
 page 1 

3GPP TSG SA WG3 Security — SA3#33 S3-040346 
10-14 May 2004  Reply-comments: S3-040218 
Beijing, China 
 
Source:    Siemens, Ericsson (Commented by Gemplus 23/04/04) reply by Siemens 
03/05/04 

Title:     GBA_U: Bootstrapping secrets to the UICC 

Document for: Discussion and decision 

Agenda Item:   GBA 

1 Introduction 
Contributions S3-040089/95/97 at SA3#32 provided a concept to bootstrap secrets to the UICC based on GBA, which 
could be used for MBMS.  The draft SA3#32-report mentions:   

“It was agreed that whether a new UICC would work in an older GBA-ME terminal needed to be studied. It was also 
mentioned that the GBA-request flag on the Ub-interface could be superfluous and simplify the handling. It was 
clarified that MBMS as user of GBA_U would still need to realize own security procedures towards the UICC. Further 
input on these issues was requested. Siemens was asked to further develop the mechanism ands provide the 
contributions (for those parts that are relevant for MBMS) with the same contributions deadline as agreed for MBMS 
contributions to SA WG3 meeting #33. 

It was agreed as a working principle that the GBA_U is added as a generic mechanism, it is for further study to decide 
if it could be used for MBMS.” 

This contribution provides a further elaboration of the GBA_U concept (the generic part), taking into account the 
agreed working assumptions and remarks given at the meeting.  

2 GBA_U concept description 

2.1 Summary of the problem statements 
 

• For GBA_ME as currently described within TS 33.220 v6.0.0 the ME receives CK and IK from the 
UICC, and concatenates these keys to form Ks. This and all further key derivation functions are 
implemented within the ME (e.g. Ks_NAF derivation from Ks). 

 
• When running GBA_U the key Ks shall never leave the UICC. For some applications (ME security 

services) a key Ks_ext_NAF is needed within the ME (e.g. within http digest authentication).  For 
other applications (UICC security services) a key Ks_int_NAF shall not be made available to the ME 
(e.g. for MBMS the key Ks_int_NAF may be used for securing the transfer of the MBMS Service 
Key to the UICC).  A GBA_U aware UICC shall be able to supply keys to both types of services.     

 
Conclusion: Two problems have to be solved. 

a. The ME shall NOT be able to obtain a key used within UICC security services, but the ME 
shall be able to obtain a key used for ME security services. The solutions for this is 
described within section 2.2 

b. The UICC has to be told that GBA_U shall be run. The solution for this is described within 
section 2.3 

 
 



 page 2 

It is assumed that the specification of GBA_U will have no effect on the specifications for GBA (i.e. 
GBA_ME in our terminology), as currently specified in TS 33.220 v6.0.0. 
For the purpose of this contribution we define a GBA-aware UICC as: A UICC capable of deriving both 
Ks_int and Ks_ext, whereby Ks_ext is given to the ME in the form of CK’ and IK’ and whereby the key 
Ks_int is kept secret within the UICC. 

- When the ME wants to use Ks_ext for ME security service then it performs a key derivation step 
that is implemented on the ME to obtain Ks_ext_NAF. 
<G+> 
Why does GBA-aware UICC give Ks_ext to the ME? In S3-040095 contribution (SA3#32), the 
Ks_ext_NAF computation takes place on the UICC. 
<Sie> 
A GBA-aware UICC needs to give a Ks_ext to the ME to handle the situation where an ME (with 
only GBA_ME functions implemented) does not know that a GBA-aware UICC has been 
inserted. This type of ME will always perform GBA_ME derivation to obtain Ks_NAF from Ks. 
In case this full derivation would be done on the UICC this type of ME would again do a 
derivation leading to a key mismatch between network and terminal.   
 
Ks_ext is used to derive the Ks_ext_NAF keys, the retrieval of Ks_ext on the ME allows to 
retrieve all the NAF-specific keys (more specific the external keys, but NOT the internal keys). 
The storage of Ks_ext on the UICC avoids the retrieval of the derived Ks_ext_NAF. (Why should 
it be avoided for the external keys?) The level of security is higher. Moreover, the lifetime of 
Ks_ext could be longer if Ks_ext were stored on the UICC. 
<Sie> 
I think your suggested optimization to take advantage on the extended lifetime when stored on the 
UICC, can be realized but at the same time it shall be allowed that GBA_ME only ME be able to 
function with a GBA aware UICC. Together with the implementation of the function call to 
derive Ks_int_NAF from Ks_int on the UICC, the UICC could also derive Ks_ext_NAF from 
Ks_ext (which is stored internally on the UICC) and give it back to the ME which supports 
GBA_U.  
So, we recommend the computation of Ks_ext_NAF on the UICC as result of a second call which 
includes the key derivation parameters. 
 
