CR-Form-v7

PSEUDO CHANGE REQUEST

33.878 Pseudo-CR CRNum rev - Current version: 0.0.3

For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the x symbols.		
Proposed change affects: UICC apps ME X Radio Access Network Core Network X		
Title:	Correction of identity related issues	
Source:	Siemens	
Work item code: ₩	Early IMS	<i>Dat</i> e: <mark>⊯ 04/11/2004</mark>
Work item code.	Early IMS	Date: 65 04/11/2004
	F	Release: X Rel-6
		Use one of the following releases: 2 (GSM Phase 2) se) R96 (Release 1996) R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) Rel-4 (Release 4) Rel-5 (Release 5) Rel-6 (Release 6) ansmits only the MSISDN, not the unnecessary and may complicate the equests.
		IMPU, not the IMPI, should be used
Summary of change	A) GGSN transmits MSISDN and IMSIB) IMPU is used in Cx-MAR request C) Correction of editorial errors in the fi	
Consequences if not approved:	A) unnecessary restrictions, more com B) , C): Inconsistency	plicated handling
Clauses affected:	器 7.1, 7.2	
Other specs affected:	Y N X Other core specifications X Test specifications O&M Specifications	3 24.229, 29.229
Other comments:	% -	

************** begin change ***************

7.1 Overview

The early IMS security solution works by creating a secure binding in the HSS between the public/private user identity (SIP-level identity) and the IP address currently allocated to the user at the GPRS level (bearer/network level identity). Therefore, IMS level signaling, and especially the IMS identities claimed by a user, can be connected securely to the PS domain bearer level security context.

The GGSN, terminating each user's authenticated PDP context, provides the user's IP address, IMSI and + MSISDN pair to the HSS when a PDP context is activated towards the IMS system. The HSS has a binding between the IMSI and / or MSISDN and the IMPI and IMPU(s), and is therefore able to store the currently assigned IP address from the GGSN against the user's IMPI and /or IMPU(s). The precise way of the handling of these identities in the HSS is outside the scope of standardization. The GGSN informs the HSS when the PDP context is deactivated/modified so that the stored IP address can be updated in the HSS. When the S-CSCF receives a SIP registration request or any subsequent requests for a given IMPIIMPU, it checks that the IP address in the SIP header (verified by the network) matches the IP address that was stored against that subscriber's IMPI-IMPU in the HSS.

The mechanism assumes that the GGSN does not allow a UE to successfully transmit an IP packet with a source IP address that is different to the one assigned during PDP context activation. In other words, the GGSN must prevent "source IP Spoofing". The mechanism also assumes that the P-CSCF checks that the source IP address in the SIP header is the same as the source IP address in the IP header received from the UE (the assumption here, as well as for the full security solution, is that no NAT is present between the GGSN and the P-CSCF).

The mechanism prevents an attacker from using his own IP address in the IP header but spoofing someone else's IMS identity or IP address in the SIP header, so that he pays for GPRS level charges, but not for IMS level charges. The mechanism also prevents an attacker spoofing the address in the IP header so that he does not pay for GPRS charges. It therefore counters the threat scenarios given in clause 6 above.

The mechanism assumes that only one contact IP address is associated with one IMPI. Furthermore, the mechanism supports the case that there may be several IMPUs associated with one IMPI, but one IMPU is associated with only one IMPI.

In early IMS the IMS user authentication is performed by linking the IMS registration (based on an IMPI) to an authenticated PDP context (based on an IMSI). The mechanism here assumes that there is a one-to-one relationship between the IMSI for bearer access and the IMPI for IMS access.

In the following we use the terms P-CSCF and S-CSCF in a general sense to refer to components of an early IMS system. We note however that early IMS solutions may not have the same functionality split between SIP entities as defined in TS 23.228 [3]. Therefore, the requirements imposed on the SIP/IP core are specified in such a way that they are independent of the functionality split between SIP entities as far as possible. While the exact functionality split of the SIP/IP core may be left open, it is important that any changes to the Cx interface towards the HSS and changes to the interface towards the UE are standardised for vendor interoperability reasons.

