3GPP TSG SA WG3 Security — S3#21b S3z020013
31° January - 1° February, 2002

Antwerp, Belgium

Source: Nokia

Title: Proposed additions to 33.200 about COPS usage in Ze interface for Local
Security Association and Policy Distribution

Document for: Discussion

Agenda ltem: MAP-5.4

This contribution proposes additional chapter 8.2 to the section 8 concerning Local Security
Association and Policy Distribution in Ze interface with COPS protocol.

COPS enables already in chapter 8.1 mentioned extended PUSH mechanism for delivering the SA and
policy information to MAP-NEs. This model is scalable, as there is signalling traffic only when
necessary. Additionally, configurations can be modified directly and not only after scheduled updates.
The mechanism also provides possibly existing intrusion detection means to react more quickly.

COPS uses TCP as its transport protocol for reliable exchange of messages between policy clients
and a server. Therefore, no additional mechanisms are necessary for reliable communication between
a server and its clients. COPS provides message level security for authentication, replay protection,
and message integrity. COPS shall utilize 33.210 NDS/IP mechanisms to make confidentiality possible
for delivered MAPSec encryption and integrity keys.

The exact COPS message contents are not defined in this contribute, so COPS extension document is
required.

References

[1] IETF RFC 2748: The COPS (Common Open Policy Service) protocol,
http://www.ietf.org/rfc/rfc2748.txt

[2] IETF RFC 3084: COPS Usage for Policy Provisioning (COPS-PR),
http://www.ietf.org/rfc/rfc3084.txt

[3] IETF Draft (2001): The MAP Security Domain of Interpretation for ISAKMP,

draft-arkko-map-doi-04.txt

8.2 COPS usage in SA and Policy Distribution

Common Open Policy Service protocol is a simple query and response protocol that can be used to
exchange policy information between a policy server (Policy Decision Point or PDP) and its clients
(Policy Enforcement Points or PEPS). The optional Local Policy Decision Point (LPDP) can be used to
make local policy decisions in the absence of a PDP. In MAPSec the MAP-NE acts as PEP and KAC
acts as PDP, LPDP is not utilized.

8.2.1 Establishing COPS connection

Before any COPS transaction can take place between MAP-NE and KAC a communication path has to
be set up between them. MAP-NE having PEP functionality is responsible to establish a TCP session
to KAC.

For opening COPS connection between MAP-NE and KAC MAP-NE sends Client-Open message to
KAC. If KAC accepts the client type, it responds with Client-Accept message. Mandatory parameters
are <PEP identity> in the first message and <Keep Alive timer value> in the second message.

MAP-NE (PEP) KAC (PDP)

y__ |

Client-Open(PEP ID)

Client-Accept(KA timer)

I
|
|
1
|
|

Figure 2: Opening COPS connection

When the connection is established, the MAP-NE sends information about itself to the KAC by sending
Request message. This message contains in the '‘Context’ parameter information that it is a
configuration request message. With that information KAC knows that it must provide security
parameters (policy and SAs) to the MAP-NE. KAC sends Decision message(s), which contain the
security parameters. MAP-NE responds with Report State message to inform KAC about the status of
installation of the security parameters.

MAP-NE (PEP) KAC (PDP)

Request(ClientHandle,Context)

>

Decision(ClientHandle,Decision)

S

Report State(ClientHandle,ReportType)

I
|
|
|
|
:
|
g
|

Figure 3: Basic decision request

8.2.2 Security policy management

The initial policy data delivery is done when MAP-NE has registered to KAC.

When policy is changed in KAC, the necessary information has to be delivered to MAP-NEs too. KAC
knows all MAP-NEs, which have registered as clients to KAC with Client-Open message, and therefore
is able to start delivery of security policy information to all MAP-NEs. KAC uploads the security policy
information to MAP-NEs by sending Decision message to all registered MAP-NEs. The MAP-NE
responds with Report State message to inform KAC about the status of transaction.

MAP-NE (PEP) KAC (PDP)

T
| Administrative
| policy information

Decision(ClientHandle,Decision)
change occurs

<

Report State(ClientHandle,ReportType)

I
|
|
| T
| |
| |
| gl
| |
| |

Figure 4. Policy information update

8.2.3 Security association management

KAC may perform an unsolicited download of MAPSec SA to a MAP-NE by sending Decision
message. <Client Handle> identifies MAP-NE. <Decision> is an installation of configuration data for
MAPSec SA towards a target Security Domain. The procedure is similar to KAC initiated policy
information update.

8.23.1 SA revocation

If SA must be deleted, the initiation must come from KAC. The procedure goes same way as KAC
initiated policy information delivery: KAC invokes Decision message and Decision parameter contains
information that SA must be deleted from SADB.

8.2.4 SA recovery

SA Recovery means a situation where MAP-NE has lost or somehow corrupted all or some of the
MAPSec SAs it has received earlier. E.g. MAP-NE might have gone through a reset. Also the cases
where MAP-NE has not for some reason received an SA or it notices that SA expires and there is not a
new one available are included into SA recovery.

To recover from any obscure state MAP-NE has to initialise a Client-Open and Request procedures to
KAC as described in Establishing COPS connection.

8.2.5 Other mandatory COPS procedures

As interval between MAPSec SA renewals may be a long one, to keep COPS connection and TCP
session alive a Keep-Alive message has to be sent from MAP-NE before KA timer expires. Receiving
node has to echo back the same Keep-Alive message.

o
|

MAP-NE (PEP) KAC (PDP)
T T
| K Ali |
| Keep-Alive I
| >
| |
I Keep-Alive |
I 1
| |
| |

Figure 5: Keep Alive procedure

8.2.6 Manual security association management

If some PLMN supports only manual SA management then it must be possible to manually configure
the parameters to KAC. Delivery of SA to MAP-NEs is handled same way as in automatic SA
management.

Net wor k Wor ki ng Group D. Durham Ed.
Request for Comments: 2748 I ntel
Cat egory: Standards Track J. Boyle
Level 3

R Cohen

Ci sco

S. Herzog

| PHi ghway

R Raj an

AT&T

A. Sastry

Ci sco

January 2000

The COPS (Conmon Open Policy Service) Protoco

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
I nternet community, and requests di scussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this nenpo is unlimnted.

Copyright Notice
Copyright (C) The Internet Society (2000). Al Rights Reserved.
Conventions used in this docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMVENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in [RFC2119].

Abst ract

Thi s docunent describes a sinple client/server nodel for supporting
policy control over QoS signaling protocols. The nodel does not make
any assunptions about the nethods of the policy server, but is based
on the server returning decisions to policy requests. The nodel is
designed to be extensible so that other kinds of policy clients nmay
be supported in the future. However, this docunent nakes no clains
that it is the only or the preferred approach for enforcing future
types of policies.

Durham et al. St andards Track [Page 1]

RFC 2748 COPS January 2000

Table O Contents

1. INntroduCti On. ... 3
1.1 Basic Model 4
2. The Protocol 6
2.1 Common Header 6
2.2 COPS Specific Ghject FOrmats. 8
2.2.1 Handle Qhject (Handle)....... iy 9
2.2.2 Context Ohject (Context)....... ...y 9
2.2.3 In-Interface Chject (ININt).. 10
2.2.4 Qut-Interface Qoject (OUT-INt).... 11
2.2.5 Reason Qbject (Reason)t 12
2.2.6 Decision Qhject (DeCiSion)...... ..o, 12
2.2.7 LPDP Decision Object (LPDPDecision)............. ..., 14
2.2.8 Error Qoject (EBrror). 14
2.2.9 dient Specific Information Cbject (CientSl)............... 15
2.2.10 Keep-Alive Timer Oobject (KATIimMer).........c.oiiiiinan... 15
2.2.11 PEP ldentification Gbject (PEPID).......................... 16
2.2.12 Report-Type Cbject (Report-Type)....... 16
2.2.13 PDP Redirect Address (PDPRedirAddr)............ 16
2.2.14 Last PDP Address (LastPDPAdAr)........... ... 17
2.2.15 Accounting Timer Qbject (AcctTimer).......... oo 17
2.2.16 Message Integrity Object (Integrity)....................... 18
2.3 CommuNi Cati ON. . . oo 19
2.4 Cdient Handle Usage. 21
2.5 Synchronization Behavior............ 21
3. Message Content. 22
3.1 Request (REQ) PEP -> PDP., 22
3.2 Decision (DEC) PDP -> PEP..........c.iiiiii i, 24
3.3 Report State (RPT) PEP -> PDP........ 25
3.4 Delete Request State (DRQ) PEP -> PDP........................ 25
3.5 Synchroni ze State Request (SSQ PDP -> PEP................... 26
3.6 dient-Open (OPN) PEP -> PDP.......... i, 26
3.7 Adient-Accept (CAT) PDP -> PEP.......... 27
3.8 Cient-Close (CC) PEP -> PDP, PDP -> PEP..................... 28
3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP....................... 28
3.10 Synchroni ze State Conplete (SSC) PEP -> PDP.................. 29
4. CommonN Operati ON. e 29
4.1 Security and Sequence Number Negotiation...................... 29
4.2 Key Mai NEENANCE. 31
4.3 PEP Initialization. e 31
4.4 Qutsourcing Operati ONS.ttt e e 32
4.5 Configuration Qperati ONS. 32
4.6 Keep-Alive Operati Ons.t e 33
4.7 PEP/ PDP €l 0Se. . ottt e e 33
5. Security Considerati ons. 33
6. TANA Considerati ONS. e 34

Durham et al. St andards Track [Page 2]

RFC 2748 COPS January 2000

7. References. 35
8. Author Information and Acknowl edgments......................... 36
9. Full Copyright Statement............. 38

1. Introduction

Thi s docunent describes a sinple query and response protocol that can
be used to exchange policy infornmation between a policy server
(Policy Decision Point or PDP) and its clients (Policy Enforcenent
Points or PEPs). One exanple of a policy client is an RSVP router
that nmust exercise policy-based adm ssion control over RSVP usage
[RSVP]. We assune that at |east one policy server exists in each
controll ed admi nistrative domain. The basic nodel of interaction
between a policy server and its clients is conpatible with the
framewor k docunent for policy based admi ssion control [WRK].

A chi ef objective of this policy control protocol is to begin with a
sinpl e but extensible design. The main characteristics of the COPS
protocol include:

1. The protocol enploys a client/server nodel where the PEP sends
requests, updates, and deletes to the renote PDP and the PDP
returns decisions back to the PEP

2. The protocol uses TCP as its transport protocol for reliable
exchange of nessages between policy clients and a server
Therefore, no additional nechanisns are necessary for reliable
communi cati on between a server and its clients.

3. The protocol is extensible in that it is designed to | everage
of f self-identifying objects and can support diverse client
specific information without requiring nodifications to the
COPS protocol itself. The protocol was created for the genera
adm ni stration, configuration, and enforcenent of policies.

4. COPS provides nmessage | evel security for authentication, replay
protection, and nessage integrity. COPS can al so reuse existing
protocols for security such as IPSEC [IPSEC] or TLS to
aut henti cate and secure the channel between the PEP and the
PDP.

5. The protocol is stateful in two main aspects: (1)
Request/ Deci sion state is shared between client and server and
(2) State fromvarious events (Request/Decision pairs) may be
i nter-associated. By (1) we nean that requests fromthe client
PEP are installed or renenbered by the remote PDP until they
are explicitly deleted by the PEP. At the sane tine, Decisions
fromthe renote PDP can be generated asynchronously at any tine

Durham et al. St andards Track [Page 3]

RFC 2748 COPS January 2000

for a currently installed request state. By (2) we nean that
the server may respond to new queries differently because of
previously install ed Request/Decision state(s) that are
rel at ed.

6. Additionally, the protocol is stateful in that it allows the
server to push configuration information to the client, and
then allows the server to renove such state fromthe client
when it is no | onger applicable.

1.1 Basic Mbdel

Pol i cy Server

>

Figure 1. A COPS illustration.

Figure 1 Illustrates the layout of various policy conponents in a
typi cal COPS exanple (taken from|[WRK]). Here, COPS is used to
comruni cate policy infornmation between a Policy Enforcenent Point
(PEP) and a renote Policy Decision Point (PDP) within the context of
a particular type of client. The optional Local Policy Decision Point
(LPDP) can be used by the device to nake | ocal policy decisions in

t he absence of a PDP

It is assuned that each participating policy client is functionally
consistent with a PEP [WRK]. The PEP may conmmuni cate with a policy
server (herein referred to as a renote PDP [WRK]) to obtain policy
deci sions or directives.

The PEP is responsible for initiating a persistent TCP connection to
a PDP. The PEP uses this TCP connection to send requests to and
recei ve decisions fromthe renote PDP. Conmuni cation between the PEP
and renote PDP is mainly in the formof a stateful request/decision
exchange, though the renote PDP may occasionally send unsolicited

Durham et al. St andards Track [Page 4]

RFC 2748 COPS January 2000

decisions to the PEP to force changes in previously approved request
states. The PEP al so has the capacity to report to the renote PDP
that it has successfully conpleted perfornmng the PDP s deci sion

|l ocally, useful for accounting and nonitoring purposes. The PEP is
responsi ble for notifying the PDP when a request state has changed on
the PEP. Finally, the PEP is responsible for the deletion of any
state that is no | onger applicable due to events at the client or

deci sions issued by the server

When the PEP sends a configuration request, it expects the PDP to
continuously send naned units of configuration data to the PEP via
deci si on nessages as applicable for the configuration request. Wen a
unit of named configuration data is successfully installed on the
PEP, the PEP should send a report nessage to the PDP confirm ng the
installation. The server may then update or renove the naned
configuration information via a new deci si on nmessage. \Wen the PDP
sends a decision to renpve named configuration data fromthe PEP, the
PEP will delete the specified configuration and send a report nessage
to the PDP as confirmation

The policy protocol is designed to conmunicate self-identifying

obj ects which contain the data necessary for identifying request
states, establishing the context for a request, identifying the type
of request, referencing previously installed requests, relaying
policy decisions, reporting errors, providing nessage integrity, and
transferring client specific/namespace information.

To distinguish between different kinds of clients, the type of client
is identified in each nessage. Different types of clients may have
different client specific data and may require different kinds of
policy decisions. It is expected that each new client-type will have
a correspondi ng usage draft specifying the specifics of its
interaction with this policy protocol

The context of each request corresponds to the type of event that
triggered it. The COPS Context object identifies the type of request
and nessage (if applicable) that triggered a policy event via its
nmessage type and request type fields. COPS identifies three types of
out sourcing events: (1) the arrival of an inconing nessage (2)

al l ocation of |ocal resources, and (3) the forwarding of an outgoing
message. Each of these events may require different decisions to be
made. The content of a COPS request/deci sion nessage depends on the
context. A fourth type of request is useful for types of clients that
wi sh to receive configuration information fromthe PDP. This allows a
PEP to issue a configuration request for a specific naned device or
nmodul e that requires configuration information to be installed.

Durham et al. St andards Track [Page 5]

RFC 2748 COPS January 2000

The PEP may al so have the capability to nake a |l ocal policy decision
via its Local Policy Decision Point (LPDP) [WRK], however, the PDP
remai ns the authoritative decision point at all times. This neans
that the relevant | ocal decision information nmust be relayed to the
PDP. That is, the PDP nust be granted access to all rel evant
information to nake a final policy decision. To facilitate this
functionality, the PEP nust send its local decision information to
the renote PDP via an LPDP decision object. The PEP nust then abide
by the PDP's decision as it is absolute.

Finally, fault tolerance is a required capability for this protocol
particularly due to the fact it is associated with the security and
servi ce managenent of distributed network devices. Fault tolerance
can be achi eved by having both the PEP and renpte PDP constantly
verify their connection to each other via keep-alive nessages. \Wen a
failure is detected, the PEP nust try to reconnect to the renote PDP
or attenpt to connect to a backup/alternative PDP. Wile

di sconnected, the PEP should revert to naking |ocal decisions. Once a
connection is reestablished, the PEP is expected to notify the PDP of
any deleted state or new events that passed | ocal adnission contro
after the connection was lost. Additionally, the renpte PDP nay
request that all the PEP's internal state be resynchronized (al
previously installed requests are to be reissued). After failure and
before the new connection is fully functional, disruption of service
can be nmnimzed if the PEP caches previously conmruni cated deci sions
and continues to use themfor some linmited anmount of tine. Sections
2.3 and 2.5 detail COPS nechanisns for achieving reliability.

2. The Protocol

This section describes the nessage formats and obj ects exchanged
bet ween the PEP and renote PDP

2.1 Common Header

Each COPS nmessage consists of the COPS header followed by a nunber of
typed obj ects.

0 1 2 3
o e e . R o e +
| Version| Fl ags| O Code | dient-type |
[[[[+
| Message Length |
o e e . R o e +

Gd obal note: //// inplies field is reserved, set to O.

Durham et al. St andards Track [Page 6]

RFC 2748 COPS January 2000

The fields in the header are:
Version: 4 bits
COPS version nunber. Current version is 1.

Flags: 4 bits
Defined flag values (all other flags MJST be set to 0):
Ox1 Solicited Message Flag Bit
This flag is set when the nmessage is solicited by
anot her COPS nessage. This flag is NOT to be set
(val ue=0) unl ess otherw se specified in section 3.

