token Response
<user authentication>

Access Token Request
IdMS
UE
Access Token Response