7.2 Detailed specification

7.2.1 Update of UE's IP address in HSS depending on PDP context state

During PDP context request towards the IMS, the GGSN shall send a RADIUS "ACCOUNTING-REQUEST START" message to a RADIUS server attached to the HSS. The message shall include the UE's IP address, IMSI and MSISDN. The format of the message shall be compliant with 3GPP TS 29.061 [4]. On receipt of the message, the HSS shall use the IMSI and / or the MSISDN to find the subscriber's IMPI (derived from IMSI) and then store the IP address against the IMPI suitable identity, e.g. the IMPI.

NOTE1: It is assumed here that the RADIUS server for handling the accounting request to receive the IP address from the GGSN is different to the RADIUS server that the GGSN may use for access control and IP address assignment. However, according to TS 23.060 [5] there is no limitation on whether RADIUS servers for Accounting and Access control have to be separate or combined.

NOTE2: It is also possible to utilize RADIUS to DIAMETER conversion in the interface between GGSN and HSS. This makes it possible to utilize the existing support for DIAMETER in the HSS. One possibility to implement the conversion is to re-use the AAA architecture of I-WLAN i.e. the 3GPP AAA Proxy or Server and its capability to perform RADIUS to DIAMETER conversion. It should be noted that the GGSN shall always uses RADIUS for this communication. Furthermore, it should be noted that DIAMETER is not mandatory to support in the HSS for communication with the GGSN.

GGSN shall not activate the PDP context if the accounting start message is not successfully handled by the HSS. In particular, it shall not be possible to have an active IMS PDP context if the corresponding IP address is not stored in the HSS.

In case of PDP context deletion, the GGSN sends an "ACCOUNTING-REQUEST STOP" message to the HSS after the idle timer in the GGSN expires. The HSS shall then start the 3GPP HSS-initiated de-registration procedure.

If the UE establishes a new PDP context and therefore gets a new IP address, the UE shall start the IMS initial registration procedure. Because the idle timer in the GGSN could be set with a large value, e.g. 1 hour, it is quite likely that the UE will send a PDP context creation request before the idle timer expires. Two cases are distinguished:

- If the PDP context creation request is processed by the same SGSN as the old PDP context, then the SGSN will assign the existing PDP context to the UE. Therefore the IP address of the UE is unchanged and the IMS registration is still valid.
- If the PDP context creation request is processed by a different SGSN compared to the old PDP context, e.g. in case of a routing area update, the SGSN will create a new PDP context for the UE. In this case the GGSN shall send an "ACCOUNTING-REQUEST START" to the HSS with the new IP address. Because this IP address is different to the IP address the UE registered with, the HSS shall start the 3GPP HSS-initiated deregistration procedure. Later, the idle timer for the old PDP context expires and the old PDP context will be deleted by the GGSN. The HSS will be informed about the event via the "ACCOUNTING-REQUEST STOP" message. The HSS checks the IP address indicated by the "ACCOUNTING-REQUEST STOP" message against the IP address stored in the HSS. If they are the same, a network-initiated de-registration procedure shall be started. In this case they are different, so the HSS shall then ignore the message.

7.2.2 Protection against IP address spoofing in GGSN

All GGSNs that offer connection to IMS shall implement measures to prevent source IP address spoofing. Specifically, a UE attached to the GGSN shall not be able to successfully transmit an IP packet with a source IP address that is different to the one assigned by the GGSN during PDP context activation. If IP address spoofing is detected the GGSN shall drop the packet and log the event in its security log against the subscriber information (IMSI/MSISDN).

7.2.3 Source IP address checking in the P-CSCF and S-CSCF

A UE shall not be able to spoof its assigned IP address and successfully receive service from the IMS. The mechanisms in the following sub-clauses shall be supported to prevent IP address spoofing in the IMS domain.