O Code: 8 bits
The COPS operations:

1 = Request (REQ
2 = Decision (DEC)
3 = Report State (RPT)
4 = Del ete Request State (DRQ
5 = Synchroni ze State Req (SSQ
6 = dient-Open (OPN)
7 = dient-Accept (CAT)
8 = Cient-dose (CO
9 = Keep-Alive (KA)
10= Synchroni ze Conpl ete (SSC)

Client-type: 16 bits

The Cient-type identifies the policy client. Interpretation of
all encapsul ated objects is relative to the client-type. dient-
types that set the nost significant bit in the client-type field
are enterprise specific (these are client-types 0x8000 -

OXFFFF). (See the specific client usage docunents for particul ar
client-type IDs). For KA Messages, the client-type in the header
MJST al ways be set to 0 as the KA is used for connection
verification (not per client session verification).

Message Length: 32 bits

Size of nessage in octets, which includes the standard COPS
header and all encapsul ated objects. Messages MJST be aligned on
4 octet intervals.

Durham et al. St andards Track [Page 7]

RFC 2748 COPS January 2000

2.2 COPS Specific Object Formats

Al the objects follow the sane object format; each object consists
of one or nore 32-bit words with a four-octet header, using the
follow ng format:

0 1 2 3
S S S S +
| Length (octets) | C-Num | C Type |
S S S S +
| |
/1 (Qbj ect contents) /1
| |
S S S S +

The length is a two-octet value that describes the nunber of octets
(including the header) that conpose the object. If the Iength in
octets does not fall on a 32-bit word boundary, paddi ng MUST be added
to the end of the object so that it is aligned to the next 32-bit
boundary before the object can be sent on the wire. On the receiving
si de, a subsequent object boundary can be found by sinply roundi ng up
the previous stated object length to the next 32-bit boundary.

Typically, CGNumidentifies the class of information contained in the
object, and the C Type identifies the subtype or version of the
i nformati on contained in the object.

C-num 8 bits

1 = Handl e

2 = Context

3 =1In Interface

4 = Qut Interface

5 = Reason code

6 = Deci sion

7 = LPDP Deci sion

8 = Error

9 =dient Specific Info
10 = Keep-Alive Tiner

11 = PEP ldentification
12 = Report Type

13 = PDP Redirect Address
14 = Last PDP Address

15 = Accounting Timer

16 = Message Integrity

C-type: 8 bits
Val ues defined per C num

Durham et al. St andards Track [Page 8]

RFC 2748 COPS January 2000

2.2.1 Handl e hject (Handle)

The Handl e Object encapsul ates a unique value that identifies an
installed state. This identification is used by nost COPS operations.
A state corresponding to a handle MJST be explicitly deleted when it
is no longer applicable. See Section 2.4 for details.

CNum=1
C-Type = 1, dient Handle.

Variable-length field, no inplied format other than it is unique from
other client handles fromthe sanme PEP (a.k.a. COPS TCP connecti on)
for a particular client-type. It is always initially chosen by the
PEP and t hen del eted by the PEP when no | onger applicable. The client
handle is used to refer to a request state initiated by a particul ar
PEP and installed at the PDP for a client-type. A PEP will specify a
client handle in its Request nessages, Report nessages and Del ete
nmessages sent to the PDP. In all cases, the client handle is used to
uniquely identify a particular PEP' s request for a client-type.

The client handle value is set by the PEP and is opaque to the PDP
The PDP sinply perforns a byte-w se conparison on the value in this
object with respect to the handl e object values of other currently
installed requests.

2.2.2 Context Object (Context)

Specifies the type of event(s) that triggered the query. Required for
request messages. Admi ssion control, resource allocation, and
forwarding requests are all anenable to client-types that outsource
their decision making facility to the PDP. For applicable client-
types a PEP can al so nake a request to receive named configuration
information fromthe PDP. This named configuration data may be in a
formuseful for setting systemattributes on a PEP, or it may be in
the formof policy rules that are to be directly verified by the PEP

Mul tiple flags can be set for the sane request. This is only all owed,
however, if the set of client specific information in the conbined
request is identical to the client specific information that would be
specified if individual requests were nade for each specified flag.

Cnum= 2, CType =1

Durham et al. St andards Track [Page 9]

RFC 2748 COPS January 2000

0 1 2 3
tmmm e ae e tmmmmmm e ae e T Hmmmmmm e ae e +
| R- Type | M Type
[[[R +

R- Type (Request Type Fl ag)

0x01 = I ncom ng- Message/ Adni ssi on Control request
0x02 = Resource-Allocation request

0x04 = Qut goi ng- Message request

0x08 = Configuration request

M Type (Message Type)
Cient Specific 16 bit val ues of protocol nessage types
2.2.3 In-Interface Object (INInNt)

The In-Interface Cbject is used to identify the incom ng interface on
which a particular request applies and the address where the received
message originated. For flows or nessages generated fromthe PEP s

| ocal host, the | oop back address and ifindex are used.

This Interface object is also used to identify the incom ng
(receiving) interface via its ifindex. The ifindex may be used to
differentiate between sub-interfaces and unnunbered interfaces (see
RSVP's LIH for an exanple). Wien SNWMP is supported by the PEP, this
i findex integer MJST correspond to the sane integer value for the
interface in the SNMP MB-11 interface index table.

Note: The ifindex specified in the In-Interface is typically relative
to the flow of the underlying protocol nessages. The ifindex is the
i nterface on which the protocol nessage was received

CNum= 3

C-Type = 1, IPv4 Address + Interface

0 1 2 3
e e e o e e e e o e e o e e o +
| | Pv4 Address fornat |
o e e oo o e e oo o e e oo o e e o +
| i findex
e e e o e e e e o e e o e e o +

For this type of the interface object, the IPv4 address specifies the
| P address that the incom ng nessage came from

Durham et al. St andards Track [Page 10]

RFC 2748 COPS January 2000

C- Type = 2, I Pv6 Address + Interface

0 1 2 3

[[[R +
| |
+ +
| |
+ | Pv6 Address format +
| |
+ +
| |
tmmm e ae e tmmmmmm e ae e T Hmmmmmm e ae e +
| i findex

[[[R +

For this type of the interface object, the IPv6 address specifies the
| P address that the inconing nessage cane from The ifindex is used
to refer to the MB-11 defined |ocal inconmng interface on the PEP as
descri bed above.

2.2.4 Qut-Interface Object (OUT-Int)

The Qut-Interface is used to identify the outgoing interface to which
a specific request applies and the address for where the forwarded
message is to be sent. For flows or nessages destined to the PEP' s

| ocal host, the | oop back address and ifindex are used. The CQut-
Interface has the sane formats as the In-Interface Object.

This Interface object is also used to identify the outgoing
(forwarding) interface via its ifindex. The ifindex may be used to
differentiate between sub-interfaces and unnunbered interfaces (see
RSVP's LIH for an exanple). Wien SNMP is supported by the PEP, this
i findex integer MJST correspond to the sane integer value for the
interface in the SNMP MB-11 interface index table.

Note: The ifindex specified in the Qut-Interface is typically
relative to the flow of the underlying protocol nessages. The ifindex
is the one on which a protocol nessage is about to be forwarded.
CNum = 4
C-Type = 1, IPv4 Address + Interface
Same C-Type format as the In-Interface object. The | Pv4 address
specifies the I P address to which the outgoing nessage is going. The

ifindex is used to refer to the MB-11 defined | ocal outgoing
interface on the PEP

Durham et al. St andards Track [Page 11]

RFC 2748 COPS January 2000

C- Type = 2, I Pv6 Address + Interface

Same C-Type format as the In-Interface object. For this type of the
interface object, the I Pv6 address specifies the I P address to which
the outgoing nmessage is going. The ifindex is used to refer to the
MB-I11 defined | ocal outgoing interface on the PEP

2.2.5 Reason hj ect (Reason)

Thi s object specifies the reason why the request state was del eted.
It appears in the delete request (DRQ nessage. The Reason Sub-code
field is reserved for nore detailed client-specific reason codes
defined in the correspondi ng docunents.

0 1 2 3
[[[R +
| Reason- Code Reason Sub- code
tmmm e ae e tmmmmmm e ae e T Hmmmmmm e ae e +

Reason Code

1 = Unspecified

2 = Managenent

3 = Preenpted (Another request state takes precedence)
4 = Tear (Used to communicate a signaled state renoval)
5 = Tinmeout (Local state has tined-out)

6 = Route Change (Change invalidates request state)

7 = Insufficient Resources (No |ocal resource avail able)
8 = PDP's Directive (PDP decision caused the del ete)

9 = Unsupported decision (PDP decision not supported)
10= Synchroni ze Handl e Unknown

11= Transient Handl e (statel ess event)

12= Mal f or med Deci sion (could not recover)

13= Unknown COPS bj ect from PDP

Sub-code (octet 2) contains unknown object’s C Num
and (octet 3) contains unknown object’s C Type.

2.2.6 Decision Object (Decision)
Deci sion made by the PDP. Appears in replies. The specific non-

mandat ory deci sion objects required in a decision to a particular
request depend on the type of client.

Durham et al. St andards Track [Page 12]

RFC 2748 COPS January 2000

C- Num =

C- Type = 1, Decision Flags (Mandatory)

0 1 2 3
[[[R +
| Conmand- Code Fl ags
o e e e o e e R o e e e +

Commands:
0 NULL Deci sion (No configuration data avail abl e)

1 = Install (Adnmit request/Install configuration)
2 = Renove (Renobve request/Renmove configuration)

Fl ags:
O0x01 = Trigger Error (Trigger error message if set)
Note: Trigger Error is applicable to client-types that
are capabl e of sending error notifications for signaled
nessages.

Fl ag val ues not applicable to a given context’s R Type or
client-type MJUST be ignhored by the PEP

C-Type = 2, Stateless Data

This type of decision object carries additional stateless

i nformati on that can be applied by the PEP locally. It is a
variable length object and its internal format SHOULD be
specified in the relevant COPS extension docunent for the given
client-type. This object is optional in Decision nessages and is
interpreted relative to a given context.

It is expected that even outsourcing PEPs will be able to neke
sonme sinple stateless policy decisions locally in their LPDP. As
this set is well known and i npl enmented ubi quitously, PDPs are
aware of it as well (either universally, through configuration
or using the dient-Open nessage). The PDP may al so include this
information in its decision, and the PEP MJUST apply it to the
resource allocation event that generated the request.

C-Type = 3, Replacenent Data

This type of decision object carries replacenent data that is to
repl ace existing data in a signaled nessage. It is a variable

I ength object and its internal format SHOULD be specified in the
rel evant COPS extension docunent for the given client-type. It is
optional in Decision nessages and is interpreted relative to a

gi ven cont ext.

Durham et al. St andards Track [Page 13]

RFC 2748 COPS January 2000

C-Type = 4, Cient Specific Decision Data

Addi ti onal decision types can be introduced using the dient
Specific Decision Data Cbject. It is a variable length object and
its internal format SHOULD be specified in the rel evant COPS
extensi on docunent for the given client-type. It is optional in
Deci sion nessages and is interpreted relative to a given context.

C-Type = 5, Naned Decision Data

Named configuration information is encapsulated in this version
of the decision object in response to configuration requests. It
is a variable length object and its internal format SHOULD be
specified in the rel evant COPS extension docunent for the given
client-type. It is optional in Decision nmessages and is
interpreted relative to both a given context and decision flags.

2.2.7 LPDP Decision Object (LPDPDeci sion)

Deci sion made by the PEP's | ocal policy decision point (LPDP). My
appear in requests. These objects correspond to and are formatted the
same as the client specific decision objects defined above.

C-Num = 7
C-Type = (sane C- Type as for Decision objects)
2.2.8 Error Object (Error)

This object is used to identify a particular COPS protocol error

The error sub-code field contains additional detailed client specific
error codes. The appropriate Error Sub-codes for a particul ar
client-type SHOULD be specified in the rel evant COPS extensi ons

docunent .
CNum= 8, CGType =1
0 1 2 3
tmmm e ae e tmmmmmm e ae e T Hmmmmmm e ae e +
| Er r or - Code Error Sub-code
tmmm e ae e tmmmmmm e ae e T Hmmmmmm e ae e +
Er r or - Code:
1 = Bad handl e
2 = Invalid handl e reference
3 = Bad nessage format (Mal fornmed Message)
4 = Unabl e to process (server gives up on query)

Durham et al. St andards Track [Page 14]

RFC 2748 COPS January 2000

Mandatory client-specific info m ssing
Unsupported client-type

Mandat ory COPS obj ect m ssing

Cient Failure

Conmuni cati on Failure

10= Unspecified

11= Shutting down

12= Redirect to Preferred Server

13= Unknown COPS bj ect:

© o0o~NO O
o

Sub-code (octet 2) contains unknown object’s C Num

and (octet 3) contains unknown object’s C Type.
14= Aut hentication Failure
15= Aut henti cati on Required

2.2.9 dient Specific Information bject (dientSl)

The various types of this object are required for requests, and used
in reports and opens when required. It contains client-type specific

i nformati on.
C-Num = 9,

C-Type = 1, Signaled CientSl

Variable-length field. Al objects/attributes specific to a client’s

signaling protocol or internal state are encapsul ated wi thin one or

nore signaled Client Specific Information Qbjects. The format of the

data encapsulated in the CientSl object is determ ned by the
client-type.

C-Type = 2, Naned dientSl
Variabl e-1ength field. Contains named configuration information
useful for relaying specific information about the PEP, a request,
configured state to the PDP server.

2.2.10 Keep-Alive Tiner Object (KATi nmer)

Times are encoded as 2 octet integer values and are in units of
seconds. The timer value is treated as a delta.

G Num = 10,

C- Type = 1, Keep-alive tiner value

or

Durham et al. St andards Track [Page 15]

RFC 2748 COPS January 2000

Ti mer object used to specify the maxinumtinme interval over which a
COPS nmessage MJST be sent or received. The range of finite tineouts
is 1 to 65535 seconds represented as an unsi gned two-octet integer
The val ue of zero inplies infinity.

0 1 2 3
Fom e o Fom e oo om e oo Fom e e +
| [Hrrrrrrrrrrnd | KA Tinmer Val ue
Fom e a o Fom e o Fom e oo Fom e oo +

2.2.11 PEP ldentification Object (PEPID)

The PEP Identification Object is used to identify the PEP client to
the renote PDP. It is required for Cient-Open nessages.

CNum= 11, CType =1

Variable-length field. It is a NULL ternminated ASCI| string that is
al so zero padded to a 32-bit word boundary (so the object length is a
mul tiple of 4 octets). The PEPID MJUST contain an ASCI| string that
uniquely identifies the PEP within the policy domain in a manner that
is persistent across PEP reboots. For exanple, it nmay be the PEP s
statically assigned I P address or DNS nanme. This identifier may
safely be used by a PDP as a handle for identifying the PEP in its
policy rules.

2.2.12 Report-Type Object (Report-Type)
The Type of Report on the request state associated with a handl e:

CNum= 12, CType =1

0 1 2 3
TS S [TS TS +
| Report - Type FHEEHErrrrrr
o e e e o e e R o e e e +

Report - Type:

1 = Success . Decision was successful at the PEP
2 = Failure . Decision could not be conpleted by PEP
3 = Accounting: Accounting update for an installed state

2.2.13 PDP Redirect Address (PDPRedirAddr)
A PDP when cl osing a PEP session for a particular client-type nmay

optionally use this object to redirect the PEP to the specified PDP
server address and TCP port nunber:

Durham et al. St andards Track [Page 16]

RFC 2748 COPS January 2000

C-Num = 13,
C-Type = 1, | Pv4 Address + TCP Port
0 1 2 3

[[[R +
| | Pv4 Address fornat |
tmmm e ae e tmmmmmm e ae e T Hmmmmmm e ae e +
| /1 rrrrrrrrrl TCP Port Nunber |
e o +

0 1 2 3
TS S [TS TS +
| |
+ +
| |
+ | Pv6 Address fornmat +
| |
+ +
| |
o e e e o e e R o e e e +
| /0 rrrrrrrrl TCP Port Nunber |
o e m e e e e e e e e o m e m e e e e e e e e e e oo +

2.2.14 Last PDP Address (Last PDPAddr)
When a PEP sends a dient-Qpen nessage for a particular client-type
the PEP SHOULD specify the last PDP it has successfully opened
(nmeaning it received a Cient-Accept) since the PEP | ast rebooted.
If no PDP was used since the last reboot, the PEP will sinply not
include this object in the dient-Qpen nessage.
C- Num = 14,
C- Type = 1, 1Pv4 Address (Same format as PDPRedir Addr)
C-Type = 2, IPv6 Address (Sane format as PDPRedi r Addr)
2.2.15 Accounting Tinmer Cbject (AcctTiner)

Times are encoded as 2 octet integer values and are in units of
seconds. The tinmer value is treated as a delta.