 

- When the UICC wants to use Ks_int for UICC security service then it performs a key derivation 
step to obtain Ks_int_NAF. This key derivation is implemented on the UICC. The derivation of 
keys Ks_int and Ks_ext can done by the UICC as a result of one call to the UICC (very similar to 
Rel99 authentication), and the derivation of Ks_int_NAF from Ks_int is then done as a result of a 
second call to the UICC which includes the key derivation parameters (NAF id etc). 

 
The solution has to take care of different combinations of features with different terminal and UICC releases: 
 
 
(0) It shall be guaranteed that the handling for the non-GBA authentication domains is unchanged.  
This is achieved by administrating a GBA-aware UICC within a Rel-6 HSS and signaling explicitly towards 
the UICC and HSS when a GBA-run is performed. This explicit signalling towards the UICC would use 
RAND bits (see section 2.3) which allows the UICC to distinguish between GBA and non-GBA runs. The 
HSS will know that a GBA-run is involved (to consider setting the RAND bits) when the AV-request comes 
from a BSF. The BSF needs to be told by the HSS that GBA_U needs to be run, so that the BSF can perform 
the correct key derivations. The BSF shall recognize this on the basis of the RAND bit-settings or 
alternatively on the basis of an explicit parameter on the Zh-interface. 
Note that a Pre-Rel6 ME supports neither GBA_ME nor GBA_U and therefore the ME will not be able to 
trigger bootstrapping functionality. 
 
From (0) it is guaranteed in particular that: 
(1) It shall be possible to use a Pre-Rel6 ME with a GBA-aware UICC. 



 page 3 

 
(2) It shall be possible to use a Rel-6 ME with a GBA-unaware UICC. 
In case the Rel-6 ME supports GBA_ME then the Rel-6 ME shall be able to obtain/derive a Ks_ext_NAF 
based on CK||IK received from the UICC. The needed functions for GBA_ME support can already be found 
within TS 33.220 v6.0.0. 
 
(3) It shall be possible to use a Rel-6 ME with a GBA-aware UICC. 
A Rel-6 ME may be able to support GBA_ME and in addition may be able to support GBA_U functions. 
The GBA aware UICC is administrated within a Rel-6 HSS and a GBA run for the UICC is explicitly 
signaled with a Special-RAND flag. In case the Rel-6 ME supports GBA_ME then the Rel-6 ME shall be 
able to obtain/derive a Ks_ext_NAF from a received Ks_ext. The Ks_ext shall have the same format as 
CK,IK. The key derivation functions for the ME to execute shall be the same as for case (2). 
<G+> 
Because of Ks_ext storage on the ME the level of security is also the same as for case (2).  
<Sie> 
This is not true, Ks_int_NAF is not available to the ME. You probably mean that the Bootstrapping 
frequency is in both cases still the same and no opportunity is taken to extend the lifetime of GBA_U keys  
 
If the Rel-6 ME supports GBA_U (i.e. by supporting a UICC-feature like MBMS key storage), then it shall 
be able to supply NAF-dependent parameters to the UICC for deriving the key Ks_int_NAF from Ks_int. 
This key Ks_int_NAF shall be kept within the UICC. 
  
<G+> 
The derivation of Ks_ext_NAF shall take place on the UICC. Confer previous comments of this section.  
<Sie> 
See also before. One particular case still requires that Ks_ext_NAF can be computed by the ME, although I 
agree that the derivation can also be implemented on the UICC.  
 

2.2 Delivering keys to two types of applications  
Problem statement: ‘The ME shall NOT be able to obtain a key used within UICC security services, but the 
ME shall be able to obtain a key used for ME security services’.  
At the same time it shall be possible for the NAF to use both derived keys Ks_int_NAF and Ks_ext_NAF 
towards the UE. The security service that builds on top of GBA_U shall be able to make the distinction 
between these two keys. As an example the BM-SC may choose whether it wants the MBMS keys stored on 
the UICC or the ME secure storage. The way this is achieved is outside the scope of GBA.  
 