7.2.3.1 P-CSCF mechanisms

As mandated by section 18.2.1 of RFC 3261 [6] the P-CSCF will check the IP address in the "sent-by" parameter of the top "Via" header field. Specifically, if the host portion of the "sent-by" parameter contains a domain name, or if it contains an IP address that differs from the packet source IP address, the server will add a "received" parameter to that Via header field value. This parameter contains the source IP address from which the packet was received. After this processing, the P-CSCF forwards the SIP message to the I-CSCF or S-CSCF.

7.2.3.2 S-CSCF mechanisms

S-CSCF shall use the IMPU to retrieve the IP address stored during PDP context activation. For all requests, the S-CSCF first checks whether a "received" parameter exists in the top "via" header field. If a "received" parameter exists, S-CSCF shall compare the IP address recorded in the "received" parameter against the UE's IP address stored during registration. If no "received" parameter exists in the top "via" header field, then S-CSCF shall compare IP address recorded in the "sent-by" parameter against the IP address stored during registration. In both cases, if the HSS retrieved IP address and the IP address recorded in the top "via" header do not match, the S-CSCF shall reject the registration with a 403 Forbidden response.

If the request sent is an initial REGISTER, then the S-CSCF shall always query the HSS to retrieve the IP address registered during PDP context activation. The IP address fetched during an initial SIP REGISTER shall be stored in the S-CSCF and used for checking subsequent non-REGISTER SIP requests and non-initial REGISTER requests. The S-CSCF shall implement procedures to recover the registration information (including IP address) from the HSS in case of a system failure.

The S-CSCF shall check the IP address for every SIP request, but it shall only contact the HSS to fetch the IP address during the initial SIP Register.

NOTE: The S-CSCF only needs to contact the HSS to fetch the IP address during the initial SIP REGISTER because any change in IP address at the GPRS level will trigger the UE to send an initial REGISTER . Furthermore, the GGSN always notifies the HSS when the IP address is deallocated and the HSS then immediately deregisters the user. This mechanism requires that the S-CSCF can distinguish between initial REGISTER requests and re-REGISTER requests. Contacting HSS for every SIP message would place too high a load on the HSS.

7.2.4 Interworking cases

It is expected that both fully 3GPP compliant UEs implementing the security mechanisms in TS 33.203 [2] (denoted "fully compliant" in the following) and UEs implementing the early IMS security security solution specified in the present document (denoted "early IMS" in the following) will access the same IMS. In addition, IMS networks will support only fully compliant UEs, early IMS UEs, or both. Both UEs and IMS networks must therefore be able to properly handle the different possible interworking cases.

Editor's note: The interworking solution described in this clause is agreed as a working assumption in SA3. An alternative approach based on explicit identification of early IMS support on UEs has been suggested, but a detailed proposal has not yet been developed. If compelling reasons are found to replace the working assumption with this alternative approach, then this will be done at SA3#36 (23-26 November 2004).

Since early IMS security does not require the security headers specified for fully compliant UEs, these headers shall not be used for early IMS. The Register message sent by an early IMS UE to the IMS network shall not contain the security headers specified by TS 33.203 (Authorization and Security-Client).

As a result, early IMS UEs shall not add an explicit indication for the security used to the IMS signaling. An IMS network supporting both early IMS and fully 3GPP compliant UEs shall use early IMS security for authenticating the UE during registrations that do not contain the security headers specified by TS 33.203 (Authorization and Security-Client).

Without sending an Authorization Header in the initial Register message, early IMS UEs only provide the IMS public identity (IMPU), but not the IMS private identity (IMPI) to the network (this is only present in the Authorization header for fully compliant UEs). The IMS private identity shall therefore be derived from the subscriber's public identity in the HSS.

During the process of user registration <u>for early IMS</u>, the Cx interface carries <u>both only the private user identity and</u> the public user identity in Cx-MAR requests (sent by I-CSCF and S-CSCF<u>to HSS</u>). For early IMS, only the <u>public user identity shall be sent to the HSS within these requests</u>, and The private user identity within these requests shall

contain the IMPU as received by the UE. the private user identity shall be empty. This avoids changes to the message format to the Cx interface.

