
 page 1

3GPP TSG SA WG3 Security — S3#36 S3-040902

23 - 26 November 2004

Shenzhen, China

Title: Overhead and Performance Comparison of OMA DRM V2.0 DCF
and XML for MBMS Download Protection

Source: Nokia

Document for: Discussion

Agenda Item: MBMS

Work Item:

1. Introduction
In [1], we proposed an extension of OMA DRM V2.0 DCF [2] for MBMS Download Protection. In an
accompanying discussion paper [3], we provide an update to the initial proposal with details of how
integrity protection can be achieved and how the FLUTE FDT (File Description Table) can be
protected.

In this paper, we provide a comparison study of using the proposed DCF and XML for MBMS
download protection in terms of overhead required as well as performance. We will show that as a
simple binary format, DCF incurs much less overheads than XML. It is also expected that
performance for processing binary DCF objects should be better than XML. We therefore believe
that DCF should be selected for MBMS download protection.

2. Overhead Comparison

For use by MBMS download protection, both DCF and XML add a certain amount of overheads per
downloaded content (rather than per packet). This section estimates and compares the amount of
overheads needed in each case.

2.1. DCF Overheads

The DCF format is structured around an object-oriented design of boxes. A basic box has two
mandatory filed, size and type. The basic box therefore requires a total of 8 bytes overhead, as
shown in Table 1.

Name Type Size (bytes)

Size unsigned int(32) 4

Type unsigned int(32) 4

Table 1 Basic Box

If size of a basic box is of the type “largesize”, the size field will be set to 1, and an extra field
“largesize” of type unsigned int(64) will be defined to represent the actual size. In which case, 8
bytes more are required, resulting in a total of 16 bytes.

A Fullbox extends the class of basic box, and can be represented as having the following
mandatory fields:

 page 2

Name Type Size (bytes)

Size unsigned int(32) 4

Type unsigned int(32) 4

Version unsigned int(8) 1

Flags unsigned int(24) 3

Table 2 FullBox.

The following table summarizes the overheads needed in each type of box:

Box Type Size (bytes)

Basic Box 8

Basic Box, Large size 16

FullBox 12

FullBox, Large size 20

According to the different types of box in a DCF, as well as the various fields in each of these
boxes, we can compute the amount of overheads as follows:

Field Nesting
Level

Description Size (bytes)

Fixed DCF File header 0 ‘odcf’ 4

Fixed DCF File version 0 0x00020000 4

OMA DRM Container
Box

0 FullBox, Large Size 20

DCF Headers Box 1 FullBox + various fields 13 + ContentTypeLength

Common Headers Box 2 FullBox + various fields 40 + Length(Key_id)

Content Object Box 1 FullBox + various fields 20

 Subtotal (for Encryption only) 101 + ContentTypeLength +
Length(Key_id)

FreeSpaceBox 0 Box 8

MBMSSignature Box 1 FullBox + various fields 33

 Subtotal (With Signature) 41

 Total 142 + ContentTypeLength +
Length(Key_id)

For simplicity, assume both ContentTypeLength and Length(Key_id) equal 20 bytes. We arrive at
the following estimation shown in Table 3. If FDT protection is desired, two times the overhead will
be needed.

Content only Content + FDT Overhead
incurred (bytes)

Encryption only Encryption and
signature

Encryption only Encryption and
signature

DCF 141 182 282 364

Table 3 DCF Overhead.

 page 3

2.2. XML Overheads
The overheads incurred by using XML security are estimated based on the examples below. In
each case, an example XML document is given, and the overhead is estimated by counting the
number of characters needed. It should be noted that there are multiple ways of representing data
using XML, but we believe the estimation based on the following examples would be
representative.

In each case, the MSK_ID || MTK_ID field is assumed to be 20 bytes, just as in the DCF case.

2.2.1. Content only protection

2.2.1.1. Encryption only

<?xml version="1.0" ?>

<EncryptedData
xmlns="http://www.w3.org/2001/04/xmlenc#">

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName>MSK_ID || MTK_ID</ds:KeyName>
</ds:KeyInfo>

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

<CipherReferenceURI="http://www.example.com/a_file"></CipherReference>

</EncryptedData>

The above XML document comprises of 354 characters (Note that newlines and carriage returns
are not counted.)