Following figures describe the proposed key derivation steps. Error! Reference source not found. 
describes the proposed two-step key derivation for a GBA-aware UICC when GBA is run. Error! Reference 
source not found. describes the one-step key derivation which is used for a GBA-unaware UICC in case the 
ME wants to use GBA_ME. 
 

UE

UICC

Ks=CK || IK

Ks_ext and Ks_int

Ks_ext in format CK|| IK

h2(IMSI,NAF_Id,RAND,etc.)

Ks_ext_NAF

Ks_int_NAF

h2(IMSI,NAF_Id,RAND,etc.)

h1(AUTN,RAND,etc.)

UE

UICC

Ks=CK || IK

Ks_ext and Ks_int

Ks_ext in format CK|| IK

h2(IMSI,NAF_Id,RAND,etc.)

Ks_ext_NAF

Ks_int_NAF

h2(IMSI,NAF_Id,RAND,etc.)

h1(AUTN,RAND,etc.)

 
Figure 1: Key derivation for GBA-aware UICC when GBA-run was triggered 



 page 4 

 
UE

UICC

CK and IK

Ks_ext_NAF

Ks=CK || IK

h2(IMSI,NAF_Id,RAND,etc.)

UE

UICC

CK and IK

Ks_ext_NAF

Ks=CK || IK

h2(IMSI,NAF_Id,RAND,etc.)

 
Figure 2: GBA_ME Key derivation 

 
According to Error! Reference source not found., two keys are derived whereby the first key Ks_int_NAF 
will remain internal to the UICC and the second derived key Ks_ext will be delivered from the UICC to the 
ME.  The keys Ks_int_NAF and Ks_ext_NAF are derived from Ks = CK||IK using a two-step key derivation. 
 
The input parameters to the first key derivation function h1 have to be restricted to the information that is 
available within the AV. AUTN and RAND could be used for this. 
 
 
The second key derivation step is performed on the ME for deriving Ks_ext_NAF from Ks_ext using the 
function1 h2 which is also used for a GBA-unaware UICC. The UICC itself derives an internal key 
Ks_int_NAF from Ks_int using the same function h2 (with the same input parameter), but securely 
implemented on the UICC. The second key derivation function h2 may include parameters like IMSI, 
NAF_Id and RAND. The parameter RAND is the random challenge in the AKA authentication vector. 
NAF_id is the DNS name of the NAF as is defined within TS 33.220. The ME shall not able to derive the 
Ks_int_NAF from Ks_ext. This is achieved by using function h1. 
 
 
From the network point of view the procedure is as follows for a GBA-aware UICC. 
  

• When recognising from the response of the HSS that GBA_U is to be run, the BSF derives both 
Ks_int_NAF and Ks_ext_NAF from Ks and the key derivation parameters in the same way as the 
UICC (h1/h2) and ME (h2 for Ks_ext), and sends both Ks_int_NAF and Ks_ext_NAF to the NAF. 

• The NAF makes the choice between Ks_int_NAF and Ks_ext_NAF depending on the requirements. 
It shall be possible for the NAF to use both types of keys.   
 

It could be considered to perform function h1 within the HSS instead of the BSF. Ks_ext and optionally 
Ks_int (for a GBA_U aware UICC) will then need to be carried over the Zh-interface. The disadvantage of 
this option is increased HSS load and impacted Zh-interface for transporting Ks_int. This paper therefore 
assumes that the h1-implementation is done within the BSF. 
 
From the network point of view the procedure is as follows for GBA-unaware UICC. 
  

• The BSF derives both only Ks_ext_NAF from Ks and the key derivation parameters in the same way 
as the ME, and sends only Ks_ext_NAF to the NAF. 

 
NOTE: The key derivation procedures above are only given by way of example. Further study and input by 
SAGE is needed regarding the key derivation procedure in general and the input parameters required by it. 
 

                                                           

1 The second key derivation function on the UICC may be different from the second key derivation function on the ME.  



 page 5 

 

2.3 Enforcing a GBA_U run at the UICC 
Within contribution S3-040095 two solutions were analyzed from which solution 1 (Set one bit within the 
RAND to indicate to the UICC that GBA_U has to be run) was taken as a working assumption. This 
section focuses on detailing the RAND solution and adapts it (with respect to S3-040095) were necessary. 

