

Cellular – WLAN Interworking

Activities in ETSI/MMAC and WIG Status

3GPP SA3 - Munich - 10th October2002 Robert Hancock Siemens/Roke Manor Research

Overview

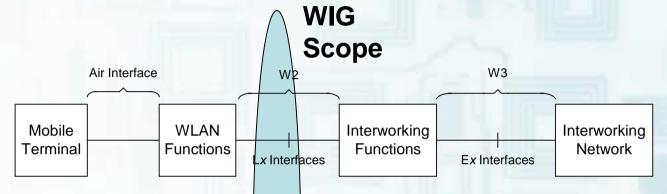
- Organisation who's doing what
 - Current status
- Technical scope
 - Network and layer and functionality boundaries
- Security overview
 - Issues (Q&A)
- Main work is sorting out standardisation scope and domain structure issues
 - Not detailed cryptographic or protocol analysis
 - "Everything is in a state of flux"

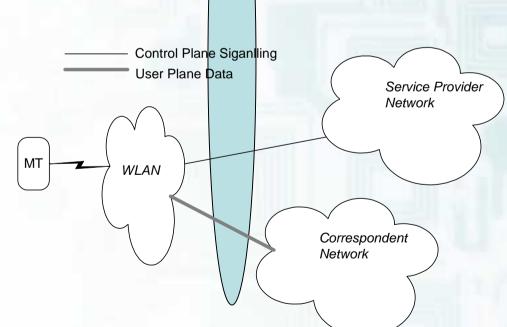
Status and Background

- ETSI BRAN (Hiperlan Area) started requirements and architectures work on integration Hiperlan/2 into UMTS mid-2000
 - TR approved mid-2001
- Work on technical specification started
 - Concentrating on 'loose coupling' architectural approach
 - Phased release concept
 - R1 = mainly basic authentication
 - R2 = everything else

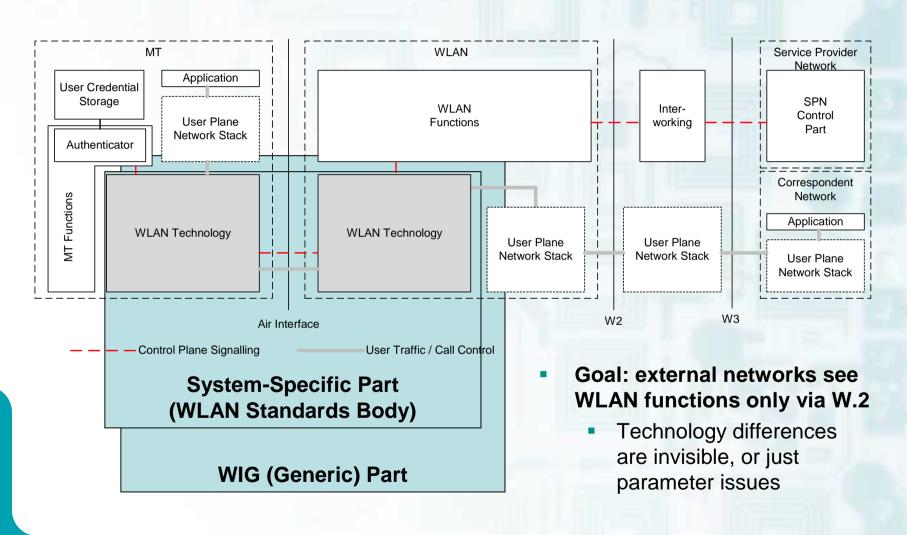
Status: Other Bodies

- MMAC (HiSWANa committee) joined effort to develop "common standard" for Hiperlan/2 and HiSWANa
 - Initial MMAC interworking standard already exists and deployed
- MMAC/ETSI liaison → SA3, S3-020428
 response (which is why I am here)
- Several discussions with IEEE 802.11
 - Subject home is 802.11 WNG steering committee
 - TGi developing MAC security enhancements
 - Uses .1x for authentication extended for key exchange

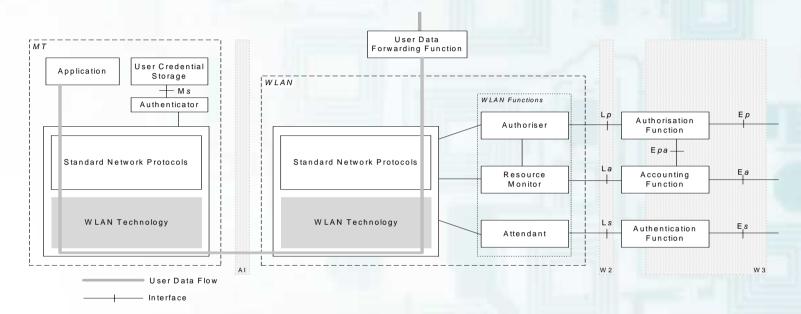

Formation of WIG


- Wireless LAN Interworking Group is a cooperation between ETSI BRAN, MMAC HiSWAN and IEEE 802.11
- Agree a common "interworking reference point" between WLAN standards and "Public" networks (2G, 3G, WISPs, and variants)
- May extend to other short range standards
- No official documents but baseline contribution based on past agreed ETSI DTS text "imminent"
- Liaison WIG → SA3 "imminent"