C-Num = 15,

C- Type = 1, Accounting tiner val ue

Durham et al. St andards Track [Page 17]

RFC 2748 COPS January 2000

Optional timer value used to deternmine the mininmuminterval between
peri odi c accounting type reports. It is used by the PDP to describe
to the PEP an acceptable interval between unsolicited accounting
updates via Report nessages where applicable. It provides a nethod
for the PDP to control the anmount of accounting traffic seen by the
network. The range of finite tine values is 1 to 65535 seconds
represented as an unsigned two-octet integer. A value of zero neans
there SHOULD be no unsolicited accounting updates.

0 1 2 3
Fom e o om e oo Fom e Fom e +
| LHELEErrrrrtr | ACCT Ti ner Val ue
om e e oo om e a o Fom e a o om e a o +

2.2.16 Message Integrity Object (Integrity)

The integrity object includes a sequence nunber and a message di gest
useful for authenticating and validating the integrity of a COPS
message. Wen used, integrity is provided at the end of a COPS
nmessage as the |ast COPS object. The digest is then conputed over al
of a particular COPS nessage up to but not including the digest val ue
itself. The sender of a COPS nessage will conpute and fill in the
digest portion of the Integrity object. The receiver of a COPS
nmessage will then conpute a digest over the received nessage and
verify it matches the digest in the received Integrity object.

C-Num = 16,
C- Type = 1, HMAC di gest

The HVAC integrity object enploys HVAC (Keyed-Hashing for Message
Aut hentication) [HVMAC] to cal cul ate the nessage di gest based on a key
shared between the PEP and its PDP

This Integrity object specifies a 32-bit Key ID used to identify a
specific key shared between a particular PEP and its PDP and the
cryptographic algorithmto be used. The Key ID allows for nultiple

si mul t aneous keys to exist on the PEP with correspondi ng keys on the
PDP for the given PEPID. The key identified by the Key ID was used to
conpute the nessage digest in the Integrity object. A

i mpl enentations, at a mnimum MJST support HMAC- MD5- 96, which is
HVAC enpl oyi ng the MD5 Message-Digest Algorithm [MD5] truncated to
96-bits to cal cul ate the nessage digest.

Thi s object also includes a sequence nunber that is a 32-bit unsigned
i nteger used to avoid replay attacks. The sequence nunber is
initiated during an initial Cient-Open Cient-Accept nessage
exchange and is then increnented by one each tine a new nessage is

Durham et al. St andards Track [Page 18]

RFC 2748 COPS January 2000

sent over the TCP connection in the sane direction. If the sequence
nunber reaches the val ue of OxFFFFFFFF, the next increnment will
sinply rollover to a value of zero

The variable length digest is calculated over a COPS nessage starting
with the COPS Header up to the Integrity bject (which MIST be the

| ast object in a COPS nessage) I NCLUDI NG the Integrity object’s
header, Key |ID, and Sequence Nunber. The Keyed Message Digest field
is not included as part of the digest calculation. In the case of
HVAC- MD5- 96, HMAC- MD5 wil |l produce a 128-bit digest that is then to
be truncated to 96-bits before being stored in or verified agai nst
the Keyed Message Digest field as specified in [HVMAC]. The Keyed
Message Di gest MUST be 96-bits when HMAC- MD5-96 is used.

0 1 2 3
tmmmmmm e g B g B g +
| Key | D I
S S S S +
| Sequence Numnber |
tmmmmmm e g B g B g +
| |
+ +
| ... Keyed Message Digest... |
+ +
| |
tmmmmmm e g B g B g +

2.3 Comuni cati on

The COPS protocol uses a single persistent TCP connection between the
PEP and a renote PDP. One PDP inplenentation per server MJST |isten
on a well-known TCP port nunber (COPS=3288 [IANA]). The PEP is
responsible for initiating the TCP connection to a PDP. The | ocation
of the renote PDP can either be configured, or obtained via a service
| ocati on mechani sm[SRVLOC]. Service discovery is outside the scope
of this protocol, however

If a single PEP can support nmultiple client-types, it may send
multiple Cient-Open nmessages, each specifying a particular client-
type to a PDP over one or nore TCP connections. Likew se, a PDP
residing at a given address and port nunmber nmay support one or nore
client-types. Gven the client-types it supports, a PDP has the
ability to either accept or reject each client-type independently.
If a client-type is rejected, the PDP can redirect the PEP to an
alternative PDP address and TCP port for a given client-type via
COPs. Different TCP port nunbers can be used to redirect the PEP to
anot her PDP inplenmentation running on the sanme server. Additiona
provi sions for supporting nultiple client-types (perhaps from

Durham et al. St andards Track [Page 19]

RFC 2748 COPS January 2000

i ndependent PDP vendors) on a single renote PDP server are not
provided by the COPS protocol, but, rather, are left to the software
architecture of the given server platform

It is possible a single PEP may have open connections to nultiple
PDPs. This is the case when there are physically different PDPs
supporting different client-types as shown in figure 2.

S +

| | _

| Network Node | Policy Servers
| |

| - + | COPS dient Type 1 +----- +
o | <o >| PDP1|
| + PEP + | COPS dient Type 2 +----- +
| EEERIEEEEEEEES \ oo
| eem-- + | L | PDP2|
| A | L +
| | |

| \ -4 -- - - + |

| | LPDP| |

| Hoo- - + |

| |

S +

Figure 2: Multiple PDPs illustration

When a TCP connection is torn down or is lost, the PDP is expected to
eventual ly clean up any outstandi ng request state related to
request/ deci si on exchanges with the PEP. When the PEP detects a | ost
connection due to a tineout condition it SHOULD explicitly send a
Client-C ose nessage for each opened client-type containing an
<Error> object indicating the "Comruni cation Failure" Error-Code.

Addi tionally, the PEP SHOULD continuously attenpt to contact the
primary PDP or, if unsuccessful, any known backup PDPs. Specifically
the PEP SHOULD keep trying all relevant PDPs with which it has been
configured until it can establish a connection. If a PEP is in
comruni cation with a backup PDP and the prinary PDP becones
avai | abl e, the backup PDP is responsible for redirecting the PEP back
to the primary PDP (via a <Client-C ose> nessage containing a
<PDPRedi r Addr > obj ect identifying the primary PDP to use for each
affected client-type). Section 2.5 details synchronizati on behavi or
bet ween PEPs and PDPs.

Durham et al. St andards Track [Page 20]

RFC 2748 COPS January 2000

2.4 Cdient Handl e Usage

The client handle is used to identify a unique request state for a
single PEP per client-type. Cient handl es are chosen by the PEP and
are opaque to the PDP. The PDP sinply uses the request handle to
uniquely identify the request state for a particular dient-Type over
a particular TCP connection and generically tie its decisions to a
corresponding request. Client handles are initiated in request
nmessages and are then used by subsequent request, decision, and
report nessages to reference the sanme request state. Wen the PEP is
ready to renove a local request state, it will issue a del ete nessage
to the PDP for the corresponding client handle. A handle MJST be
explicitly deleted by the PEP before it can be used by the PEP to
identify a new request state. Handles referring to different request
states MUST be unique within the context of a particular TCP
connection and client-type.

2.5 Synchroni zati on Behavi or

Wien di sconnected froma PDP, the PEP SHOULD revert to making | oca
deci sions. Once a connection is reestablished, the PEP is expected to
notify the PDP of any events that have passed | ocal adm ssion
control. Additionally, the renote PDP nmay request that all the PEP s
internal state be resynchroni zed (all previously installed requests
are to be reissued) by sending a Synchronize State nessage.

After a failure and before a new connection is fully functional

di sruption of service can be mnimzed if the PEP caches previously
comuni cat ed deci sions and continues to use them for sone appropriate
length of tine. Specific rules for such behavior are to be defined in
the appropriate COPS client-type extension specifications.

A PEP that caches state from a previous exchange with a di sconnected
PDP MJST commruni cate this fact to any PDP with which it is able to

| ater reconnect. This is acconplished by including the address and
TCP port of the last PDP for which the PEP is still caching state in
the Cient-Open nessage. The <Last PDPAddr> object will only be

i ncluded for the last PDP with which the PEP was conpletely in sync.

If the service interruption was tenporary and the PDP still contains
the conplete state for the PEP, the PDP nay choose not to synchronize
all states. It is still the responsibility of the PEP to update the

PDP of all state changes that occurred during the disruption of
service including any states comruni cated to the previ ous PDP that
had been deleted after the connection was |ost. These MJST be
explicitly deleted after a connection is reestablished. If the PDP

i ssues a synchroni ze request the PEP MJST pass all current states to
the PDP followed by a Synchronize State Conpl ete nessage (thus

Durham et al. St andards Track [Page 21]

RFC 2748 COPS January 2000

conpl eting the synchroni zati on process). |If the PEP crashes and | oses
all cached state for a client-type, it will sinply not include a
<Last PDPAddr> in its Cient-QOpen nessage.

3. Message Content

This section describes the basic nessages exchanged between a PEP and
a renote PDP as well as their contents. As a convention, object
ordering is expected as shown in the BNF for each COPS nessage unl ess
otherwi se noted. The Integrity object, if included, MJST al ways be
the I ast object in a nessage. If security is required and a nessage
was received without a valid Integrity object, the receiver MIST send
a Cient-C ose nessage for Cient-Type=0 specifying the appropriate
error code.

3.1 Request (REQ PEP -> PDP

The PEP establishes a request state client handle for which the
renote PDP nay nmintain state. The renote PDP then uses this handle
to refer to the exchanged informati on and deci si ons conmuni cat ed over
the TCP connection to a particular PEP for a given client-type.

Once a stateful handle is established for a new request, any
subsequent nodifications of the request can be nade using the REQ
nmessage specifying the previously installed handle. The PEP is
responsi ble for notifying the PDP whenever its |ocal state changes so
the PDP's state will be able to accurately mrror the PEP' s state.

Durham et al. St andards Track [Page 22]

RFC 2748 COPS January 2000

The format of the Request nessage is as foll ows:

<Request Message> ::= <Commopn Header>
<dient Handl e>
<Cont ext >
[<I N-1nt>]
[<QUT- | nt >]
[<dientSI(s)>]
[<LPDPDeci si on(s) >]
[<Integrity>]

<CientSlI(s)>::=<CientSI>| <CientSl(s)> <dientS|>

<LPDPDeci si on(s)> ::= <LPDPDeci si on>
<LPDPDeci si on(s)> <LPDPDeci si on>

<LPDPDeci si on> :: = [<Cont ext >]
<LPDPDeci si on: Fl ags>
[<LPDPDeci si on: Statel ess Dat a>]
[<LPDPDeci si on: Repl acenent Data>]
[<LPDPDeci si on: ClientSl Data>]
[<LPDPDeci si on: Named Dat a>]

The context object is used to determine the context within which al
the other objects are to be interpreted. It also is used to deternine
the kind of decision to be returned fromthe policy server. This
decision mght be related to adm ssion control, resource allocation
obj ect forwarding and substitution, or configuration

The interface objects are used to determi ne the correspondi ng
interface on which a signaling protocol nessage was received or is
about to be sent. They are typically used if the client is
participating along the path of a signaling protocol or if the client
is requesting configuration data for a particular interface.

ClientSl, the client specific information object, holds the client-
type specific data for which a policy decision needs to be nmade. In
the case of configuration, the Naned CdientSl may include naned
i nformati on about the nodule, interface, or functionality to be
configured. The ordering of nmultiple ClientSls is not inportant.

Finally, LPDPDeci sion object holds information regarding the |oca
deci si on made by the LPDP

Mal f or med Request messages MJST result in the PDP specifying a
Deci sion nessage with the appropriate error code.

Durham et al. St andards Track [Page 23]

RFC 2748 COPS January 2000

3.2 Decision (DEC) PDP -> PEP

The PDP responds to the REQ with a DEC nessage that includes the
associ ated client handl e and one or nore decision objects grouped
relative to a Context object and Decision Flags object type pair. If
there was a protocol error an error object is returned instead.

It is required that the first decision nessage for a new updated
request will have the solicited nessage flag set (value = 1) in the
COPS header. This avoids the issue of keeping track of which updated
request (that is, a request reissued for the sane handle) a
particul ar decision corresponds. It is inportant that, for a given
handl e, there be at npbst one outstanding solicited decision per
request. This essentially neans that the PEP SHOULD NOT issue nore
than one REQ (for a given handle) before it receives a correspondi ng
DEC with the solicited nessage flag set. The PDP MJUST al ways issue
decisions for requests on a particular handle in the order they
arrive and all requests MJST have a correspondi ng deci sion

To avoi d deadl ock, the PEP can always tineout after issuing a request
that does not receive a decision. It MJST then delete the tinmed-out
handl e, and may try agai n using a new handl e.

The format of the Decision nessage is as foll ows:

<Deci si on Message> ::= <Common Header >
<dient Handl e>
<Decision(s)> | <Error>
[<Integrity>]

<Deci sion(s)> ::= <Decision> | <Decision(s)> <Decision>

<Deci si on> :: = <Cont ext >
<Deci si on: Fl ags>
[<Deci sion: Statel ess Data>]
[<Deci si on: Repl acenent Dat a>]
[<Decision: CientSl Data>]
[<Deci si on: Nanmed Dat a>]

The Deci sion nessage nmay include either an Error object or one or
nore context plus associated decisi on objects. COPS protocol problens
are reported in the Error object (e.g. an error with the format of
the original request including nalfornmed request nmessages, unknown
COPS objects in the Request, etc.). The applicabl e Decision object(s)
depend on the context and the type of client. The only ordering

requi renent for decision objects is that the required Decision Flags
obj ect type MUST precede the other Decision object types per context
bi ndi ng.

Durham et al. St andards Track [Page 24]

RFC 2748 COPS January 2000

3.3 Report State (RPT) PEP -> PDP

The RPT nessage is used by the PEP to comrunicate to the PDP its
success or failure in carrying out the PDP's decision, or to report
an accounting related change in state. The Report-Type specifies the
kind of report and the optional ClientSl can carry additiona

i nformation per Client-Type.

For every DEC nessage containing a configuration context that is
received by a PEP, the PEP MJST generate a correspondi ng Report State
message with the Solicited Message flag set describing its success or
failure in applying the configuration decision. In addition

out sourcing decisions fromthe PDP MAY result in a correspondi ng
solicited Report State fromthe PEP depending on the context and the
type of client. RPT nessages solicited by decisions for a given
Cient Handl e MIST set the Solicited Message flag and MJUST be sent in
the sane order as their correspondi ng Decisi on nessages were

recei ved. There MJUST never be nore than one Report State nessage
generated with the Solicited Message flag set per Decision

The Report State may al so be used to provide periodic updates of
client specific information for accounting and state nmonitoring

pur poses depending on the type of the client. In such cases the
accounting report type should be specified utilizing the appropriate
client specific information object.

<Report State> ::== <Common Header >
<dient Handl e>
<Report - Type>
[<dientSl>]
[<Integrity>]

3.4 Del ete Request State (DRQ PEP -> PDP

When sent fromthe PEP this nessage indicates to the renpte PDP that
the state identified by the client handle is no | onger
avail abl e/rel evant. This information will then be used by the renote
PDP to initiate the appropriate housekeepi ng actions. The reason code
object is interpreted with respect to the client-type and signifies
the reason for the renoval

The format of the Del ete Request State nmessage is as follows:
<Del ete Request> ::= <Conmon Header >
<dient Handl e>

<Reason>
[<Integrity>]

Durham et al. St andards Track [Page 25]

RFC 2748 COPS January 2000

G ven the stateful nature of COPS, it is inportant that when a
request state is finally renoved fromthe PEP, a DRQ nessage for this
request state is sent to the PDP so the correspondi ng state may

i kewi se be renoved on the PDP. Request states not explicitly del eted
by the PEP will be nmintained by the PDP until either the client
session is closed or the connection is terninated.

Mal f or mred Deci si on nessages MJUST trigger a DRQ specifying the
appropri ate erroneous reason code (Bad Message Format) and any

associ ated state on the PEP SHOULD either be renpbved or re-requested.
I f a Decision contained an unknown COPS Deci si on Cbject, the PEP MJUST
delete its request specifying the Unknown COPS (hject reason code
because the PEP will be unable to conply with the infornmation
contained in the unknown object. In any case, after issuing a DRQ
the PEP may retry the correspondi ng Request again.

3.5 Synchroni ze State Request (SSQ PDP -> PEP
The format of the Synchronize State Query nessage is as follows:

<Synchroni ze State> ::= <Common Header >
[<Cient Handl e>]
[<Integrity>]

Thi s nessage indicates that the renote PDP w shes the client (which
appears in the conmon header) to re-send its state. |If the optiona
Client Handle is present, only the state associated with this handle
is synchronized. If the PEP does not recogni ze the requested handl e,
it MUST inmediately send a DRQ nessage to the PDP for the handl e that
was specified in the SSQ nmessage. If no handle is specified in the
SSQ nmessage, all the active client state MJUST be synchronized with

t he PDP.

The client perfornms state synchronization by re-issuing request
queries of the specified client-type for the existing state in the
PEP. When synchronization is conplete, the PEP MJST issue a
synchroni ze state conplete nessage to the PDP

3.6 Cdient-Open (OPN) PEP -> PDP

The dient-Open nessage can be used by the PEP to specify to the PDP
the client-types the PEP can support, the last PDP to which the PEP
connected for the given client-type, and/or client specific feature
negotiation. A Cient-Open nessage can be sent to the PDP at any tine
and nultiple dient-Open nessages for the sanme client-type are
allowed (in case of global state changes).