2.2.1.2. Encryption and Signature

<?xml version="1.0" ?>

<EncryptedData
xmlns="http://www.w3.org/2001/04/xmlenc#">

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName>MSK_ID || MTK_ID</ds:KeyName>
</ds: KeyInfo>

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

<CipherReferenceURI="http://www.example.com/a_file"></CipherReference>

</EncryptedData>

<Signature Id="a_file.sign"
xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-
sha1">
</SignatureMethod>

 page 4

<Reference URI="">

<Transforms>
<Tranform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-

signature"/>
</Transforms>

</Reference>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>hf2UIfdo4uihHIJoOj3PjdIOPjdowF=</DigestValue>
</Reference>

</SignedInfo>

<SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>

<KeyInfo>

<KeyName>MSK_ID || MTK_ID</KeyName>
</KeyInfo>

</Signature>

The above document comprises of about 937 characters.

2.2.2. Both Content and FDT protection

2.2.2.1. Encryption only

<?xml version="1.0" ?>
<EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
xmlns="http://www.w3.org/2001/04/xmlenc#">

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:KeyName>MSK_ID || MTK_ID</ds:KeyName>
</ds:KeyInfo>

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
<CipherData>

<CipherValue>A523F3478…</CipherValue>
</CipherData>

</EncryptedData>

<EncryptedData
xmlns="http://www.w3.org/2001/04/xmlenc#">

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:KeyName>MSK_ID || MTK_ID</ds:KeyName>
</ds:KeyInfo>

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

<CipherReference

 page 5

URI="http://www.example.com/a_file"></CipherReference>
</EncryptedData>

The CipherValue of the FDT are not counted, as it is considered to be the content itself. Note
however that the encrypted FDT has to be base64 encoded, which increases its size by about
33%. The number of characters in the above document is counted to be 715.

2.2.2.2. Encryption and Signature

<?xml version="1.0" ?>

<EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
xmlns="http://www.w3.org/2001/04/xmlenc#" >

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName>MSK_ID || MTK_ID</ds:KeyName>
</ds:KeyInfo>

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

<CipherData>

<CipherValue>A523F3478…</CipherValue>
</CipherData>

</EncryptedData>

<EncryptedData
xmlns="http://www.w3.org/2001/04/xmlenc#">

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName>MSK_ID || MTK_ID</ds:KeyName>
</ds:KeyInfo>

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

<CipherReference

URI="http://www.example.com/a_file"></CipherReference>
</EncryptedData>

<Signature Id="a_file.sign"
xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-
sha1">

</SignatureMethod>

<Reference URI="">

<Transforms>
<Tranform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-

signature"/>
</Transforms>

 page 6

</Reference>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>hf2UIfdo4uihHIJoOj3PjdIOPjdowF=</DigestValue>
</Reference>

</SignedInfo>

<SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>

<KeyInfo>

<KeyName>MSK_ID || MTK_ID</KeyName>
</KeyInfo>

</Signature>

The above document is estimated to comprise of 1298 characters, not including the encrypted FDT
itself.

2.3. Comparison

Putting the numbers together, we obtain the following table. Due to the fact that DCF is a simple
binary wrapping format, whereas XML is text-based, XML incurs about 2.5 to more than 5 times
the overhead compared to DCF.

Content only Content + FDT Overhead
incurred (bytes)

Encryption only Encryption and
signature

Encryption only Encryption and
signature

DCF 141 182 282 364

XML 354 937 715 1298

DCF:XML 1:2.5 1:5.1 1:2.5 1:3.6

Table 4 Overhead Comparison, DCF vs. XML.

Table 5 tabulates the percentage overhead for using DCF and XML for typical downloaded
contents. For contents of around 10k bytes, DCF overhead is around less than 2% (for content
only protection) while XML adds nearly 10% of overhead. It is true that as file size of downloaded
content increases (e.g. up to 1Mbytes), overheads incurred by both DCF and XML will be
negligible. However, we believe that most mobile downloaded contents would tend to be small in
size. And also, full-length videos will likely be streamed to the mobile device, rather than using
download mechanism.

 page 7

Content Only Content + FDT Content Type Typical
File size

DCF
Overhead

XML
Overhead

DCF
Overhead

XML
Overhead

Java games 10k – 100k 0.18% -
1.82%

0.94% -
9.37%

0.36% -
3.64%

1.30% -
12.98%

jpg images
(640x480,
True colors)

10k – 40k 0.46% -
1.82%

2.34% -
9.37%

0.91% -
3.64%

3.25% -
12.98%

Midi Ringtones 3k – 10k 1.82% -
6.07%

9.37% -
31.23%

3.64% -
12.13%

12.98% -
43.27%

Short video
clips (e.g.
video/H264-
2000,
resolution
128x96, 10
sec duration)

~ 100k ~ 0.18% ~ 0.94% ~ 0.36% ~ 1.30%

Short sound
clips (10 sec)

~ 10k ~ 1.82% ~ 9.37% ~ 3.64% ~ 12.98%

Mp3 (128kbps,
5 mins)

~ 5M negligible negligible negligible negligible

Table 5 Percentage overheads for typical content types.