The proposal from S3-040095 was to use one bit that has to be set differently by a Rel-6 HSS (AuC) to 
distinguish between a GBA-call involving a GBA_U aware UICC (bit x set to 1) and a GBA unaware UICC 
(bit x set to 0). The RAND bit will also NOT be set (bit x set to 0) in case the authentication is not for GBA-
usage i.e. for the PS, CS, IMS and WLAN domain authentication, the CK and IK need still present at the ME 
and the authentication result CK and IK will still be the same as within Pre-Rel 6 networks.  

A variant of solution 1 is to use a 32-bit Special-RAND flag (which may be different from A5/GEA 
proposal, but could also include a flag and context format as was proposed in SA3#32) in order to achieve 
the same goal that a GBA_U aware UICC recognizes a GBA_U run. The Special-RAND flag has to be set 
differently by a Rel-6 HSS (AuC) to distinguish between a GBA-call involving a GBA_U aware UICC and a 
GBA_U unaware UICC. The Special-RAND flag will also NOT be set in case the authentication vector is 
not for GBA-usage i.e. for the PS, CS, IMS and WLAN domain authentication as these authentication 
domains have no h1 function implemented within the core network. If the special-RAND flag is not set the 
original CK and IK are sent from the UICC to the ME and the authentication output will still be the same as 
within Pre-Rel-6 networks. The additional advantage that comes with using a Special-RAND flag for 
GBA_U is that an operator does not need to upgrade the HSS to Rel-6 when starting to introduce 
GBA-aware UICC in the network, but no NAFs still use GBA_U. This approach also ensures an 
independent and gradual introduction (and upgrade) of GBA-unaware UICC to GBA-aware UICC.  

A GBA-unaware UICC will ignore the special RAND-bit pattern if it was to occur accidentally. A GBA 
aware UICC introduced in a Rel-6 Network will then be able to detect the Special-RAND bit-pattern and 
enforce the GBA_U handling. Such a UICC will pre-process the Ks:=CK||IK with h1 in order to make it 
impossible for the ME to derive Ks_int_NAF from Ks_ext. For a GBA aware UICC together with Pre-Rel-6 
HSS (AuC) there is one slight disadvantage in that there will be a statistical increase 1exp-32 failed CK and 
IK mismatches between the Network and the UE. By flipping one bit of the RES when executing GBA_U on 
the UICC this mismatch can detected early during authentication already. The number of failed 
authentications due to the mismatches is considered negligible compared to other reasons for failed 
authentications (such as transmission bit errors).  

It is proposed to adopt the Special-RAND flag proposal for GBA_U as it allows the operator to introduce 
GBA-aware UICC independently from upgrading the HSS.  

2.4 The necessity of a GBA_U request flag? 
As was described within section 2.1, an ME could include different feature combinations. It is possible that a 
GBA-aware UICC is inserted into an ME that does not support the GBA_U procedure to derive Ks_int_NAF 
from Ks_int on the UICC. If in that case a GBA_U type of key derivation was run then the NAF will receive 
both Ks_int_NAF and Ks_ext_NAF but will not be able to use Ks_int_NAF. This could lead to errors on the 
Ua-interface if the NAF falsely assumes that the ME supports GBA_U UICC interface procedures. So the 
NAF has to be made aware if the ME supports GBA_U UICC interface procedures.  

For a first solution the NAF could rely on the fact that the NAF-application has knowledge of the UE feature 
support of that application i.e. GBA_U is only useful for the NAF, if in addition to the GBA_U functions on 
the card, also some security application is defined on the UICC which makes use of Ks_int_NAF (e.g. 
decryption of MBMS service key). The ME needs to support the required interface procedures for that UICC 
application. It could be assumed that the NAF obtains UE required feature knowledge via other means than 
the Zn-interface. How this is done is outside the scope of GBA_U and would then have to be addressed in 
the respective application, e.g. MBMS.  



 page 6 

<G+> 
Which MBMS SA3#33 contribution does indicate how the NAF obtains UE required feature knowledge? 
<Sie> 
Did the contribution refer to another contribution ? Note that SA4 still discusses MBMS user capabilities and 
that when knowing that the UE supports MBMS UICC storage is enough to derive that GBA_U is supported 
 
It is important to know the element which sends information on the GBA_U capability of the ME. 
The operator does not store information related to the UE features of a user since the UICC is a portable 
device.  
Information coming from the ME cannot be trusted since fraudulent ME exists. E.g in MBMS context, the 
user is a potential attacker interested in hacking his ME. 
<Sie> 

A hack in the context of GBA cannot be used advantageously and this is different from the MBMS ME ‘key 
distribution hack’ for MTK. The BM-SC decides whether the MBMS service keys shall be stored at the 
UICC (with prerequisite GBA_U key) or the ME (with GBA ME run), which cannot be influenced by the 
malicious ME. 