Durham et al. St andards Track [Page 26]

RFC 2748 COPS January 2000

<Cient-Open> ::= <Conmon Header>
<PEPI D>
[<dientSI>]
[<Last PDPAddr >]
[<Integrity>]

The PEPID is a synbolic, variable |length nanme that uniquely
identifies the specific client to the PDP (see Section 2.2.11).

A naned ClientSl object can be included for relaying additiona
gl obal infornmation about the PEP to the PDP when required (as
specified in the appropriate extensions docunment for the client-
type).

The PEP may al so provide a Last PDP Address object in its Cient-Open
nmessage specifying the last PDP (for the given client-type) for which
it is still caching decisions since its |last reboot. A PDP can use
this infornmation to determ ne the appropriate synchronization
behavi or (See section 2.5).

If the PDP receives a nmalformed Cient-COpen nessage it MJST generate
a Cient-C ose nessage specifying the appropriate error code.

3.7 dient-Accept (CAT) PDP -> PEP

The Cient-Accept nmessage is used to positively respond to the
Client-Qpen nessage. This nessage will return to the PEP a tiner
object indicating the naxinumtine interval between keep-alive
nmessages. Optionally, a tiner specifying the m ninumallowed interva
bet ween accounting report nessages may be included when appli cabl e.

<Client-Accept> ::= <Conmon Header >
<KA Ti ner>
[<ACCT Ti ner >]
[<Integrity>]

If the PDP refuses the client, it will instead issue a dient-Cl ose
nmessage.

The KA Tiner corresponds to maxi mum acceptable intermediate tine

bet ween the generation of nessages by the PDP and PEP. The timer
value is determ ned by the PDP and is specified in seconds. A tinmer
value of O inplies no secondary connection verification is necessary.

The optional ACCT Timer allows the PDP to indicate to the PEP that
peri odi ¢ accounting reports SHOULD NOT exceed the specified tiner
interval per client handle. This allows the PDP to control the rate
at which accounting reports are sent by the PEP (when applicable).

Durham et al. St andards Track [Page 27]

RFC 2748 COPS January 2000

In general, accounting type Report nessages are sent to the PDP when
determi ned appropriate by the PEP. The accounting timer nerely is
used by the PDP to keep the rate of such updates in check (i.e.
Preventing the PEP from blasting the PDP with accounting reports).
Not including this object inplies there are no PDP restrictions on
the rate at which accounting updates are generated.

If the PEP receives a mal fornmed O ient-Accept nessage it MJIST
generate a Cient-C ose nessage specifying the appropriate error
code.

3.8 dient-Close (CC PEP -> PDP, PDP -> PEP

The Cient-C ose nessage can be issued by either the PDP or PEP to
notify the other that a particular type of client is no |onger being
support ed.

<Client-C ose> ::= <Commpbn Header >
<Error>
[<PDPRedi r Addr >]
[<Integrity>]

The Error object is included to describe the reason for the close
(e.g. the requested client-type is not supported by the renote PDP or
client failure).

A PDP MAY optionally include a PDP Redirect Address object in order
to informthe PEP of the alternate PDP it SHOULD use for the client-
type specified in the cormmon header.

3.9 Keep-Aive (KA) PEP -> PDP, PDP -> PEP

The keep-alive nmessage MUST be transmitted by the PEP within the
period defined by the m ninmum of all KA Tiner val ues specified in al
recei ved CAT nessages for the connection. A KA nmessage MJST be
generated randomy between 1/4 and 3/4 of this mininmmKA timer
interval. When the PDP receives a keep-alive nessage froma PEP, it
MJUST echo a keep-alive back to the PEP. This nessage provides
validation for each side that the connection is still functioning
even when there is no other messagi ng.

Note: The client-type in the header MJUST al ways be set to 0 as the KA
is used for connection verification (not per client session
verification).

<Keep- Alive> ::= <Comon Header >
[<Integrity>]

Durham et al. St andards Track [Page 28]

RFC 2748 COPS January 2000

Both client and server MAY assune the TCP connection is insufficient
for the client-type with the mininumtime value (specified in the CAT
nmessage) if no communi cation activity is detected for a period
exceeding the tiner period. For the PEP, such detection inplies the
renote PDP or connection is down and the PEP SHOULD now attenpt to
use an alternative/ backup PDP

3.10 Synchroni ze State Conplete (SSC) PEP -> PDP

The Synchronize State Conplete is sent by the PEP to the PDP after
the PDP sends a synchroni ze state request to the PEP and the PEP has
fini shed synchronization. It is useful so that the PDP will know when
all the old client state has been successfully re-requested and,

thus, the PEP and PDP are conpletely synchronized. The Cient Handle
obj ect only needs to be included if the correspondi ng Synchronize
State Message originally referenced a specific handle.

<Synchroni ze State Conplete> .:= <Conmon Header >
[<dient Handl e>]
[<Integrity>]

4. Common Qperation

Thi s section describes the typical exchanges between renote PDP
servers and PEP clients.

4.1 Security and Sequence Number Negoti ation

COPS nessage security is negotiated once per connection and covers
al | comuni cation over a particular connection. If COPS | eve
security is required, it MJST be negotiated during the initial
Client-Qpen/dient-Accept nessage exchange specifying a dient-Type
of zero (which is reserved for connection |level security negotiation
and connection verification).

If a PEP is not configured to use COPS security with a PDP it wll
sinply send the PDP Client-Open nmessages for the supported dient-
Types as specified in section 4.3 and will not include the Integrity
obj ect in any COPS nessages.

O herwi se, security can be initiated by the PEP if it sends the PDP a
Client-QOpen nessage with Cient-Type=0 before opening any other
Client-Type. If the PDP receives a Cient-Open with a dient-Type=0
after another dient-Type has al ready been opened successfully it
MUST return a Client-C ose nmessage (for Cient-Type=0) to that PEP.
This first dient-Open nmessage MJST specify a dient-Type of zero and
MJST provide the PEPID and a COPS Integrity object. This Integrity
object will contain the initial sequence nunber the PEP requires the

Durham et al. St andards Track [Page 29]

RFC 2748 COPS January 2000

PDP to increnment during subsequent conmunication after the initial
Client-Open/dient-Accept exchange and the Key ID identifying the
al gorithm and key used to conpute the digest.

Simlarly, if the PDP accepts the PEP' s security key and al gorithm by
val idating the nessage digest using the identified key, the PDP MJST
send a Client-Accept nessage with a Cient-Type of zero to the PEP
carrying an Integrity object. This Integrity object will contain the
initial sequence nunber the PDP requires the PEP to increnent during
all subsequent comunication with the PDP and the Key ID identifying
the key and al gorithmused to conpute the digest.

If the PEP, fromthe perspective of a PDP that requires security,
fails or never perforns the security negotiation by not sending an
initial Cient-Open nessage with a dient-Type=0 including a valid
Integrity object, the PDP MJUST send to the PEP a Cient-C ose nessage
with a dient-Type=0 specifying the appropriate error code

Simlarly, if the PDP, fromthe perspective of a PEP that requires
security, fails the security negotiation by not sending back a
Cient-Accept nessage with a dient-Type=0 including a valid
Integrity object, the PEP MJUST send to the PDP a Client-C ose nessage
with a dient-Type=0 specifying the appropriate error code. Such a
Client-Cl ose nessage need not carry an integrity object (as the
security negotiation did not yet conplete).

The security initialization can fail for one of several reasons: 1.
The side receiving the nessage requires COPS | evel security but an
Integrity object was not provided (Authentication Required error
code). 2. A COPS Integrity object was provided, but with an

unknown/ unaccept abl e C- Type (Unknown COPS Object error code

speci fying the unsupported C-Num and C Type). 3. The nessage di gest
or Key IDin the provided Integrity object was incorrect and
therefore the nessage could not be authenticated using the identified
key (Authentication Failure error code).

Once the initial security negotiation is conplete, the PEP will know
what sequence nunbers the PDP expects and the PDP wi |l know what
sequence nunbers the PEP expects. ALL COPS nessages nust then include
the negotiated Integrity object specifying the correct sequence
nunber with the appropriate nessage digest (including the dient-
Open/ d i ent - Accept nessages for specific Cient-Types). ALL
subsequent nessages fromthe PDP to the PEP MJUST result in an

i ncrenent of the sequence nunber provided by the PEP in the Integrity
object of the initial dient-COpen nessage. Likew se, ALL subsequent
messages fromthe PEP to the PDP MUST result in an increnent of the
sequence nunber provided by the PDP in the Integrity object of the
initial dient-Accept nessage. Sequence nunbers are increnented by
one starting with the corresponding initial sequence nunber. For

Durham et al. St andards Track [Page 30]

RFC 2748 COPS January 2000

exanple, if the sequence nunber specified to the PEP by the PDP in
the initial Cdient-Accept was 10, the next nessage the PEP sends to
the PDP will provide an Integrity object with a sequence nunber of
11... Then the next nessage the PEP sends to the PDP will have a
sequence nunber of 12 and so on. |f any subsequent received nessage
contai ns the wong sequence nunber, an unknown Key ID, an invalid
nmessage digest, or is missing an Integrity object after integrity was
negoti ated, then a Cient-C ose nessage MJST be generated for the
Client-Type zero containing a valid Integrity object and specifying
the appropriate error code. The connection should then be dropped.

4.2 Key Mai ntenance

Key nai ntenance is outside the scope of this docunent, but COPS

i mpl ement ati ons MUST at | east provide the ability to manually
configure keys and their paranmeters locally. The key used to produce
the Integrity object’s nessage digest is identified by the Key ID
field. Thus, a Key ID paraneter is used to identify one of
potentially rultiple simultaneous keys shared by the PEP and PDP. A
Key IDis relative to a particular PEPID on the PDP or to a
particul ar PDP on the PEP. Each key nust al so be configured with
lifetime paranmeters for the time period within which it is valid as
wel |l as an associ ated cryptographic al gorithm paraneter specifying
the algorithmto be used with the key. At a m ninum all COPS

i mpl enent ati ons MJST support the HMAC- MD5- 96 [HVAC] [MD5]
cryptographic algorithmfor conputing a nessage di gest for inclusion
in the Keyed Message Digest of the Integrity object which is appended
to the nessage

It is good practice to regularly change keys. Keys MJST be
configurable such that their lifetines overlap all owi ng snooth
transitions between keys. At the nmidpoint of the lifetinme overlap

bet ween two keys, senders should transition fromusing the current
key to the next/longer-lived key. Meanwhile, receivers sinply accept
any identified key received within its configured lifetinme and reject
those that are not.

4.3 PEP Initialization

Sometine after a connection is established between the PEP and a
renote PDP and after security is negotiated (if required), the PEP
will send one or nore Cient-Qpen nessages to the renote PDP, one for
each client-type supported by the PEP. The Cient-Open nessage MJST
contain the address of the last PDP with which the PEP is stil
caching a conplete set of decisions. |If no decisions are being cached
fromthe previous PDP the Last PDPAddr object MJST NOT be included in
the Cient-Open nessage (see Section 2.5). Each dient-Cpen nessage
MJUST at | east contain the comopn header noting one client-type

Durham et al. St andards Track [Page 31]

RFC 2748 COPS January 2000

supported by the PEP. The renote PDP will then respond with separate
Cient-Accept nessages for each of the client-types requested by the
PEP that the PDP can al so support.

If a specific client-type is not supported by the PDP, the PDP will
instead respond with a Cient-C ose specifying the client-type is not
supported and will possibly suggest an alternate PDP address and
port. O herwise, the PDP will send a Cient-Accept specifying the
timer interval between keep-alive nessages and the PEP may begin

i ssuing requests to the PDP

4.4 Qutsourcing Operations

In the outsourcing scenario, when the PEP receives an event that
requires a new policy decision it sends a request nessage to the
renmote PDP. What specifically qualifies as an event for a particular
client-type SHOULD be specified in the specific docunment for that
client-type. The renote PDP then nakes a decision and sends a
deci si on nmessage back to the PEP. Since the request is stateful, the
request will be renenbered, or installed, on the renote PDP. The

uni que handl e (uni que per TCP connection and client-type), specified
in both the request and its correspondi ng decision identifies this
request state. The PEP is responsible for deleting this request state
once the request is no |onger applicable.

The PEP can update a previously installed request state by reissuing
a request for the previously installed handle. The renote PDP is then
expected to make new deci sions and send a deci sion nmessage back to
the PEP. Likew se, the server MAY change a previously issued decision
on any currently installed request state at any tinme by issuing an
unsol i cited decision nmessage. At all tinmes the PEP nodul e is expected
to abide by the PDP s decisions and notify the PDP of any state
changes.

4.5 Configuration Operations

In the configuration scenario, as in the outsourcing scenario, the
PEP wi Il make a configuration request to the PDP for a particul ar
interface, nodule, or functionality that nmay be specified in the
named client specific information object. The PDP will then send
potentially several decisions containing naned units of configuration
data to the PEP. The PEP is expected to install and use the
configuration locally. A particular nanmed configuration can be
updat ed by sinply sendi ng additional decision nessages for the same
named configuration. When the PDP no | onger wi shes the PEP to use a
pi ece of configuration information, it will send a decision nessage
speci fying the named configuration and a decision flags object with

Durham et al. St andards Track [Page 32]

RFC 2748 COPS January 2000

the renove configuration comrand. The PEP SHOULD then proceed to
renove the correspondi ng configuration and send a report nessage to
the PDP that specifies it has been del et ed.

In all cases, the PEP MAY notify the renote PDP of the |ocal status
of an installed state using the report nessage where appropriate.
The report nessage is to be used to signify when billing can begin,
what actions were taken, or to produce periodic updates for

nmoni tori ng and accounting purposes depending on the client. This
nmessage can carry client specific information when needed.

4.6 Keep-Alive Operations

The Keep-Alive nessage is used to validate the connection between the
client and server is still functioning even when there is no other
messaging fromthe PEP to PDP. The PEP MJST generate a COPS KA
message randomy within one-fourth to three-fourths the m ni rum KA
Tinmer interval specified by the PDP in the Cient-Accept nessage. On
receiving a Keep-Alive nessage fromthe PEP, the PDP MJST then
respond to this Keep-Alive nessage by echoing a Keep-Alive nessage
back to the PEP. |If either side does not receive a Keep-Alive or any
ot her COPS nessage within the mininmum KA Tiner interval fromthe

ot her, the connection SHOULD be consi dered | ost.

4.7 PEP/ PDP Cl ose

Finally, dient-C ose nessages are used to negate the effects of the
correspondi ng Cient-Cpen nessages, notifying the other side that the
specified client-type is no | onger supported/active. Wen the PEP
detects a | ost connection due to a keep-alive tinmeout condition it
SHOULD explicitly send a dient-C ose nessage for each opened
client-type specifying a comruni cations failure error code. Then the
PEP MAY proceed to term nate the connection to the PDP and attenpt to
reconnect again or try a backup/alternative PDP. Wen the PDP is
shutting down, it SHOULD also explicitly send a Cient-Close to al
connected PEPs for each client-type, perhaps specifying an
alternative PDP to use instead.

5. Security Considerations

The COPS protocol provides an Integrity object that can achi eve

aut hentication, nessage integrity, and replay prevention. Al COPS

i npl enent ati ons MJST support the COPS Integrity object and its
nmechani snms as described in this docunent. To ensure the client (PEP)
is communi cating with the correct policy server (PDP) requires

aut hentication of the PEP and PDP using a shared secret, and

consi stent proof that the connection renains valid. The shared secret
mnimally requires nmanual configuration of keys (identified by a Key

Durham et al. St andards Track [Page 33]

RFC 2748 COPS January 2000

I D) shared between the PEP and its PDP. The key is used in
conjunction with the contents of a COPS nessage to calculate a
nmessage digest that is part of the Integrity object. The Integrity
object is then used to validate all COPS nessages sent over the TCP
connection between a PEP and PDP

Key nmi ntenance is outside the scope of this document beyond the
specific requirenents discussed in section 4.2. In general, it is
good practice to regularly change keys to nmaintain security.
Furthernore, it is good practice to use |localized keys specific to a
particul ar PEP such that a stolen PEP will not conpromi se the
security of an entire admnistrative domain.

The COPS Integrity object al so provides sequence nunbers to avoid
replay attacks. The PDP chooses the initial sequence nunber for the
PEP and t he PEP chooses the initial sequence nunber for the PDP
These initial nunbers are then increnmented with each successive
nmessage sent over the connection in the corresponding direction. The
initial sequence nunbers SHOULD be chosen such that they are
nonot oni cal |l y increasing and never repeat for a particul ar key.

Security between the client (PEP) and server (PDP) MAY be provi ded by
IP Security [IPSEC]. In this case, the | PSEC Aut henti cati on Header
(AH) SHOULD be used for the validation of the connection;
additionally | PSEC Encapsul ati on Security Payl oad (ESP) MAY be used
to provide both validation and secrecy.

Transport Layer Security [TLS] MAY be used for both connection-I|eve
val i dation and privacy.