If the S-CSCF receives an indication that the UE is early IMS, then it shall be able to select the "IP-based" authentication scheme in the Cx-MAR request. The Cx interface shall support the error case that the S-CSCF selects the "Digest-AKAv1-MD5" authentication scheme based on UE indication, but the HSS detects that the subscriber has a SIM instead of a USIM or ISIM. In this case the HSS shall respond with an appropriate error command. The S-CSCF will then respond to the UE with a 403 Forbidden message. If the UE is capable of early IMS then, according to step 5, the UE will take this as an indication to attempt registration using early IMS.

For interworking between early IMS and fully compliant implementations during IMS registration, the following cases shall be supported:

1. Both UE and IMS network support early IMS only

IMS registration shall take place as described by the present document.

2. UE supports early IMS only, IMS network supports both early IMS and fully compliant access security

The IMS network shall use early IMS security according to the present document for authenticating the UE for all registrations from UEs that do not provide the fully compliant security headers.

3. UE supports both, IMS network supports early IMS only

If the UE already has knowledge about the IMS network capabilities (which could for example be preconfigured in the UE), the appropriate authentication method shall be chosen. Fully compliant security shall be used, if the network supports this, otherwise early IMS security shall be used.

If the UE does not have such knowledge it shall start with the fully compliant Registration procedure. The early IMS P-CSCF shall answer with a 420 "Bad Extension" failure, since it does not recognize the method mandated by the Proxy-Require header that is sent by the UE in the initial Register message (this header cannot be ignored by the P-CSCF).

The UE shall, after receiving the error message, send an early IMS registration, i.e., shall send a new Register message without the fully compliant security headers. The network shall respond with a 200 OK message according to the registration message flow as specified in clause 7.2.5.1.

4. UE and IMS network support both

The UE shall start with the fully compliant IMS registration procedure. The network, with receiving the initial Register message, receives indication that the UE is fully compliant and shall continue as specified by TS 33.203.

5. UE supports early IMS only, IMS network supports fully compliant access security only

The UE sends a Register message to the IMS network that does not contain the necessary security headers required by fully compliant IMS. In this case the IMS network will answer with an error message (403 Forbidden with "Authentication Failed" reason phrase) indicating to the early IMS UE that the authentication method is incorrect. After receiving the error message, the early IMS UE shall stop the attempt to register with this network, since early IMS is not supported.

6. UE supports fully compliant access security only, IMS network supports early IMS only

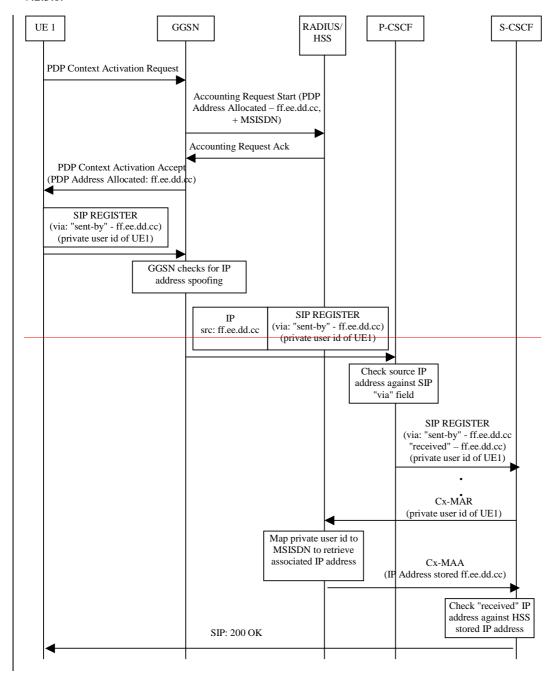
The UE shall start with the fully compliant IMS registration procedure. The early IMS P-CSCF shall answer with a 420 "Bad Extension" failure, since it does not recognize the method mandated by the Proxy-Require header that is sent by the UE in the initial Register message (this header cannot be ignored by the P-CSCF). After receiving the error message, the UE shall stop the attempt to register with this network, since the fully 3GPP compliant security according to TS 33.203 is not supported.