Scope: Networks



Internal WLAN topology is not visible


Scope: Layers

Scope: Functionality for R1

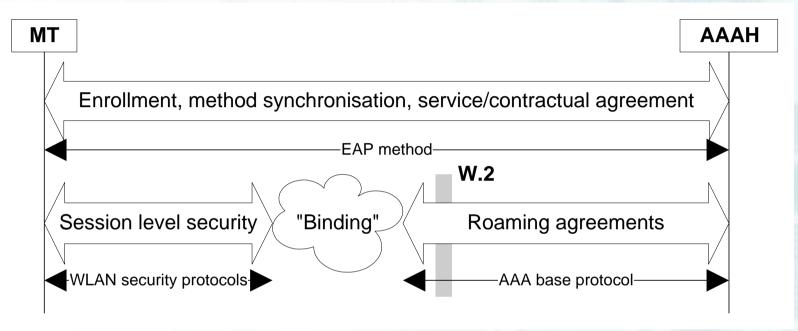
- Ls authentication (and key management)
- Lp authorisation (service filtering)
- La accounting (basic usage reporting)

R1 Functionality Goals

- Detailed requirements developed for Ls, some Lp, a few for La
 - Scope is W.2, not full system
- Authentication: protocol capable of mutual authentication and key management that can support air interface security requirements
- Authorisation: allow network to configure service access (packet filters)
- Accounting: most basic functionality only considered

Protocol for Ls?

- Universal starting assumptions (in BRAN):
- EAP
- Some Diameter application for transport
 - Diameter-EAP or Diameter-NASREQ subset
- Some significant "backwards" compatibility issues not yet discussed
 - CHAP-like authentication in HiSWANa
 - RADIUS (with vendor key AVPs?) in 802.11, HiSWANa


Will WIG Assume XXX?

- Q: Any assumption on use of a xSIM card?
- A: No
 - "Upper layer issue" out of scope of W.2
 - Enforcement of hardware token can be fully controlled by service provider during enrolment
- Q: Any assumption of EAP method?
- A: No
 - Proper analysis is (very) hard
 - Choice might be SPN dependent
 - Properties desired: mutual authentication, MitM protection, identity protection (from AN as well)

"Trust" Architecture

- Trust model is not formally specified
 - But widely assumed (!)
- Hard "binding" problem strictly inside WLAN domain
 - W.2 only addresses the AAA protocol and "application"
 - Could extend all the way to the AP

Key Material Requirements

- Require EAP method to generate keying material for several purposes
 - Initial setup of cryptographic protocols
 - "Association" negotiation post-validation
 - Rekeying (maybe related to re-authentication)
- Most details left to WLAN technology
 - At most, semantics of W.2/"EAP API" events defined
 - Uses of master key material listed
- Issues in multi-stage derivation from master key and cryptographic separation ...

Group-Level Security

- Required to operate a faithful wireless
 Ethernet service
 - ARP, network L2 browsing, future multimedia applications??
- WLAN technologies contain basic concepts for broadcast/multicast security
 - Actual security goals quite variable
- Practical security problems in public environment may well be intractable
- Probably an R2 issue for WIG

WLAN Network Topology

- Security and other relationships are established between MT, AAAH and overall WLAN network
 - WLAN technology must handle security issues for local handover internally
 - E.g. key redistribution, filter list enforcement, accounting
- Internal security of WLAN infrastructure is probably out of scope of WIG and W.2
 - Either totally specific (e.g. 802.10 for IEEE)
 - Or totally generic (IP VPN solutions)
 - Level of integration with WLAN technology unclear

Conclusions

- Based initially on ETSI work, WIG can serve to define a reference point and protocols which enable 3GPP "core" networks to exploit any WLAN technology
- The W.2 interface can be used as a vehicle for defining concrete requirements on the WLAN part of the overall system
 - Very important, especially for security
- Thanks for your time!

Background:

- Further information
 - WIG reflector
 - WIG@list.etsi.fr
 - LS to SA3
 - BRAN30d074 [Draft_LS_to_3GPPSA].doc
 - WIG starting point proposal
 - Currently BRAN30d135 (BRAN/MMAC internal)
 - Will be posted to WIG reflector shortly