6. | ANA Consi derations

The Cient-type identifies the policy client application to which a
nmessage refers. Cient-type values within the range 0x0001- Ox3FFF are
reserved Specification Required status as defined in [| ANA-

CONSI DERATI ONS] . These val ues MUST be registered with I ANA and their
behavi or and applicability MJST be described in a COPS extension
docunent .

Cient-type values in the range 0x4000 - Ox7FFF are reserved for
Private Use as defined in [| ANA- CONSI DERATI ONS]. These dient-types
are not tracked by I ANA and are not to be used in standards or
general -rel ease products, as their uni queness cannot be assured.

Client-type values in the range 0x8000 - OxFFFF are First Conme First
Served as defined in [I ANA- CONSI DERATI ONS]. These Cdient-types are
tracked by | ANA but do not require published docunents descri bing
their use. I ANA nerely assures their uniqueness.

Durham et al. St andards Track [Page 34]

RFC 2748 COPS January 2000

bjects in the COPS Protocol are identified by their C Num and C Type
val ues. | ETF Consensus as identified in [l ANA- CONSI DERATIONS] is
required to introduce new val ues for these nunbers and, therefore,
new obj ects into the base COPS protocol.

Addi tional Context Object R-Types, Reason-Codes, Report-Types,

Deci si on hj ect Conmmand- Codes/ Fl ags, and Error-Codes MAY be defined
for use with future Cient-types, but such additions require | ETF
Consensus as defined in [l ANA- CONSI DERATI ONS] .

Cont ext (bj ect M Types, Reason Sub-Codes, and Error Sub-codes MAY be
defined relative to a particular Client-type followi ng the same | ANA
considerations as their respective Cient-type.

7. References

[RSVP] Braden, R, Zhang, L., Berson, S., Herzog, S.
and S. Jam n, "Resource ReSerVation Protocol
(RSVP) Version 1 - Functional Specification",
RFC 2205, Septenber 1997.

[VWRK] Yavat kar, R, Pendarakis, D. and R Cuerin, "A
Framewor k for Policy-Based Adm ssion Control™,
RFC 2753, January 2000.

[SRVLOC] Quttnman, E., Perkins, C., Veizades, J. and M
Day, "Service Location Protocol , Version 2",
RFC 2608, June 1999.

[I NSCH] Shenker, S. and J. Wocl awski, "General
Characterization Paraneters for Integrated
Service Network El enments", RFC 2215, Septenber
1997.

[I PSEC] Atkinson, R, "Security Architecture for the
Internet Protocol", RFC 2401, August 1995.

[HVAC] Krawczyk, H., Bellare, M and R Canetti,
"HMAC. Keyed-Hashing for Message
Aut henti cation", RFC 2104, February 1997.

[MD5] Ri vest, R, "The MD5 Message-Di gest Al gorithni,
RFC 1321, April 1992.

[RSVPPR] Braden, R and L. Zhang, "Resource ReSerVation

Protocol (RSVP) - Version 1 Message Processing
Rul es”, RFC 2209, Septenber 1997.

Durham et al. St andards Track [Page 35]

RFC 2748 COPS January 2000

[TLS] Dierks T. and C. Allen, "The TLS Protocol
Version 1.0", RFC 2246, January 1999.

[1 ANA] http://ww.isi.edu/in-
not es/ i ana/ assi gnnent s/ port - nunbers

[I ANA- CONSI DERATI ONS] Al vestrand, H and T. Narten, "Guidelines for
Witing an | ANA Consi derations Section in
RFCs", BCP 26, RFC 2434, October 1998.

8. Author Information and Acknow edgments

Special thanks to Andrew Smith and Tinothy O Malley our WG Chairs,
Raj Yavatkar, Russell Fenger, Fred Baker, Laura Cunni ngham Roch
Guerin, Ping Pan, and Dinmtrios Pendarakis for their val uable
contributions.

Ji m Boyl e

Level 3 Communi cati ons
1025 El dor ado Boul evard
Broonfield, CO 80021

Phone: 720.888.1192
EMai | : j boyl e@evel 3. net

Ron Cohen

Cl SCO Syst ens

4 Maskit St.

Her zel i ya Pituach 46766 | srael

Phone: +972.9.9700064
EMail : ronc@i sco.com

Davi d Dur ham

I nt el

2111 NE 25th Avenue
Hllsboro, OR 97124

Phone: 503. 264. 6232
EMai | : Davi d. Durham@ nt el . com

Durham et al. St andards Track [Page 36]

RFC 2748 COPS January 2000

Raj u Raj an

AT&T Shannon Laboratory
180 Park Avenue

P.O Box 971

Fl orham Park, NJ 07932-0971

EMai | : rajan@esearch. att.com

Shai Her zog

| PHi ghway, Inc.

55 New Yor k Avenue
Franmi ngham MA 01701

Phone: 508.620. 1141
EMai | : herzog@ phi ghway. com

Arun Sastry

Ci sco Systens

4 The Square

St ockl ey Park

Uxbridge, M ddl esex UB11 1BN
UK

Phone: +44-208-756-8693
EMai | : asastry@i sco. com

Durham et al. St andards Track [Page 37]

RFC 2748 COPS January 2000

9. Full Copyright Statenent
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it nay be copied and furnished to
ot hers, and derivative works that comrent on or otherw se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncl uded on all such copies and derivative works. However, this
docunment itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of

devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linmted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This docunent and the infornmation contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPOSE.

Acknow edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Durham et al. St andards Track [Page 38]

Net wor k Wor ki ng Group K. Chan
Request for Comments: 3084 J. Seligson
Cat egory: Standards Track Nortel Networks
D. Dur ham

I ntel

S. Gai

K. Mcd oghrie

Ci sco

S. Herzog

| PHi ghway

F. Rei chneyer

PFN

R Yavat kar

I ntel

A Snith

Al | egro Networks

March 2001

COPS Usage for Policy Provisioning (COPS-PR)
Status of this Menp

Thi s docunent specifies an Internet standards track protocol for the
I nternet community, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards” (STD 1) for the standardization state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2001). Al Rights Reserved.
Abst ract

Thi s docunent describes the use of the Commobn Open Policy Service
(COPS) protocol for support of policy provisioning (COPS-PR). This
specification is independent of the type of policy being provisioned
(QS, Security, etc.) but focuses on the nechani sns and conventi ons
used to comuni cate provisioned information between PDPs and PEPs.
The protocol extensions described in this docunent do not nake any
assunptions about the policy data nodel being comruni cated, but
describe the nessage formats and objects that carry the nopdel ed
policy data.

Chan, et al. St andards Track [Page 1]

RFC 3084 COPS- PR March 2001

Conventions used in this docunment

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC-2119].

Tabl e of Contents

A 0SS Al Y. ot e 3
1. IntroduCti On. 3
1.1. Way COPS for ProvisSioning?.......... ... 5
1.2. Interaction between the PEP and PDP.................. 5
2. Policy Information Base (PIB)........ 6
2.1. Rules for Mddifying and Extending PIBs........................ 7
2.2. Adding PRCs to, or deprecating from a PIB.................... 7
2.2.1. Adding or Deprecating Attributes of a BER Encoded PRC. 8
2.3. COPS Operations Supported for a Provisioning Instance......... 8
3. Message Content. 9
3.1. Request (REQ PEP -> PDP.t 9
3.2. Decision (DEC) PDP -> PEP....... ... 10
3.3. Report State (RPT) PEP -> PDP......... ... 12
4. COPS-PR Protocol Qbjects. e 13
4.1. Conplete Provisioning Instance ldentifier (PRID).............. 14
4.2, Prefix PRID (PPRID). e 15
4.3. Encoded Provisioning Instance Data (EPD)...................... 16
4.4. dobal Provisioning Error bject (GPERR). 21
4.5. PRC Cass Provisioning Error Cbject (CPERR)................... 22
4.6. Error PRID Qhject (ErrorPRID)......... 23
5. COPS-PR dient-Specific Data Formats............................ 23
5.1. Named Decision Data.......... ... 23
5.2, dientSl Request Data.......... ...t 24
5.3. Policy Provisioning Report Data..............., 24
5.3.1. Success and Failure Report-Type Data Format................. 24
5.3.2. Accounting Report-Type Data Format.......................... 25
6. Common Operati ON. 26
7. Fault Tol erance. e 28
8. Security Considerati ONS. e 29
9. TANA Considerati ONS.t e e 29
10. AcknOowW edgemBnt S. it 30
11, ReferenCes. 30
12, AUt hors’ AddresSSesS. ... it 32
13. Full Copyright Statement............ 34
Chan, et al. St andards Track [Page 2]

RFC 3084 COPS- PR March 2001

d ossary
PRC Provisioning Cass. A type of policy data.
PRI Provi sioning Instance. An instance of a PRC
Pl B Policy Informati on Base. The database of policy
i nformati on.
PDP Policy Decision Point. See [RAP].
PEP Policy Enforcenment Point. See [RAP].
PRI D Provisioning Instance lIdentifier. Uniquely identifies an
i nstance of a PRC
1. Introduction

The | ETF Resource Allocation Protocol (RAP) W5 has defined the COPS
(Common Qpen Policy Service) protocol [COPS] as a scal able protoco
that allows policy servers (PDPs) to comuni cate policy decisions to
networ k devices (PEPs). COPS was designed to support nultiple types
of policy clients.

COPS is a query/response protocol that supports two conmon nodels for
policy control: Qutsourcing and Configuration

The Qutsourcing nodel addresses the kind of events at the PEP that
require an instantaneous policy decision (authorization). 1In the

out sourcing scenario, the PEP del egates responsibility to an externa
policy server (PDP) to nake decisions on its behalf. For exanple, in
COPS Usage for RSVP [COPRSVP] when a RSVP reservati on nessage
arrives, the PEP nust decide whether to admit or reject the request.
It can outsource this decision by sending a specific query to its
PDP, waiting for its decision before adnmtting the outstanding
reservation.

The COPS Configuration nodel (herein described as the Provisioning
nodel), on the other hand, makes no assunptions of such direct 1:1
correlati on between PEP events and PDP deci sions. The PDP may
proactively provision the PEP reacting to external events (such as
user input), PEP events, and any conbination thereof (N:.M
correlation). Provisioning may be perforned in bulk (e.g., entire
router QoS configuration) or in portions (e.g., updating a DiffServ
marking filter).

Net work resources are often provisioned based on relatively static
SLAs (Service Level Agreenents) at network boundaries. Wile the
Qut sourcing nodel is dynanically paced by the PEP in real -tinme, the
Provi si oni ng nodel is paced by the PDP in sonewhat flexible timng
over a w de range of configurable aspects of the PEP

Chan, et al. St andards Track [Page 3]

RFC 3084 COPS- PR March 2001

Edge Device Policy Server

LR + R + R L +
| | | | | External

| | COPS | | | Events |
| +--- - - + | REQ() | +- - - - + [S +
| R EEEEEEEEEE | -] | |

|1 PEP]] || PDP | <f-mmeees +

| | <oom]omeenooes |-~ |

| +--- - - + | COPS | +- - - - +

| | DEC() | |

LR + R +

Figure 1. COPS Provisioning Mdde

In COPS-PR, policy requests describe the PEP and its configurable
paraneters (rather than an operational event). |f a change occurs
in these basic paraneters, an updated request is sent. Hence,
requests are issued quite infrequently. Decisions are not
necessarily mapped directly to requests, and are issued nostly
when the PDP responds to external events or PDP events (policy/SLA
updat es) .

Thi s docunent describes the use of the COPS protocol [COPS] for
support of policy provisioning. This specification is independent
of the type of policy being provisioned (QS, Security, etc.).

Rat her, it focuses on the nechani sns and conventions used to
comruni cat e provi sioned information between PDPs and PEPs. The
data nodel assumed in this docunent is based on the concept of
Policy Informati on Bases (PIBs) that define the policy data. There
may be one or nore PIBs for given area of policy and different
areas of policy may have different sets of PIBs.

In order to support a nodel that includes nultiple PDPs
controlling non-overl apping areas of policy on a single PEP, the
client-type specified by the PEP to the PDP is unique for the area
of policy being managed. A single client-type for a given area of
policy (e.g., QS) will be used for all PIBs that exist in that
area. The client should treat all the COPS-PR client-types it
supports as non-overl appi ng and i ndependent nanespaces where

i nstances MJUST NOT be shared.

The exanples used in this docunent are biased toward QS Policy
Provisioning in a Differentiated Services (DiffServ) environnent.
However, COPS-PR can be used for other types of provisioning
policies under the same framework

Chan, et al. St andards Track [Page 4]

RFC 3084 COPS- PR March 2001

1.1. Wy COPS for Provisioning?

COPS- PR has been designed within a framework that is optimzed for
efficiently provisioning policies across devices, based on the
requi renents defined in [RAP]. First, COPS-PR allows for efficient
transport of attributes, large atonmic transactions of data, and
efficient and flexible error reporting. Second, as it has a single
connection between the policy client and server per area of policy
control identified by a COPS Cdient-Type, it guarantees only one
server updates a particular policy configuration at any given

time. Such a policy configuration is effectively |ocked, even from
| ocal console configuration, while the PEP is connected to a PDP
via COPS. COPS uses reliable TCP transport and, thus, uses a state
shari ng/ synchroni zati on nechani sm and exchanges differenti al
updates only. |If either the server or client are rebooted (or
restarted) the other would know about it quickly. Last, it is
defined as a real-tine event-driven conmuni cati ons nechani sm

never requiring polling between the PEP and PDP

1.2. Interaction between the PEP and PDP

Wien a device boots, it opens a COPS connection to its Primary

PDP. Wen the connection is established, the PEP sends information
about itself to the PDP in the formof a configuration request.
This information includes client specific information (e.g.
hardware type, software rel ease, configuration information).

During this phase the client nmay al so specify the naxi num COPS- PR
nmessage size supported.

In response, the PDP downl oads all provisioned policies that are
currently relevant to that device. On receiving the provisioned
policies, the device maps theminto its | ocal QS nmechani sns, and
installs them |If conditions change at the PDP such that the PDP
detects that changes are required in the provisioned policies
currently in effect, then the PDP sends the changes (installs,
updates, and/or deletes) in policy to the PEP, and the PEP updates
its local configuration appropriately.

I f, subsequently, the configuration of the device changes (board
removed, board added, new software installed, etc.) in ways not
covered by policies already known to the PEP, then the PEP
asynchronously sends this unsolicited new infornmation to the PDP
in an updated configuration request. On receiving this new

i nformati on, the PDP sends to the PEP any additional provisioned
policies now needed by the PEP, or renoves those policies that are
no | onger required.

Chan, et al. St andards Track [Page 5]

RFC 3084 COPS- PR March 2001

2. Policy Information Base (PIB)

The data carried by COPS-PR is a set of policy data. The protoco
assunmes a naned data structure, known as a Policy Informati on Base
(PIB), to identify the type and purpose of unsolicited policy
information that is "pushed" fromthe PDP to the PEP for
provisioning policy or sent to the PDP fromthe PEP as a
notification. The PIB name space is common to both the PEP and the
PDP and data instances within this space are unique within the
scope of a given dient-Type and Request-State per TCP connection
between a PEP and PDP. Note that given a device might inplenent
multiple COPS dient-Types, a unique instance space is to be

provi ded for each separate Cient-Type. There is no sharing of

i nstance data across the dient-Types inplenented by a PEP, even
if the classes being instantiated are of the sanme type and share
the sane instance identifier

The PIB can be described as a conceptual tree nanespace where the
branches of the tree represent structures of data or Provisioning
O asses (PRCs), while the | eaves represent various instantiations
of Provisioning Instances (PRIs). There nmay be nultiple data

i nstances (PRIs) for any given data structure (PRC). For exanple,
if one wanted to install multiple access control filters, the PRC
m ght represent a generic access control filter type and each PR

nm ght represent an individual access control filter to be applied.
The tree night be represented as foll ows:

——————— +-------4----------+---PRC-+--PR
| | | +-- PR
| | |
| | +---PRG---- PRI
| |
| +---PRG-+--PRI
| +-- PR
| +-- PRI
| +-- PRI
| +-- PR
|

+---PRC- - - PRI
Figure 2: The PIB Tree
I nstances of the policy classes (PRIs) are each identified by a
Provi sioning Instance ldentifier (PRID). A PRIDis a nane, carried

in a COPS <Naned CientSl> or <Naned Deci si on Data> object, which
identifies a particular instance of a class.

Chan, et al. St andards Track [Page 6]

RFC 3084 COPS- PR March 2001

2.1. Rules for Mdifying and Extendi ng Pl Bs

As experience is gained with policy based managenent, and as new
requirenents arise, it will be necessary to nmake changes to PIBs
Changes to an existing PIB can be nmade in several ways.

(1) Additional PRCs can be added to a PIB or an existing one
depr ecat ed.

(2) Attributes can be added to, or deprecated from an existing
PRC

(3) An existing PRC can be extended or augnented with a new PRC
defined in another (perhaps enterprise specific) PIB

The rules for each of these extension nmechanisns is described in this
sub-section. Al of these mechanisnms for nodifying a PIB allow for
interoperability between PDPs and PEPs even when one party is using a
new version of the PIB while the other is using an old version

Note that the SPPI [SPPI] provides the authoritative rules for
updating BER encoded PIBs. It is the purpose of the follow ng
section to explain how such changes affect senders and receivers of
COPS nessages.