7.2.5 Message flows

7.2.5.1 Successful registration

Figure 1 below describes the message flow for successful registration to the IMS that is specified by the early IMS security solution.

Note, that the "received" parameter is only sent from P-CSCF to S-CSCF under the conditions given in clause 7.2.3.1.



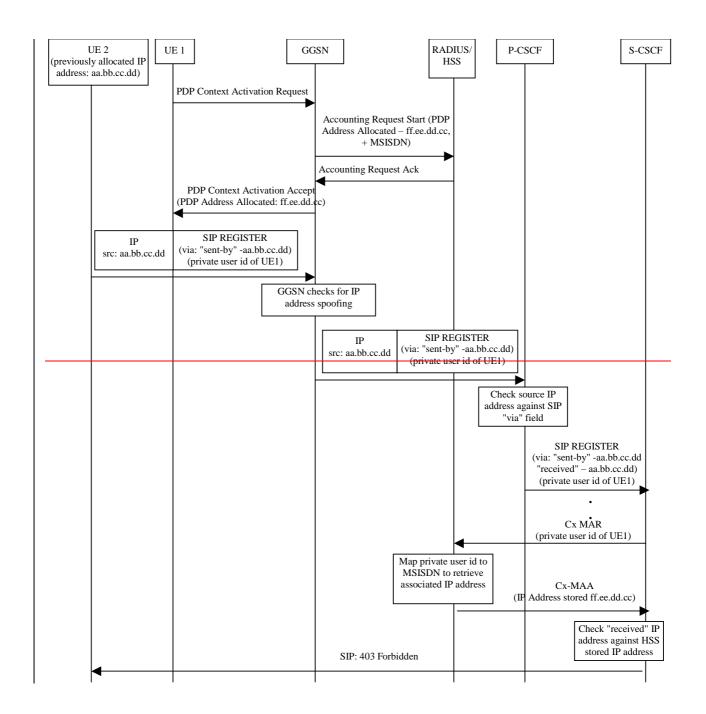


Figure 1: Message sequence for early IMS security showing a successful registration

7.2.5.2 Unsuccessful registration

Figure 2 below gives an example message flow for the unsuccessful attempt of an attacker trying to spoof the IMS identity of a valid IMS user.

Again, the "received" parameter is only present between P-CSCF to S-CSCF under the conditions given in clause 7.2.3.1.