Suppose that the BM-SC want to deliver MSK to UICC storage of the UE. 

Case 1:  UE supports UICC MBMS storage (and also GBA_U) and downgrades his own settings towards the 
NAF to try to tell it that it only supports GBA_ME (or ME based MBMS services). If the BM-SC will have 
no ks_int_NAF available then it will reject the joining. But as this is a GBA-aware UICC, always GBA_U 
will be run and therefore the BM-SC will sent the key MSK encapsulated with Ks_int_NAF to the UICC, so 
a malicious ME cannot decrypt. 

Case 2: UE does not support UICC MBMS storage. � Here an upgrade of the settings make no sense, 
anyhow the ME is never able to decrypt a key Ks_int_NAF[MSK].      

 

A second solution relies on the use of a GBA_U request flag on the Ub-interface with following 
interpretation: ‘An ME supporting GBA_U UICC interface procedures will set the flag on Ub’. An ME not 
supporting GBA_U UICC interface procedures will not use the flag. If the UICC is GBA aware then the two 
step key derivation is done by the BSF, otherwise a one step key derivation. In case of a GBA_U aware 
UICC, the BSF will forward only Ks_ext_NAF to the NAF if GBA_U was not requested by the ME, 
otherwise both keys will be forwarded to the NAF. If the NAF receives only Ks_ext_NAF then it knows that 
the UE does not support GBA_U (although UICC might be GBA-aware already). But as many applications 
may rely on GBA_U, the NAF cannot conclude from the availability of the key Ks_int_NAF that the UE 
(ME or UICC) supports the application specific use of Ks_int (See previous paragraph). Therefore the 
GBA_U request flag cannot serve in telling the NAF that e.g. UICC-based MBMS key management is 
possible. A GBA_U request flag used in that way could only serve in holding a key Ks_int_NAF back from 
the NAF, which the NAF would not be able to use. This is not considered a sufficient advantage for 
introducing a GBA-request flag.  

Conclusion: There are no advantages seen in using a GBA_U request flag on the Ub-interface.  

<G+> 
The use of GBA_U shall not depend on the ME. An attack consists in having a ME which claims that it does 
not support GBA_U, then the NAF has not longer choice between GBA_U and GBA_ME, it will continue 
with low level of security or will not provide the required service. In MBMS context, the user is a potential 
attacker so the attack on the ME is feasible, it would oblige the delivery of low value content only and there 
would be roaming problem in case of Visited Network mandating UICC-based only solution to protect their 
MBMS Service Keys.  
<Sie> 

See before, a hack does not work. The user hacking his own terminal in order not to be able to consume high 
valued MBMS ? The network (BM-SC) controls the key management and the appropriate level of key 
storage at the ME.    



 page 7 

But, what is the reason to have Rel-6 ME supporting GBA_ME only? GBA is a Rel-6 feature, there is no 
legacy issue. 
<Sie> 

Modularity in terminal feature implementation could be a reason to allow Rel-6 terminals no to implement 
GBA_U interfaces.  
GBA-capable ME shall support both GBA_U and GBA_ME to avoid the security issues identified in the 
previous comments of this section.  
<Sie> 

It is a decision that needs to be taken in SA3 whether we want that modularity or not.  
 
 

 



 page 8 

 

2.5 Migration and impacts to introduce GBA_U. 
Impacts on TS 33.220:  

• Zh-interface: No impacts.  

• Ub-interface protocols: No impacts. 

• Zn-Interface: If GBA_U has been run the BSF forwards both Ks_ext_NAF and Ks_int_NAF and if 
GBA_ME has been run the BSF forwards only Ks_NAF to the NAF. The BSF knows this on the 
basis of a Special-RAND flag.  

• A GBA-aware UICC shall implement GBA_U key derivation to generate Ks_ext and Ks_int from 
Ks.   

• An ME supporting GBA_U type of services needs to be able to initiate the new GBA_U procedures 
on the UICC (i.e. UICC to derive Ks_int_NAF from Ks_int with function h2).  

