3GPP TSG-SA3 Meeting #110Ad-Hoc-e
draft_S3-232002-r2
Electronic meeting, Online, 17 - 21 April 2023
Source:
Samsung
Title:
Updates to Sol#12
Document for:
Approval

Agenda Item:
5.11
1
Decision/action requested

The contribution proposes to update sol#12 in TR 33.884.
2
References

 NA
3
Rationale

This pCR proposes editorial updates to solution #12 and also proposes to add evaluation.
4
Detailed proposal

*************** Start of 1st Change ****************
6.12
Solution #12: Providing and Revoking Resource Owner Authorization
6.12.1
Introduction

This solution addresses Key Issue #2 "Checking authorization before allowing access".

This solution proposes to use a resource owner’s 3GPP credentials for UE to generate a token, which is used to validate an API Invoker accessing the resource owner’s resources.

A resource owner in this solution is an end-user who is using the UE.
6.12.2
Solution details

6.12.2.1
Architecture

[image: image1.emf]API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1 CAPIF-2

PLMN Trust Domain

CAPIF-4

API publishing function

API provider domain

CAPIF APIs

CAPIF-5

API management function

Resource owner client(s)

CAPIF-8

Authorization function

CAPIF-9

CAPIF-10

CAPIF-10e

Authorization APIs

Figure 6.12.2.1-1 architecture for CAPIF with SNA enhancement

This solution uses an architecture proposed in solution #2 of TR 23.700-95 [3]. As defined in TR 23.700-95 [3], the Resource owner client is an application client used by end-user or subscriber of the API provider domain's service provider.
6.12.2.2
Procedure
Pre-requisite:

· During the primary authentication, AUSF receives Routing Indicator for Authorization Function from UDM.
· After the primary authentication, UE and AUSF generate S-KID (SNAAPPY Key Identifier) and KAuz from KAUSF as detailed in 6.12.2.3 and 6.12.2.4 of this document, respectively. After the key material is generated, AUSF selects the Authorization Function based on the Routing Indicator and sends the KAuz, S-KID, and SUPI to the Authorization Function. The Authorization Function stores the latest information sent by the AUSF.
· Information on Authorization Function (e.g. address, Routing Indicator, etc.) which holds the KAuz is provisioned to the UE (e.g. during registration procedure).

· API Invoker knows which APIs require a resource owner's authorization.

[image: image2.emf]API Invoker

API exposing

function

5. Service API invocation request

(Token_Auz)

1. Need Token_Auz

for service API

invocation.

10. Service API invocation response

UE

2. Resource owner authorization request

for the API invocation

(Service API name, API Invoker Information)

3. Generate a token

(Token_Auz) using K_Auz for

authorization on API

invocation.

4. Resource owner authorization response

(Token_Auz)

7. Verify Token_Auz

using K_Auz.

Authorization

Function

12. Revocation Request using resource owner client via CAPIF-8

(Token_Rev)

14. Revocation Notification

(Token_Rev, UE ID)

16. Revocation Notification via CAPIF-2

(Token_Rev)

11. Generate a token

(Token_Rev) using K_Auz to

revoke the Token_Auz.

13. Verify Token_Rev

using K_Auz.

6. Token verification request

(Token_Auz)

8. Token verification response

(verification result, UE ID)

15. Revoke

Token_Auz.

9. Store Token_Auz

with UE ID.

Figure 6.12.2.2-1 Procedure for resource owner authorization based API invocation

1. If API Invoker does not have TokenAuz for service API invocation which requires the resource owner’s authorization, API Invoker needs to request resource owner’s authorization for the API invocation even if the API invocation is authorized from API exposing function as defined in TS 33.122 [5].
2. API Invoker requests resource owner’s authorization for the API invocation. The request message includes Service API name (e.g. QoS API, location API, etc.) and API Invoker Information (e.g. API Invoker identity which is provided from CAPIF Core Function).

3. When the resource owner decides to give an authorization on the Service API name to the API Invoker (e.g. using GUI), UE generates an authorization token (TokenAuz). The claims of the TokenAuz include service API name, S-KID (SNAAPPY Key Identifier), API Invoker Information, “Authorized”, generated time, and validity time. TokenAuz contains the claims (TokenAuz, claim) and the verification information (TokenAuz, verify). Details of S-KID and the corresponding key KAuz are specified in 6.12.2.3 and 6.12.2.4 of this document, respectively. TokenAuz, verify is generated as detailed in 6.12.2.5 by using the claims and the key KAuz.
Editor's Note: Which entity in the UE executes step 3 is FFS.
4. If the resource owner gives the authorization for the API invocation, UE responds with the TokenAuz. Upon receving the response, the API Invoker stores the TokenAuz with UE ID (e.g. application layer ID or GPSI or SUPI). The API Invoker can use the TokenAuz for the API invocation until the TokenAuz is expired by an expiration time or revoked by the resource owner, even when there is no online connection between the API Invoker and the UE.