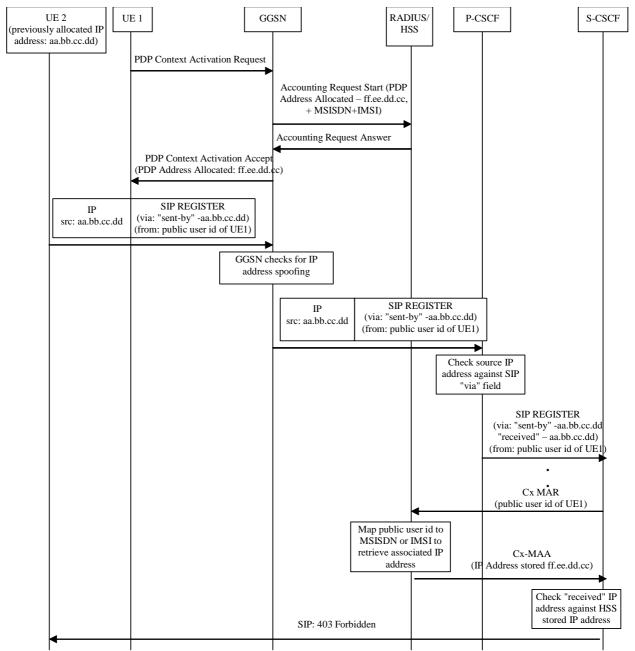
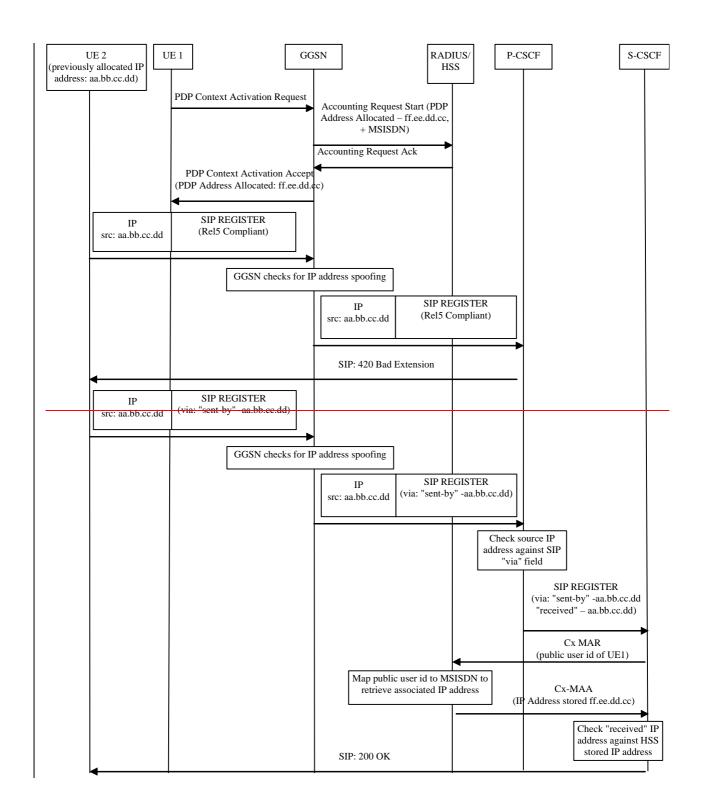



Figure 2: Message sequence for early IMS security showing an unsuccessful identity theft

7.2.5.3 Successful registration for a selected interworking case

Figure 3 below describes the message flow for successful registration to the IMS in the case that the UE supports both fully compliant and early IMS access security and the network supports early IMS only. This case is denoted as case 3 in clause 7.2.4.

Note, that the "received" parameter is only sent from P-CSCF to S-CSCF under the conditions given in clause 7.2.3.1.

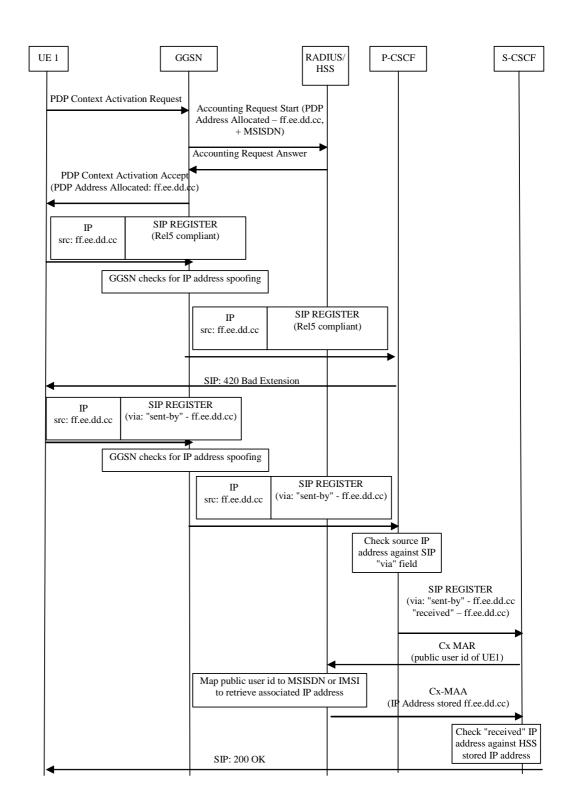


Figure 3: Message sequence for early IMS security showing interworking case where UE supports both fully compliant and early IMS access security and network supports early IMS security only

************** end change *******************