2.2. Adding PRCs to, or deprecating from a PIB

A published PIB can be extended with new PRCs by sinply revising the
docunment and addi ng additional PRCs. These additional PRCs are
easily identified with new PRI Ds under the nodule’'s PRI D Prefix.

In the event that a PEP inplenenting the new PIB is being configured
by a PDP inplenenting the old PIB, the PEP will sinply not receive
any instances of the new PRC. In the event that the PEP is

i mpl ementing the old PIB and the PDP the new one, the PEP may receive
PRIs for the new PRC. Under such conditions, the PEP MJST return an
error to the PDP, and rollback to its previous (good) state.

Simlarly, existing PRCs can be deprecated froma PIB. |In this case,
the PEP ignores any PRIs sent to it by a PDP inplenenting the old
(non-deprecated) version of the PIB. A PDP inplenenting the new
version of the PIB sinply does not send any instances of the
deprecat ed cl ass.

Chan, et al. St andards Track [Page 7]

RFC 3084 COPS- PR March 2001

2.2.1. Adding or Deprecating Attributes of a BER Encoded PRC

A PIB can be nodified to deprecate existing attributes of a PRC or
add new ones.

Wien deprecating the attributes of a PRC, it nust be remenbered that,
with the COPS-PR protocol, the attributes of the PRC are identified
by their order in the sequence rather than an explicit |abel (or
attribute O D). Consequently, an ASN. 1 value MJST be sent even for
deprecated attributes so that a PDP and PEP i npl enenting different
versions of the PIB are inter-operable.

For a deprecated attribute, if the PDP is using a BER encoded PIB
the PDP MJST send either an ASN. 1 value of the correct type, or it
may send an ASN. 1 NULL value. A PEP that receives an ASN.1 NULL for
an attribute that is not deprecated SHOULD substitute a default
value. If it has no default value to substitute it MJST return an
error to the PDP

Wien adding new attributes to a PIB, these new attributes nust be
added in sequence after the existing ones. A PEP that receives a PRl
with nmore attributes than it is expecting MJST ignore the additiona
attributes and send a warning back to the PDP

A PEP that receives a PRI with fewer attributes than it is expecting
SHOULD assunme default values for the missing attributes. It MAY send

a warning back to the PDP. If the mssing attributes are required
and there is no suitable default, the PEP MIUST send an error back to
the PDP. In all cases the missing attributes are assuned to

correspond to the last attributes of the PRC
2.3. COPS (Operations Supported for a Provisioning |Instance

A Provisioning Instance (PRI) typically contains a value for each
attribute defined for the PRC of which it is an instance and is
identified uniquely, within the scope of a given COPS dient-Type and
Request-State on a PEP, by a Provisioning Instance Identifier (PRID).
The foll owi ng COPS operations are supported on a PRI:

o Install - This operation creates or updates a naned instance of a
PRC. It includes two paraneters: a PRID object to name the PRI and
an Encoded Provisioning Instance Data (EPD) object with the
new updat ed val ues. The PRI D val ue MJUST uniquely identify a single
PRI (i.e., PRID prefix or PRC values are illegal). Updates to an
exi sting PRI are achieved by sinply reinstalling the same PRID with
t he updated EPD dat a.

Chan, et al. St andards Track [Page 8]

RFC 3084 COPS- PR March 2001

0 Renmove - This operation is used to delete an instance of a PRC. It
i ncl udes one paraneter, a PRI D object, which nanes either the
i ndi vidual PRI to be deleted or a PRID prefix nam ng one or nore
conpl ete classes of PRIs. Prefix-based deletion supports efficient
bul k policy renmoval. The renoval of an unknown/non-existent PRI D
SHOULD result in a warning to the PDP (no error).

3. Message Content

The COPS protocol provides for different COPS clients to define their
own "nanmed", i.e., client-specific, information for various nessages.
This section describes the nessages exchanged between a COPS server
(PDP) and COPS Policy Provisioning clients (PEP) that carry client-
specific data objects. Al the COPS nessages used by COPS-PR conform
to the nessage specifications defined in the COPS base protoco

[COPS] .

Not e: The use of the '*' character represented throughout this
docunent is consistent with the ABNF [RFC2234] and neans O or nore of
the followi ng entities.

3.1. Request (REQ PEP -> PDP

The REQ nessage is sent by policy provisioning clients to issue a
"configuration request’ to the PDP as specified in the COPS Cont ext
hject. The dient Handl e associated with the REQ nessage ori gi nated
by a provisioning client MJST be unique for that client. The dient
Handle is used to identify a specific request state. Thus, one
client can potentially open several configuration request states,
each uniquely identified by its handle. D fferent request states are
used to isolate similarly naned configuration information into non-
overl appi ng contexts (or logically isolated nanespaces). Thus, an

i nstance of nanmed information is unique relative to a particular
client-type and is unique relative to a particular request state for
that client-type, even if the information was sinmlarly identified in
other request states (i.e., uses the same PRID). Thus, the dient
Handl e is also part of the instance identification of the
comruni cat ed configuration information

The configuration request nmessage serves as a request fromthe PEP to
the PDP for provisioning policy data that the PDP may have for the
PEP, such as access control lists, etc. This includes policy the PDP
may have at the tinme the REQis received as well as any future policy
data or updates to this data.

The configuration request nessage shoul d i ncl ude provisioning client

information to provide the PDP with client-specific configuration or
capability information about the PEP. The information provided by

Chan, et al. St andards Track [Page 9]

RFC 3084 COPS- PR March 2001

the PEP should include client resources (e.g., queuing capabilities)
and default policy configuration (e.g., default role conbinations)
information as well as incarnation data on existing policy. This
information typically does not include all the information previously
installed by a PDP but rather should include checksunms or shortened
references to previously installed information for synchronization
purposes. This information fromthe client assists the server in
deci di ng what types of policy the PEP can install and enforce. The
format of the information encapsulated in one or nore of the COPS
Naned ClientSl objects is described in section 5. Note that the
configuration request nessage(s) is generated and sent to the PDP in
response to the receipt of a Synchronize State Request (SSQ nessage
fromthe PDP. Likew se, an updated configuration request nessage
(using the sane Cdient Handl e value as the original request now being
updated) may al so be generated by the PEP and sent to the PDP at any
time due to local nodifications of the PEP's internal state. |In this
way, the PDP will be synchronized with the PEP' s rel evant internal
state at all tines.

The policy information supplied by the PDP MJUST be consistent with
t he nanmed deci sion data defined for the policy provisioning client.
The PDP responds to the configuration request with a DEC nessage
cont ai ni ng any avail abl e provi sioning policy data.

The REQ nessage has the follow ng format:

<Request > ::= <Comon Header >
<dient Handl e>
<Context = config request>
*(<Narmed Cient Sl >)
[<Integrity>]

Note that the COPS objects IN-Int, OQUT-Int and LPDPDeci sions are not
i ncluded in a COPS-PR Request.

3.2. Decision (DEC) PDP -> PEP

The DEC nessage is sent fromthe PDP to a policy provisioning client
in response to the REQ nessage received fromthe PEP. The dient
Handl e MUST be the same Handl e that was received in the correspondi ng
REQ nmessage.

The DEC nessage is sent as an inmediate response to a configuration
request with the solicited nessage flag set in the COPS nessage
header. Subsequent DEC nessages may al so be sent at any tinme after
the original DEC nmessage to supply the PEP with additional/updated
policy information without the solicited nessage flag set in the COPS
nmessage header (as they are unsolicited decisions).

Chan, et al. St andards Track [Page 10]

RFC 3084 COPS- PR March 2001

Each DEC nessage nmay contain nultiple decisions. This neans a single
nmessage can install some policies and delete others. In general a

si ngl e COPS- PR DEC nessage MUST contain any required renpove deci sions
first, followed by any required install decisions. This is used to
sol ve a precedence issue, not a timng issue: the renove deci sion

del etes what it specifies, except those itens that are installed in

t he sane nessage

The DEC nessage can al so be used by the PDP to command the PEP to
open a new Request State or Delete an existing Request-State as
identified by the dient-Handle. To acconplish this, COPS-PR defines
a new flag for the COPS Decision Flags object. The flag 0x02 is to
be used by COPS-PR client-types and is hereafter referred to as the
"Request-State” flag. An Install decision (Decision Flags: Conmand-
Code=lnstall) with the Request-State flag set in the COPS Decision
Fl ags object will cause the PEP to issue a new Request with a new
Cient Handl e or else specify the appropriate error in a COPS Report
nmessage. A Renpve deci sion (Decision Flags: Comrand- Code=Renpve)
with the Request-State flag set in the COPS Decision Flags object
will cause the PEP to send a COPS Del ete Request State (DRQ nessage
for the Request-State identified by the Client Handle in the DEC
message. \Whenever the Request-State flag is set in the COPS Decision
Fl ags object in the DEC nessage, no COPS Named Deci si on Data object
can be included in the corresponding decision (as it serves no
purpose for this decision flag). Note that only one decision wth
the Request-State flag can be present per DEC nessage, and, if
present, this MJST be the only decision in that nessage. As

descri bed bel ow, the PEP MJUST respond to each and every DEC with a
correspondi ng solicited RPT.

A COPS- PR DEC nessage MJST be treated as a single "transaction",
i.e., either all the decisions in a DEC nessage succeed or they al
fail. If they fail, the PEP will rollback to its previous good
state, which is the | ast successful DEC transaction, if any. This
allows the PDP to delete sone policies only if other policies can be
installed in their place. The DEC nmessage has the follow ng format:

<Deci si on Message> ::= <Commopn Header >
<dient Handl e>
*(<Decision>) | <Error>
[<Integrity>]

<Deci si on> ::= <Cont ext >

<Deci si on: Fl ags>
[<Nanmed Deci sion Data: Provisioning >]

Chan, et al. St andards Track [Page 11]

RFC 3084 COPS- PR March 2001

Note that the Naned Decision Data (Provisioning) object is included
in a COPS-PR Decision when it is an Install or Renpbve decision with
no Decision Flags set. Qher types of COPS decision data objects
(e.g., Stateless, Replacenent) are not supported by COPS-PR client-
types. The Naned Deci sion Data object MJST NOT be included in the
decision if the Decision Flags object Comrand- Code is NULL (rneaning
there is no configuration information to install at this tinme) or if
the Request-State flag is set in the Decision Flags object.

For each decision in the DEC nessage, the PEP perforns the operation
specified in the Comand- Code and Flags field in the Decision Flags
obj ect on the Nanmed Decision Data. For the policy provisioning
clients, the format for this data is defined in the context of the
Policy Informati on Base (see section 5). In response to a DEC
nmessage, the policy provisioning client MIUST send a RPT nessage, wth
the solicited nessage flag set, back to the PDP to informthe PDP of
the action taken

3.3. Report State (RPT) PEP -> PDP

The RPT nessage is sent fromthe policy provisioning clients to the
PDP to report accounting information associated with the provisioned
policy, or to notify the PDP of changes in the PEP (Report-Type ="
Accounting’) related to the provisioning client.

RPT is also used as a nechanismto informthe PDP about the action
taken at the PEP in response to a DEC nessage. For exanple, in

response to an 'Install’ decision, the PEP inforns the PDP if the
policy data is installed (Report-Type = ’'Success’) or not (Report-
Type = "Failure’). Reports that are in response to a DEC nessage

MUST set the solicited nessage flag in their COPS nessage header

Each solicited RTP MJUST be sent for its corresponding DEC in the
order the DEC nessages were received. 1In case of a solicited
failure, the PEP is expected to rollback to its previous (good) state
as if the erroneous DEC transaction did not occur. The PEP MJST

al ways respond to a DEC with a solicited RPT even in response to a
NULL DEC, in which case the Report-Type will be ’Success’.

Reports can al so be unsolicited and all unsolicited Reports MJST NOT
set the solicited nessage flag in their COPS nessage header. Exanples
of unsolicited reports include 'Accounting Report-Types, which were
not triggered by a specific DEC nessages, or ’'Failure’ Report-Types,
which indicate a failure in a previously successfully installed
configuration (note that, in the case of such unsolicited failures,
the PEP cannot rollback to a previous "good" state as it becones

anmbi guous under these asynchronous conditions what the correct state
m ght be).

Chan, et al. St andards Track [Page 12]

RFC 3084 COPS- PR March 2001

The RPT message may contain provisioning client information such as
accounting paraneters or errors/warnings related to a decision. The
data format for this information is defined in the context of the
policy information base (see section 5). The RPT nessage has the
follow ng format:

<Report State> ::= <Common Header>
<dient Handl e>
<Report Type>
*(<Named dient Sl >)
[<Integrity>]

4. COPS-PR Protocol njects

The COPS Policy Provisioning clients encapsul ate several new objects
within the existing COPS Naned Cient-specific informtion object and
Named Decision Data object. This section defines the format of these
new obj ects.

COPS-PR cl assifies policy data according to "bindings", where a
bi ndi ng consists of a Provisioning Instance Identifier and the
Provi si oni ng I nstance data, encoded within the context of the
provi sioning policy informati on base (see section 5).

The format for these new objects is as follows:

0 1 2 3
S S S S +
| Length | S-Num S-Type |
R S S R +
| 32 bit unsigned integer
S S S S +

S-Num and S-Type are simlar to the CNum and C Type used in the base
COPS objects. The difference is that S-Num and S-Type are used only
for COPS-PR clients and are encapsul ated within the existing COPS
Naned ClientSl or Named Decision Data objects. The S-Numidentifies
the general purpose of the object, and the S Type describes the
specific encoding used for the object. Al the object descriptions
and exanples in this document use the Basic Encoding Rules as the
encodi ng type (S-Type = 1). Additional encodings can be defined for
the renmaining S-Types in the future (for exanple, an additional S
Type could be used to carry XM string based encodings [XM.] as an
EPD of PRI instance data, where URNs identify PRCs [URN] and

XPoi nters would be used for PRIDs).

Chan, et al. St andards Track [Page 13]

RFC 3084 COPS- PR March 2001

Length is a two-octet value that describes the nunmber of octets
(including the header) that conpose the object. |If the length in
octets does not fall on a 32-bit word boundary, padding MUST be added
to the end of the object so that it is aligned to the next 32-bit
boundary before the object can be sent on the wire. On the receiving
si de, a subsequent object boundary can be found by sinply roundi ng up
the stated object length of the current object to the next 32-bit
boundary. The values for the padding MJUST be all zeros.

4.1. Conplete Provisioning Instance lIdentifier (PRID)
S-Num = 1 (Conplete PRID), S-Type = 1 (BER), Length = variable.

This object is used to carry the identifier, or PRID, of a

Provi sioning Instance. The identifier is encoded follow ng the rules
t hat have been defined for encoding SNWP Qbject Identifier (O D)

val ues. Specifically, PRI D values are encoded using the

Type/ Lengt h/ Val ue (TLV) format and initial sub-identifier packing
that is specified by the binary encoding rules [BER] used for bject
Identifiers in an SNMP PDU

0 1 2 3
S S B S +
| Length | SNum= PRID | S-Type = BER
R S S R +
| I nstance Identifier
S S B S +

For exanple, a (fictitious) PRID equal to 1.3.6.1.2.2.8.1 would be
encoded as follows (values in hex):

06 07 2B 06 01 02 02 08 01

The entire PRI D object would be encoded as foll ows:

00 0D - Length

01 - S-Num

01 - S-Type (Conpl ete PRI D)
06 07 2B 06 01 02 02 08 01 - Encoded PRID

00 00 00 - Paddi ng

NOTE: When encodi ng an xxxTabl e’ s xxxEntry bject-Type as defined by
the SM [V2SM] and SPPI [SPPI], the ODwll contain all the sub-
identifiers up to and including the xxxEntry O D but not the col umar
identifiers for the attributes within the xxxEntry's SEQUENCE. The
last (suffix) identifier is the INDEX of an instance of an entire

Chan, et al. St andards Track [Page 14]

RFC 3084 COPS- PR March 2001

xXXEntry including its SEQUENCE of attributes encoded in the EPD
(defined below). This constitutes an instance (PRI) of a class (PRC
internms of the SM.

A PRID for a scalar (non-columar) value’s OD is encoded directly as
the PRC where the instance identifier suffix is always zero as there
will be only one instance of a scalar value. The EPD will then be
used to convey the scal ar val ue.

4.2. Prefix PRI D (PPRI D)

Certain operations, such as decision renoval, can be optim zed by
specifying a PRID prefix with the intent that the requested operation
be applied to all PRIs matching the prefix (for exanple, al

i nstances of the same PRC). PRID prefix objects MIUST only be used in
the COPS protocol <Renove Deci sion> operation where it may be nore
optinmal to perform bul k decision renoval using class prefixes instead
of a sequence of individual <Renove Deci sion> operations. Oher COPS
operations, e.g., <lnstall Decision> operations always require

i ndi vi dual PRI D specification

S-Num= 2 (Prefix PRID), S-Type = 1 (BER), Length = vari abl e.