• NAF: If the BSF forwards both Ks_int_NAF and Ks_ext_NAF to the NAF, the NAF knows that the 
UICC supports GBA_U type of services. The NAF still has to obtain the knowledge about the ME 
capabilities specific to the NAF-application in order to decide whether it can (and wants) to use 
Ks_int_NAF. (The way the NAF obtains this information is outside of GBA_U feature scope and 
specific to each NAF application).  
<G+> 
Confer previous comments. 

<Sie> 

See also before 

 

 

UE 
 

HSS 

BSF 

Ua Ub 

Zh Zn 

NAF 
 

 

Figure 3: GBA architecture and references points from TS 33.220 

 

Impacts on other specifications:  



 page 9 

• TS 31.102 For GBA_U handling on UICC (including h1- key derivation) and Key derivation h2 on 
UICC (T3) 

• TS 29.229 (CN4) to include the Zn-interface impact and for Zh-interface describe the handling at 
BSF and HSS for GBA_U.  

• TS 24.109 to include GBA_U handling at BSF and UE for Ub-interface (CN1)  

 

Migration issues:  

The HSS (AuC) shall be upgraded first before NAFs are introduced in the network that uses the GBA_U 
services and the GBA-aware UICC has to be administrated within the HSS. The HSS (AuC) does NOT need 
to be upgraded in case GBA-aware UICC’s are introduced within the network, but no NAFs make use of it.   

The BSF needs to be upgraded as well; however the upgrade is considered small. The upgrade of the BSF to 
support GBA_U needs to occur no later than that of the HSS. 

A NAF supporting GBA_U signals this on the Zn-interface. A BSF supporting GBA_U will only return 
Ks_ext_NAF to GBA unaware NAFs when a GBA_U run has been performed. .  

Notes on migration:  
The above analysis has been done with the assumption that the BSF will remain within the Home Network. 
This assumption is inline with the analysis that can be found within paper S3-040224 section 2 that 
concludes that there are several security disadvantages in placing the BSF within the Visited Network.  
If the BSF would be placed within the Visited Network then the migration also becomes more complex as 
the migration path requires all BSFs to be updated when the HSS is updated. A problem then occurs if the 
UICC and HSS are GBA_U aware and the BSF (in the Visited Network) is not. Then the BSF will not 
perform the correct translation of the keys, if the HSS sends a GBA_U with Special-RAND. In this case the 
UE and NAF will always end up with different keys. A possible solution to avoid this is to mandate that a 
GBA_U aware BSF requests GBA_U with Special-RAND and a GBA_U aware HSS only sends GBA_U 
AVs when requested. That the HSS recognizes that the AV-request comes from a BSF that supports 
GBA_U, can be done either by explicit parameter or by administration within the HSS. 
 

3 Conclusion 
The proposed concept has been designed carefully to avoid any impacts on the ME based Generic 
Bootstrapping Architecture (TS 33.220 section 4). The Change-requests to TS 33.220 (which are present 
within contributions S3-040216/217 to this meeting), show that this goal has been achieved. Furthermore, the 
issues that were raised at last meeting have been solved and the migration issues are well understood such 
that the concept has reached stability at stage 2 level. The contributing companies therefore propose to adopt 
the proposed GBA_U concept as described within this document. 

SAGE needs to be involved in the specification of the key derivation functions h1 and h2. The function h1 is 
needed for GBA_U in addition to a key derivation function h2 as needed for GBA_ME.  

 

 

4 Change tracking of main changes with respect to 
SA3#32-concept. 

• Removed GBA_U request flag as no advantages are seen (see section 2.4). 



 page 10 

• Introduces a Special-RAND flag for GBA_U in order to avoid upgrading the HSS if at least one 
GBA aware UICC is used. 

• A GBA aware UICC shall be able to provide GBA-service to both ME security services and UICC 
security services i.e. shall generate Ks_int(_NAF) and Ks_ext (A possible example is http digest 
authentication for MBMS key request and the subsequent key delivery). 

<G+> 
This contribution proposes the storage of Ks_ext on the ME while S3-030095 proposes the storage of 
this key on the UICC. Cf previous comments. 
<Sie>  
See my suggestion and explenation before. 
 

• A two step key derivation is performed in stead of the one-step key derivation function. 

• A GBA_U run generates a different RES then a non GBA_U run. 


	S3-040346_S3-040218_comments_G+ Siev2.doc