3. Performance Comparison
There is no direct performance comparison conducted between DCF and XML. However, the
baseline is that DCF is a simple binary format, which is fairly easy to parse, while XML is text-
based and requires more processing (including canonicalization). There are some studies in the
literatures, which compare XML and other schemes in providing security services such as digital
signatures. The results provide some insights to the performance issues of using XML versus other
binary formats. These are briefly discussed as follows.

A recent study compares XML and ASN.1 for performance in providing signed messages [4].
ASN.1 is a description language for abstract data. There are multiple encoding rules defined that
convert an ASN.1 object to data stream that is transmitted on wire. The Binary Encoding Rule
(BER) condenses the ASN.1 representation to a binary data stream. Therefore by looking at the
comparison between ASN.1/BER and XML-based schemes, we could get a feel of how binary
formats, such as DCF, will perform compared to XML. The result shows that XML signed document
is about 13 to 20 times the size of a corresponding ASN.1 signed object, depending on the
complexity of the object to be signed. In terms of the processing times needed for signature
verification, the result shows that ASN.1 outperforms XML by 450 percent for a simple object, and
close to 1000 percent for complex object.

Another performance study compares transport level security (SSL) and various XML-based
security mechanisms for Grid Services [5]. In this study, there is an interesting break down of the
processing times needed in various processing phases of XML-Signature creation and verification.
In verification, the various processing phases includes conversion to DOM (Document Object
Model), certificate path validation, canonicalization, signature verification, and other operations.
The result shows that canonicalization takes up most of the time in the verification process. For

 page 8

example, in one of the test, 1395.5 msec is used in canonicalization out of 1445.8 msec of total
processing time. Such processing overhead is not required if the data is represented in binary
format.

There has also been discussion within the Wapforum regarding the performances of XML Digital
Signatures compared to some other schemes, such as S/MIME. The conclusions are in general in
line with the discussions above. In terms of processing times, there are test results that show XML
requires a lot more processing time for creating and verifying digital signatures, compared to
S/MIME.

These are just some of the examples from the literatures on XML performance. It shows that
typically, binary format (S/MIME, ASN.1) outperforms text-based XML in terms of digital signature
creation and more importantly, signature verification.

4. Conclusions
In this discussion paper, we compare DCF and XML for MBMS download protection in two
aspects, namely, the file size overhead, and performance in processing.

In terms of file size overhead, we estimated that XML adds 2.5 to 5.1 times more overhead than
DCF, due to its text-based nature. For mobile contents that are typically small in size, this
comparatively large overhead when using XML could be significant, and takes up more precious
over-the-air bandwidth. In terms of processing, there are performance studies in the literature that
indicates the complexity in processing XML signatures, due to the fact that XML signatures are
text-based, and that extra time-consuming processing such as canonicalization is needed. These
studies show that if performance is major concern, binary formats are more preferable.

XML security has its own advantages. Being text-based, XML documents are easy to understand
and manipulate by human. Consequently, application development may be easier. Besides, XML-
encryption and XML-signature also have the flexibility to encrypt and sign portions of an XML
document. For the case of MBMS download protection, however, these advantages are not so
important. The most crucial considerations should be the file size overhead, which increases usage
of the precious over-the-air bandwidth; and also the processing requirements at the mobile
terminals, as they are limited in terms of processing power and other resources (battery, memory,
etc). Therefore, a binary format such as the simple OMA DRM V2.0 DCF should be a better choice
than XML for protecting MBMS downloaded contents.

5. References

[1] S3-040781 Extensions to OMA DRM V2.0 DCF for MBMS Download Protection,
S3#35, Oct 2004, Nokia.

[2] DRM Content Format, OMA-DRM-DCF-v2_0-20040715-C,
www.openmobilealliance.org.

[3] S3-040xxx An Update to Using OMA DRM V2.0 DCF for MBMS Download
Protection, S3#36, Nokia.

[4] D. Mundy and D. Chadwick, “An XML Alternative for Performance and Security:
ASN.1”, IT Professionals, IEEE Computer Society, Jan/Feb 2004, pp. 30-36.

[5] S. Shirasuna, A. Slominski, L. Fang, and D. Gannon, “Performance Comparison of
Security Mechanisms for Grid Services”, 5th IEEE/ACM International Workshop on
Grid Computing, Nov 8th 2004, Pittsburgh, USA.

	S3-040902_MBMS_DCF_XML_Comparison_Nokia.doc