0 1 2 3
I I I I +
| Length | SNum= PPRID| S Type = BER
S S S S +
| Prefix PRID
I I I I +

Continuing with the previous exanple, a prefix PRID that is equal to
1.3.6.1.2.2 wuld be encoded as follows (values in hex):

06 05 2B 06 01 02 02

The entire PPRID object would be encoded as foll ows:

00 OB - Length

02 - S-Num = Prefix PRI D
01 - S-Type = BER

06 05 2B 06 01 02 02 - Encoded Prefix PRID
00 - Paddi ng

Chan, et al. St andards Track [Page 15]

RFC 3084 COPS- PR March 2001

4.3. Encoded Provisioning Instance Data (EPD)
S-Num= 3 (EPD), S-Type = 1 (BER), Length = vari able.

This object is used to carry the encoded val ue of a Provisioning
Instance. The PRI value, which contains all of the individual values
of the attributes that conprise the class (which corresponds to the
SM’'s xxxEntry Object-Type defining the SEQUENCE of attributes
conprising a table [V2ZSM][SPPI]), is encoded as a series of TLV

sub- conponents. Each sub-conponent represents the value of a single
attribute and is encoded following the BER Note that the ordering
of non-scalar (nultiple) attributes within the EPD is dictated by
their respective columar O D suffix when defined in [V2SM]. Thus
the attribute with the smallest columar O D suffix will appear first
and the attribute with the hi ghest nunmber columar O D suffix will be

| ast.

0 1 2 3
S S S S +
| Length | SNum=EPD | S Type = BER
I I I I +
| BER Encoded PRI Val ue
S S S S +

As an exanple, a fictional definition of an |IPv4 packet filter class
could be described using the SM as foll ows:

i pv4FilterlpFilter OBJECT IDENTIFIER ::= { sonekExanpleO D 1 }
-- The IP Filter Table

i pv4Fi |l ter Tabl e OBJECT- TYPE

SYNTAX SEQUENCE OF Ipv4FilterEntry
MAX- ACCESS not - accessi bl e

STATUS current

DESCRI PTI ON

"Filter definitions. A packet has to match all fields in
a filter. WIdcards may be specified for those fields
that are not relevant."

o= { ipv4FilterlpFilter 1}

i pv4FilterEntry OBJECT- TYPE

SYNTAX | pv4Fil terEntry
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON

"An instance of the filter class.”

Chan, et al. St andards Track [Page 16]

RFC 3084 COPS- PR March 2001

I NDEX { ipv4Filterlndex }

o= { ipvd4FilterTable 1 }

| pv4FilterEntry ::= SEQUENCE {

i pv4Fil terl ndex Unsi gned32,
i pv4Fi |l t er Dst Addr | pAddr ess,
i pv4Fi |t er Dst Addr Mask | pAddress,
i pv4Fi |t er SrcAddr | pAddr ess,
i pv4Fil ter SrcAddr Mask | pAddress,
i pv4Fil terDscp I nt eger 32,
i pv4Fi |l ter Protocol I nt eger 32

i pv4FilterDstL4Port M n | nt eger 32,
i pv4Fil terDst L4Port Max | nteger 32,
i pv4FilterSrcL4Port M n | nteger 32,
i pv4Fil ter SrcL4Port Max | nteger 32,
i pv4FilterPermt Tr ut hval ue

}

i pv4Filterl ndex OBJECT- TYPE
SYNTAX Unsi gned32
MAX- ACCESS read-wite
STATUS current
DESCRI PTI ON
"An integer index to uniquely identify this filter anmong al
the filters.”

o= { ipvd4FilterEntry 1 }

i pv4FilterDst Addr OBJECT- TYPE

SYNTAX | pAddr ess

MAX- ACCESS read-write

STATUS current

DESCRI PTI ON

"The I P address to match agai nst the packet’s destination |IP
address.”

ci={ ipv4FilterEntry 2}

i pv4Fil ter Dst Addr Mask OBJECT- TYPE

SYNTAX | pAddr ess
MAX- ACCESS read-write
STATUS current
DESCRI PTI ON

"A mask for the matching of the destination |IP address.
A zero bit in the mask neans that the corresponding bit in

Chan, et al. St andards Track [Page 17]

RFC 3084 COPS- PR March 2001

t he address al ways nmatches."
o= { ipvd4FilterEntry 3}

i pv4Fi |l ter SrcAddr OBJECT- TYPE

SYNTAX | pAddr ess

MAX- ACCESS read-write

STATUS current

DESCRI PTI ON
"The I P address to match agai nst the packet’s source IP
address. "

o= { ipvd4FilterEntry 4 }

i pv4Fil ter SrcAddr Mask OBJECT- TYPE

SYNTAX | pAddr ess
MAX- ACCESS read-write
STATUS current
DESCRI PTI ON

"A mask for the matching of the source | P address."
c:={ ipv4FilterEntry 5}

i pv4FilterDscp OBJECT- TYPE

SYNTAX Integer32 (-1 | 0..63)
MAX- ACCESS read-write

STATUS current

DESCRI PTI ON

"The value that the DSCP in the packet can have and
match. A value of -1 indicates that a specific

DSCP val ue has not been defined and thus all DSCP val ues
are considered a natch."

o= { ipvd4FilterEntry 6 }

i pv4Fil terProtocol OBJECT- TYPE

SYNTAX I nt eger32 (0..255)
MAX- ACCESS read-wite

STATUS current
DESCRI PTI ON

"The I P protocol to match agai nst the packet’s protocol
A val ue of zero neans match all."

ci={ ipv4FilterEntry 7 }
i pv4Fil terDst L4Port M n OBJECT- TYPE

SYNTAX I nteger32 (0..65535)
MAX- ACCESS read-wite

Chan, et al. St andards Track [Page 18]

RFC 3084 COPS- PR March 2001

STATUS current

DESCRI PTI ON
"The m ni mum val ue that the packet’s | ayer
port nunber can have and match this filter

desti nation

= h

c:={ ipv4FilterEntry 8 }

i pv4Fi |l t er Dst L4Port Max OBJECT- TYPE

SYNTAX I nt eger32 (0..65535)
MAX- ACCESS read-wite

STATUS current

DESCRI PTI ON

"The maxi mum val ue that the packet’s | ayer destination

port nunber can have and match this filter

= h

c:={ ipv4FilterEntry 9 }

i pv4FilterSrcL4Port M n OBJECT- TYPE

SYNTAX I nt eger32 (0..65535)
MAX- ACCESS read-write

STATUS current

DESCRI PTI ON

"The m nimum val ue that the packet’s |ayer 4 source port
nunber can have and match this filter."

o= { ipv4FilterEntry 10 }

i pv4Fi |l ter SrcL4Port Max OBJECT- TYPE

SYNTAX I nt eger32 (0..65535)
MAX- ACCESS read-write

STATUS current

DESCRI PTI ON

"The maxi mum val ue that the packet’s |ayer 4 source port
nunber can have and match this filter."

o= { ipv4FilterEntry 11 }

i pv4FilterPermt OBJECT- TYPE

SYNTAX Tr ut hval ue
MAX- ACCESS read-write
STATUS current
DESCRI PTI ON

"If false, the evaluation is negated. That is, a
valid match will be evaluated as not a match and vice
versa."

o= { ipvd4FilterEntry 12 }

Chan, et al. St andards Track [Page 19]

RFC 3084 COPS- PR March 2001

A fictional instance of the filter class defined above mi ght then
be encoded as foll ows:

02 01 08 ;i pv4Filterlndex/ Unsi gned32/Value = 8

40 04 CO 39 01 O5 :ipvdFilterDst Addr/ 1 pAddress/Value = 192.57.1.5

40 04 FF FF FF FF :ipv4FilterDst Mask/ | pAddress/ Val ue=255. 255. 255. 255
40 04 00 00 00 0O :ipv4FilterSrcAddr/ I pAddress/Value = 0.0.0.0

40 04 00 00 00 0O :ipv4FilterSrcMask/ | pAddress/Value = 0.0.0.0

02 01 FF i pv4aFilterDscp/ I nteger32/Value = -1 (not used)
02 01 06 :ipv4aFilterProtocol /I nteger32/Value = 6 (TCP)

05 00 :i pv4dFil terDst L4Port M n/ NULL/ not supported

05 00 :i pv4Fil ter Dst L4Port Max/ NULL/ not support ed

05 00 cipvaFilterSrcL4Port M n/ NULL/ not supported

05 00 :ipv4aFilterSrcL4Port Max/ NULL/ not supported

02 01 01 cipvdFilterPernmt/Trut hVal ue/Value = 1 (true)
The entire EPD object for this instance would then be encoded as
fol | ows:

00 30 - Length

03 - S Num = EPD

01 - S-Type = BER

02 01 08 - i pvaFilterlndex

40 04 CO0 39 01 05 - i pv4Fil ter Dst Addr

40 04 FF FF FF FF - i pv4Fil t er Dst Mask

40 04 00 00 00 OO - i pv4Filter SrcAddr

40 04 00 00 00 0O - i pv4FilterSrcMask

02 01 FF - ipvaFilterDscp

02 01 06 - ipv4FilterProtoco

05 00 - ipv4FilterDstL4PortMn

05 00 - i pv4FilterDst L4Port Max

05 00 - ipv4FilterSrcL4PortM n

05 00 - i pv4FilterSrcL4Port Max

02 01 01 - ipvdFilterPermt

Note that attributes not supported within a class are still returned
inthe EPD for a PRI. By convention, a NULL value is returned for
attributes that are not supported. 1In the previous exanple, source

and destination port nunmber attributes are not supported.

Chan, et al. St andards Track [Page 20]

RFC 3084 COPS- PR March 2001

4. 4. dobal Provisioning Error Object (GPERR)

S-Num =4 (GPERR), S-Type = 1 (for BER), Length = 8.

0 1 2 3
I I I I +
| Length | SNum= GPERR | S-Type = BER
S S B S +
| Err or - Code | Error Sub-code |
S S B S +

The gl obal provisioning error object has the same fornat as the Error
object in COPS [COPS], except with C-Num and C- Type replaced by the

S-Num and S-Type val ues shown. The gl obal provision error object is
used to conmuni cate general errors that do not map to a specific PRC

The followi ng global error codes are defined:

avai | MenLow(1)
avai | MenExhaust ed(2)

unknownASN. 1Tag(3) - The erroneous tag type SHOULD be
specified in the Error Sub-Code field.
mexMsgSi zeExceeded(4) - COPS nessage (transaction) was too big.

unknownEr r or (5)

maxRequest St at esQpen(6) - No nore Request-States can be created
by the PEP (in response to a DEC
nessage attenpting to open a new
Request - St ate) .

i nval i dASN. 1Lengt h(7) An ASN. 1 object length was incorrect.

i nval i dObj ect Pad(8) - (bject was not properly padded.

unknownPI BDat a(9) - Sone of the data supplied by the PDP is
unknown/ unsupported by the PEP (but
otherwi se formatted correctly). PRC
specific error codes are to be used to
provide nore information.

unknownCOPSPRObj ect (10) - Sub-code (octet 2) contains unknown
object’s S-Num and (octet 3) contains
unknown object’s S-Type.

mal f or medDeci si on(11) - Decision could not be parsed.

Chan, et al. St andards Track [Page 21]

RFC 3084 COPS- PR March 2001

4.5. PRC dass Provisioning Error Object (CPERR)

S-Num=5 (CPERR), S-Type = 1 (for BER), Length = 8.

0 1 2 3
I I I I +
| Length | S-Num = CPERR | S-Type = BER
S S B S +
| Err or - Code | Error Sub-code |
S S B S +

The cl ass-specific provisioning error object has the sane format as
the Error object in COPS [COPS], except with C Num and C Type

repl aced by the S-Num and S-Type val ues shown. The cl ass-specific
error object is used to communicate errors relating to specific PRCs
and MJUST have an associated Error PRI D Object.

The followi ng Generic C ass-Specific errors are defined:

pri SpaceExhausted(1) - no nore instances may currently be
installed in the given class.
prilnstancelnvalid(2) - the specified class instance is

currently invalid prohibiting
installation or renoval.

attrVal uel nvalid(3) - the specified value for identified
attribute is illegal
attrVal ueSupLi mted(4) - the specified value for the identified

attribute is legal but not currently
supported by the device.

attr EnunSupLi nited(5) - the specified enuneration for the
identified attribute is | egal but not
currently supported by the device.

attr MaxLengt hExceeded(6) - the overall length of the specified
value for the identified attribute
exceeds device linitations.

attr Ref erenceUnknown(7) - the class instance specified by the
policy instance identifier does not
exi st.

priNotifyOnly(8) - the class is currently only supported

for use by request or report nessages
prohi biting decision installation.

unknownPrc(9) - attenpt to install a PRI of a class not
supported by PEP.

t ooFewAt trs(10) - recvd PRI has fewer attributes than
required.

inval i dAttr Type(11) - recvd PRI has an attribute of the wong
t ype.

Chan, et al. St andards Track [Page 22]

RFC 3084 COPS- PR March 2001

del et edl nRef (12) - deleted PRI is still referenced by
other (non) deleted PRI's
pri Speci ficError(13) - the Error Sub-code field contains the

PRC specific error code

Where appropriate (errors 3, 4, 5, 6, 7 above) the error sub-code
SHOULD identify the OD sub-identifier of the attribute
associated with the error.

4.6. Error PRID bject (ErrorPRID)
S-Num= 6 (ErrorPRID), S-Type = 1 (BER), Length = variable.

This object is used to carry the identifier, or PRID, of a
Provi si oni ng I nstance that caused an installation error or could not
be installed or renoved. The identifier is encoded and formatted
exactly as in the PRID object as described in section 4.1.

5. COPS-PR dient-Specific Data Formats

This section describes the format of the named client specific
information for the COPS policy provisioning client. dientS
formats are defined for Decision nessage’s Nanmed Deci sion Data

obj ect, the Request nessage’s Nanmed CientSl object and Report
message’s Naned ClientSl object. The actual content of the data is
defined by the policy information base for a specific provisioning
client-type (see bel ow).

5.1. Naned Deci si on Data

The formats encapsul ated by the Naned Decision Data object for the
policy provisioning client-types depends on the type of decision

Install and Renpve are the two types of decisions that dictate the
internal format of the COPS Naned Decision Data object and require

its presence. Install and Renmove refer to the 'Install’ and ' Renove’
Command- Code, respectively, specified in the COPS Decision Flags
Cbj ect when no Decision Flags are set. The data, in general, is

conposed of one or nore bindings. Each binding associates a PRID
obj ect and a EPD object. The PRID object is always present in both
install and renove decisions, the EPD object MJST be present in the
case of an install decision and MIUST NOT be present in the case of a
renove deci sion.

Chan, et al. St andards Track [Page 23]

RFC 3084 COPS- PR March 2001

The format for this data is encapsulated within the COPS Naned
Deci sion Data object as follows:
<Nanmed Decision Data> ::= <<lnstall Decision>
<Renpove Deci si on>>

<Install Decision> .= *(<PRI D> <EPD>)
<Renove Deci si on> i1 = *(<PRI D>| <PPRI D>)

Note that PRI D objects in a Renove Decision nay specify PRI D prefix
values. Explicit and inplicit deletion of installed policies is
supported by a client. |Install Decision data MJST be explicit (i.e.
PRID prefix values are illegal and MJST be rejected by a client).

5.2. dientSl Request Data

The provisioning client request data will use same bindings as
descri bed above. The format for this data is encapsulated in the
COPS Nanmed CientSl object as foll ows:

<Naned ClientSl: Request> ::= <*(<PRI D> <EPD>) >
5.3. Policy Provisioning Report Data

The COPS Nanmed ClientSl object is used in the RPT nessage in
conjunction with the acconpanyi ng COPS Report Type object to
encapsul ate COPS-PR report information fromthe PEP to the PDP
Report types can be 'Success’ or 'Failure , indicating to the PDP
that a particular set of provisioning policies has been either
successfully or unsuccessfully installed/renpoved on the PEP, or

" Accounti ng’

5.3.1. Success and Failure Report-Type Data Fornat

Report-types can be 'Success’ or 'Failure’ indicating to the PDP that
a particular set of provisioning policies has been either
successfully or unsuccessfully installed/renoved on the PEP. The
provi sioning report data consists of the bindings described above and
gl obal and specific error/warning information. Specific errors are
associated with a particular instance. For a 'Success’ Report-Type,
a specific error is an indication of a warning related to a specific
policy that has been installed, but that is not fully inplenented
(e.g., its paraneters have been approxi mted) as identified by the
ErrorPRID object. For a 'Failure’ Report-Type, this is an error code
specific to a binding, again, identified by the ErrorPRI D object.
Specific errors may al so include regul ar <PRI D><EPD> bi ndings to

Chan, et al. St andards Track [Page 24]

RFC 3084 COPS- PR March 2001

carry additional information in a generic manner so that the specific
errors/warnings may be nore verbosely described and associated with
the erroneous Error PRI D object.

G obal errors are not tied to a specific ErrorPRID. 1In a ’Success
RPT nessage, a global error is an indication of a general warning at
the PEP level (e.g., nenory low). 1In a 'Failure’ RPT nessage, this

is an indication of a general error at the PEP | evel (e.g., nenory
exhaust ed) .

In the case of a 'Failure’ Report-Type the PEP MUST report at |east
the first error and SHOULD report as nmany errors as possible. 1In
this case the PEP MJST roll-back its configuration to the |ast good
transaction before the erroneous Decision nessage was received.

The format for this data is encapsulated in the COPS Named Cient Sl
obj ect as follows:

<Naned ClientSl: Report> ::= <[<GPERR>] *(<report>)>
<report> ::= <Error PRI D> <CPERR> *(<PRI D><EPD>)
5.3.2. Accounting Report-Type Data For mat

Additionally, reports can be used to carry accounting information
when specifying the 'Accounting’ Report-Type. This accounting report
nmessage will typically carry statistical or event information rel ated
to the installed configuration for use at the PDP. This information
is encoded as one or nore <PRI D><EPD> bi ndi ngs that generally
describe the accounting information being reported fromthe PEP to

t he PDP.

The format for this data is encapsulated in the COPS Nanmed Cient Sl
obj ect as follows:

<Naned ClientSl: Report> ::= <*(<PRI D><EPD>) >

NOTE: RFC 2748 defines an optional Accounting-Tinmer (AcctTiner)
object for use in the COPS dient-Accept nmessage. Periodic
accounting reports for COPS-PR clients are also obligated to be paced
by this tiner. Periodic accounting reports SHOULD NOT be generated
by the PEP nore frequently than the period specified by the COPS
AcctTiner. Thus, the period between new accounting reports SHOULD be
greater-than or equal-to the period specified (if specified) in the
AcctTimer. |If no AcctTimer object is specified by the PDP, then
there are no constraints inposed on the PEP s accounting interval

Chan, et al. St andards Track [Page 25]

RFC 3084 COPS- PR March 2001

6. Conmon Qperation

Thi s section describes, in general, typical exchanges between a PDP
and Policy Provisioning COPS client.

First, a TCP connection is established between the client and server
and the PEP sends a Cient-Open nessage specifying a COPS- PR
client-type (use of the CientSl object within the dient-COpen
message is currently undefined for COPS-PR clients). If the PDP
supports the specified provisioning client-type, the PDP responds
with a dient-Accept (CAT) nessage. |If the client-type is not
supported, a Cient-Close (CC) nmessage is returned by the PDP to the
PEP, possibly identifying an alternate server that is known to
support the policy for the provisioning client-type specified.

After receiving the CAT nessage, the PEP can send requests to the
server. The REQ froma policy provisioning client contains a COPS

" Configuration Request’ context object and, optionally, any rel evant
named client specific information fromthe PEP. The information
provided by the PEP should include available client resources (e.g.
supported cl asses/attributes) and default policy configuration
information as well as incarnation data on existing policy. The
configuration request nessage froma provisioning client serves two
purposes. First, it is a request to the PDP for any provisioning
configuration data which the PDP nay currently have that is suitable
for the PEP, such as access control filters, etc., given the
information the PEP specified in its REQ Al so, the configuration
request effectively opens a channel that will allow the PDP to
asynchronously send policy data to the PEP, as the PDP decides is
necessary, as long as the PEP keeps its request state open (i.e., as
long as the PEP does not send a DRQwith the request state’'s Cient
Handl e). This asynchronous data nmay be new policy data or an update
to policy data sent previously. Any relevant changes to the PEP s
internal state can be conmunicated to the PDP by the PEP sending an
updat ed REQ nessage. The PEP is free to send such updated REQ
nmessages at any tine after a CAT nessage to conmuni cate changes in
its local state.

After the PEP sends a REQ if the PDP has Policy Provisioning policy
configuration information for the client, that information is
returned to the client in a DEC nessage containing the Policy
Provisioning client policy data within the COPS Naned Deci sion Data
obj ect and specifying an "lInstall" Conmand- Code in the Decision Flags
object. If no filters are defined, the DEC nessage will sinply
specify that there are no filters using the "NULL Deci sion" Command-
Code in the Decision Flags object. As the PEP MJST specify a dient
Handl e in the request nessage, the PDP MJUST process the Cient Handle
and copy it in the correspondi ng deci sion nessage. A DEC nessage

Chan, et al. St andards Track [Page 26]

RFC 3084 COPS- PR March 2001

MUST be issued by the PDP with the Solicited Message Flag set in the
COPS nessage header, regardl ess of whether or not the PDP has any
configuration information for the PEP at the tine of the request.
This is to prevent the PEP fromtimng out the REQ and del eting the
dient Handl e.

The PDP can then add new policy data or update/del ete existing
configurations by sending subsequent unsolicited DEC nessage(s) to
the PEP, with the same Cient Handle. Previous configurations
installed on the PEP are updated by the PDP by sinply re-installing
the sanme instance of configuration information again (effectively
overwiting the old data). The PEP is responsible for renoving the
Client handle when it is no | onger needed, for exanple when an
interface goes down, and inform ng the PDP that the Client Handle is
to be deleted via the COPS DRQ nessage.

For Policy Provisioning purposes, access state, and access requests
to the policy server can be initiated by other sources besides the
PEP. Exanples of other sources include attached users requesting
network services via a web interface into a central nanagenent
application, or H 323 servers requesting resources on behalf of a
user for a video conferencing application. Wen such a request is
accepted, the edge device affected by the decision (the point where
the flowis to enter the network) needs to be infornmed of the
decision. Since the PEP in the edge device did not initiate the
request, the specifics of the request, e.g., flowspec, packet filter
and PHB to apply, needs to be communicated to the PEP by the PDP
This information is sent to the PEP using the Decision nessage
contai ning Policy Provisioning Naned Decision Data objects in the
COPS Deci si on object as specified. Any updates to the state
information, for exanple in the case of a policy change or call tear
down, is comuni cated to the PEP by subsequent unsolicited DEC
nmessages containing the sane Cient Handl e and the updated Policy
Provi si oni ng request state. Updates can specify that policy data is
to be installed, deleted, or updated (re-installed).

PDPs may al so cormmand the PEP to open a new Request State or delete
an exiting one by issuing a decision with the Decision Flags object’s
Request-State flag set. |f the conmand-code is "install", then the
PDP is conmanding the PEP to create a new Request State, and
therefore i ssue a new REQ nessage specifying a new Cient Handle or
otherwi se issue a "Failure"” RPT specifying the appropriate error
condition. Each request state represents an i ndependent and

| ogi cal l y non-overl appi ng nanespace, identified by the dient Handl e,
on whi ch transactions (a.k.a., configuration installations,

del etions, updates) may be performed. Oher existing Request States
will be unaffected by the new request state as they are i ndependent
(thus, no instances of configuration data within one Request State

Chan, et al. St andards Track [Page 27]

RFC 3084 COPS- PR March 2001

can be affected by DECs for another Request State as identified by
the Cdient Handle). |If the command-code is "Renove", then the PDP is
comandi ng the PEP to delete the existing Request-State specified by
the DEC nessage’s Cient Handl e, thereby causing the PEP to issue a
DRQ nessage for this Handl e.

The PEP MUST acknow edge a DEC nessage and specify what action was
taken by sending a RPT nessage with a "Success” or "Failure" Report-
Type object with the Solicited Message Flag set in the COPS nessage
header. This serves as an indication to the PDP that the requestor
(e.g., H 323 server) can be notified whether the request has been
accepted by the network or not. |If the PEP needs to reject the DEC
operation for any reason, a RPT nessage is sent with a Report-Type
with the value "Failure"” and optionally a Client Specific Information
obj ect specifying the policy data that was rejected. Under such
solicited report failure conditions, the PEP MUST al ways rollback to
its previously installed (good) state as if the DEC never occurred.
The PDP is then free to nodify its decision and try again.

The PEP can report to the PDP the current status of any installed
request state when appropriate. This information is sent in a
Report-State (RPT) nmessage with the "Accounting" flag set. The
request state that is being reported is identified via the associ ated
Client Handle in the report nessage.

Finally, dient-Close (CC) nmessages are used to cancel the
correspondi ng Cient-Cpen nessage. The CC nessage inforns the other
side that the client-type specified is no | onger supported.

7. Fault Tol erance

When comunication is | ost between PEP and PDP, the PEP attenpts to
re-establish the TCP connection with the PDP it was | ast connected
to. If that server cannot be reached, then the PEP attenpts to
connect to a secondary PDP, assumed to be nmanual ly configured (or
ot herwi se known) at the PEP

When a connection is finally re-established with a PDP, the PEP sends
a OPN nessage with a <Last PDPAddr> obj ect providing the address of
the nost recent PDP for which it is still caching decisions. If no
deci sions are being cached on the PEP (due to reboot or TTL timeout
of state) the PEP MUST NOT include the |ast PDP address information
Based on this object, the PDP may request the PEP to re-synch its
current state information (by issuing a COPS SSQ nessage). |If, after
re-connecting, the PDP does not request synchronization, the client
can assune the server recognizes it and the current state at the PEP
is correct, so a REQ nessage need not be sent. Still, any state
changes which occurred at the PEP that the PEP could not communi cate

Chan, et al. St andards Track [Page 28]

RFC 3084 COPS- PR March 2001

to the PDP due to conmmunication having been | ost, MIST be reported to
the PDP via the PEP sending an updated REQ nessage. Whenever re-
synchroni zation is requested, the PEP MJST rei ssue any REQ nessages
for all known Request-States and the PDP MJST i ssue DEC nessages to
delete either individual PRIDs or prefixes as appropriate to ensure a
consi stent known state at the PEP

While the PEP is disconnected fromthe PDP, the active request-state
at the PEP is to be used for policy decisions. |f the PEP cannot
re-connect in sonme pre-specified period of tine, all installed
Request-States are to be deleted and their associ ated Handl es
renoved. The sanme holds true for the PDP; upon detecting a failed
TCP connection, the time-out tiner is started for all Request-States
associated with the PEP and these states are renoved after the

adm nistratively specified period without a connection

8. Security Considerations

The COPS protocol [COPS], fromwhich this docunent derives, describes
the mandatory security mechani snms that MJST be supported by all COPS
i mpl enentations. These nmandatory security mechanisns are used by the
COPS protocol to transfer opaque information fromPEP to PDP and vice
versa in an authenticated and secure manner. COPS for Policy
Provisioning sinply defines a structure for this opaque information
al ready carried by the COPS protocol. As such, the security
nmechani sns descri bed for the COPS protocol will also be deployed in a
COPS- PR envi ronnment, thereby ensuring the integrity of the COPS-PR

i nformati on being comruni cated. Furthernore, in order to fully
describe a practical set of structured data for use with COPS-PR, a
PIB (Policy Information Base) will likely be witten in a separate
document. The authors of such a PIB document need to be aware of the
security concerns associated with the specific data they have
defined. These concerns MJST be fully specified in the security
consi derations section of the PIB docunent along with the required
security mechanisnms for transporting this newy defined data.

9. | ANA Consi derations

COPS for Policy Provisioning follows the sane | ANA considerations for
COPS obj ects as the base COPS protocol [COPS]. COPS-PR has defined
one additional Decision Flag value of 0x02, extending the COPS base
protocol only by this one value. No new COPS Client- Types are
defined by this docunent.

COPS- PR al so introduces a new obj ect nunmber space with each object
being identified by its S Num and S-Type value pair. These objects
are encapsul ated within the existing COPS Named ClientSl or Naned
Deci sion Data objects [COPS] and, therefore, do not conflict with any

Chan, et al. St andards Track [Page 29]

RFC 3084 COPS- PR March 2001

10.

11.

assigned nunbers in the COPS base protocol. Additional S-Num and S-
Type pairs can only be added to COPS-PR using the | ETF Consensus rule
as defined in [IANA]. These two nunbers are always to be treated as
a pair, with one or nore S-Types defined per each S-Num This
docunent defines the S-Numvalues 1-6 and the S-Type 1 for each of
these six values (note that the S-Type value of 2 is reserved for
transport of XM. encoded data). A listing of all the S-Numand S-
Type pairs defined by this docunent can be found in sections 4.1-4.6.

Li kewi se, additional d obal Provisioning error codes and C ass-
Specific Provisioning error codes defined for COPS-PR can only be
added with | ETF Consensus. This docunent defines the d oba

Provi sioning error code values 1-11 in section 4.4 for the d oba
Provisioning Error Object (GPERR). This docunent also defines the
Cl ass-Specific error code values 1-13 in section 4.5 for the C ass
Provi sioning Error Object (CPERR).

Acknow edgenent s

Thi s docunent has been devel oped with active involvenent froma
nunber of sources. The authors would specifically like to

acknow edge t he val uabl e i nput given by Mchael Fine, Scott Hahn, and
Carol Bell.

Ref er ences
[COPS] Boyle, J., Cohen, R, Durham D., Herzog, S., Raja, R and
A. Sastry, "The COPS (Common Open Policy Service)
Protocol ", RFC 2748, January 2000.
[RAP] Yavatkar, R, Pendarakis, D. and R Guerin, "A Franework
for Policy Based Adm ssion Control"”, RFC 2753, January
2000.

[COPRSVP] Boyle, J., Cohen, R, Durham D., Herzog, S., Raja, R and
A. Sastry, "COPS usage for RSVP', RFC 2749, January 2000.

[ASN1] I nformati on processing systens - Qpen Systens
I nt erconnection, "Specification of Abstract Syntax Notation
One (ASN. 1)", International Organization for
St andardi zati on, International Standard 8824, Decenber
1987.
[BER] I nformation processing systems - Open Systens

I nt erconnection - Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN. 1), Internationa

Organi zation for Standardi zation. International Standard
8825, (Decenber, 1987).

Chan, et al. St andards Track [Page 30]

RFC 3084

[RFC2475]

[SPPI]

[V2SM]

[RFC2234]

[| ANA]

[URN]

[XM.]

Chan,

et al.

COPS- PR March 2001

Bl ake, S., Black, D., Carlson, M, Davies, E., Wang, Z. and
W Weiss, "An Architecture for Differentiated Service," RFC
2475, Decenber 1998.

McCl oghrie, K., Fine, M, Seligson, J., Chan, K, Hahn, S,
Sahita, R, Smith, A and F. Reichneyer, "Structure of
Policy Provisioning Information SPPI", Wirk in Progress.

McCl oghrie, K., Perkins, D., Schoenwael der, J., Case, J.,
Rose, M and S. Wl dbusser, "Structure of Managenent
Information Version 2(SMv2)", STD 58, RFC 2578, April
1999.

Crocker, D. and P. Overell, "Augnmented BNF for Syntax
Speci fications: ABNF', RFC 2234, Novenber 1997.

Al vestrand, H and T. Narten, "Guidelines for witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 2434,
Cct ober 1998.

Mbats, R, "Uniform Resource Names (URN) Syntax", RFC 2141,
May 1997.

Wrld Wde Web Consortium (WBC), "Extensible Markup

Language (XM)," WBC Reconmendati on, February, 1998,
http://ww. w3. org/ TR/ 1998/ REC- xnl - 19980210.

St andards Track [Page 31]

RFC 3084 COPS- PR March 2001

12. Authors’ Addresses

Kwok Ho Chan

Nortel Networks, Inc.

600 Technol ogy Park Drive
Billerica, MA 01821

Phone: (978) 288-8175
EMai | : khchan@ort el net wor ks. com

Davi d Dur ham

I nt el

2111 NE 25t h Avenue
Hllsboro, OR 97124

Phone: (503) 264-6232
Enmai | : davi d. durham@ nt el . com

Si |l vano Gai

Cisco Systems, Inc.

170 Tasman Dr.

San Jose, CA 95134-1706

Phone: (408) 527-2690
EMai | : sgai @i sco.com

Shai Her zog

| PH ghway | nc.

69 MIKk Street, Suite 304
West bor ough, MA 01581

Phone: (914) 654-4810
EMai | : Herzog@ phi ghway. com
Keith Mcd oghrie

Phone: (408) 526-5260
EMai | : kzm@i sco. com

Chan, et al. St andards Track [Page 32]

RFC 3084 COPS- PR March 2001

Franci s Rei chneyer

PFN, Inc.

University Park at M T
26 Landsdowne Street
Canbri dge, MA 02139

Phone: (617) 494 9980
EMai | : franr @fn.com

John Seligson

Nortel Networks, |nc.

4401 Great Anerica Parkway
Santa C ara, CA 95054

Phone: (408) 495-2992

Emai | . jseligso@ortel networks. com
Raj Yavat kar

Phone: (503) 264-9077

EMai | : raj.yavatkar@ntel.com

Andrew Snmith

Al | egro Networks

6399 San I gnaci o Ave.
San Jose, CA 95119, USA

EMai | : andrew@l | egr onet wor ks. com

Chan, et al. St andards Track [Page 33]

RFC 3084 COPS- PR March 2001

13. Full Copyright Statenent
Copyright (C) The Internet Society (2001). Al Rights Reserved.

Thi s docunent and translations of it nay be copied and furnished to
ot hers, and derivative works that comrent on or otherw se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncl uded on all such copies and derivative works. However, this
docunment itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of

devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linmted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This docunent and the infornmation contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPOSE.

Acknow edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Chan, et al. St andards Track [Page 34]

	S3z020013_CR_33200_v013_COPS.doc
	rfc2748.rtf
	rfc3084.rtf