5. API Invoker performs the service API invocation with the TokenAuz.

6. API exposing function requests token verification to Authorization Function, via CAPIF-9 interface.

7. Authorization Function finds KAuz matched to S-KID which is included in TokenAuz, claim and verifies the TokenAuz using KAuz.
8. Authorization Function responds with the verification result and UE ID (SUPI or GPSI).
9. If the verification result of the TokenAuz is successful, API exposing function stores the TokenAuz with UE ID (SUPI or GPSI). Untill API exposing function receives a revocation notification for the service API invocation or the TokenAuz is expired by an expiration time, API exposing function uses the stored TokenAuz for authorizing the API Invoker without performing token verification request to Authorization Function.

10. API Invoker receives the service API invocation response.

11. If the resource owner does not want for the API Invoker to invoke the service API, the resource owner can revoke the TokenAuz anytime before the validity time of the TokenAuz by using resource owner client. When the resource owner decides to revoke the TokenAuz for the service API, UE generates a revocation token (TokenRev). The claims of TokenRev include service API name, A-KID, API Invoker information, “Not authorized”, generated time. TokenRev contains the claims (TokenRev, claim) and the verification information (TokenRev, verify). TokenRev, verify is generated as detailed in 6.12.2.5 by using the claims and the key KAuz.

12. UE and Authorization function perform mutual authentication based on TLS-PSK as specified in clause 6.5.2.1 in TS 33.122, where PSK can be derived from KAuz. The TokenRev is transmitted to Authorization Function via CAPIF-8 interface with revocation request message.
13. Authorization Function finds KAuz by using S-KID which is included in the TokenRev, claim. Authorization Function verifies the TokenRev using KAuz.
14. Authorization Function notifies the revocation on the API Invoker’s service API invocation. The revocation notification includes the TokenRev and UE ID.
15. For the same UE ID stored at step 9 and received at step 14, API exposing function finds the TokenAuz which has same service API name and API Invoker information as the TokenRev. If the generated time of the TokenAuz is prior to that of the TokenRev, API exposing function revokes the TokenAuz and stores the TokenRev. After this, if the API Invoker performs service API invocation using the revoked TokenAuz, API exposing function shall reject the API invocation request by noticing that the generation time in the TokenAuz is prior to the generation time in the TokenRev.
16. API exposing function notifies the revocation of the token.
6.12.2.3
S-KID
S-KID is in NAI format as specified in clause 2.2 of IETF RFC 7542 [11], i.e. username@realm. The username part includes the Routing Indicator for Authorization Function and S-TID (SNAAPPY Temporary UE Identifier), and the realm part includes Home Network Identifier.

When deriving S-TID from KAUSF, the following parameters shall be used to form the input S to the KDF:

· FC = 0xXX;

· P0 = "S-TID";

· L0 = length of "S-TID";

· P1 = SUPI;

· L1 = length of SUPI.

The input key KEY shall be KAUSF.

NOTE:
FC value to be determined during normative phase.
6.12.2.4
KAuz derivation function
When deriving KAuz from KAUSF, the following parameters shall be used to form the input S to the KDF:

· FC = 0xYY;

· P0 = “Authorization”;

· L0 = length of “Authorization”;
The input key KEY shall be the KAUSF.
NOTE:
FC value to be determined during normative phase.
6.12.2.5
Verification information derivation
When deriving the verificiation information (TokenAuz, verify or TokenRev, verify) from KAuz, the following parameters shall be used to form the input S to the KDF.

· FC = 0xZZ;

· P0 = TokenAuz, claim or TokenRev, claim;

· L0 = length of TokenAuz, claim or TokenRev, claim;

The input key KEY shall be KAuz.

The verification information is identified with the 128 least significant bits of the output of the KDF.

NOTE:
FC value to be determined during normative phase.
6.12.3
Evaluation

This solution addresses KI#2.
This solution uses similar mechanism as users of mobile phone giving a permission to application for access to resources such as phonebook, microphone, camera, etc. When the resource owner authorizes an API Invoker, UE uses KAuz, which the API Invoker cannot obtain, to generate an authorization token (TokenAuz) sends the token to API Invoker. After verifying the token that API Invoker presented, API exposing function responds to API invocation request from API Invoker.
This solution does not use OAuth 2.0 procedure.
This solution introduces a new mechanism for the revocation check of a token by including the token generation time in an authorization token and the token revocation time in a revocation token.
Impact on AUSF exists, i.e., AUSF generates a new key (KAUZ) with corresponding identifier (S-KID) and sends them to Authorization Function.
Editor's Note: Further evaluation is FFS.
*************** End of 1st Change ****************
_1736937608.vsd
�

�

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

API Invoker
API exposing function
5. Service API invocation request
(Token_Auz)
1. Need Token_Auz for service API invocation.
10. Service API invocation response
UE
2. Resource owner authorization request
for the API invocation
(Service API name, API Invoker Information)
3. Generate a token (Token_Auz) using K_Auz for authorization on API invocation.
4. Resource owner authorization response
(Token_Auz)
7. Verify Token_Auz using K_Auz.
Authorization Function
12. Revocation Request using resource owner client via CAPIF-8
(Token_Rev)
14. Revocation Notification
(Token_Rev, UE ID)
16. Revocation Notification via CAPIF-2
(Token_Rev)
11. Generate a token (Token_Rev) using K_Auz to revoke the Token_Auz.
13. Verify Token_Rev using K_Auz.
6. Token verification request
(Token_Auz)
8. Token verification response
(verification result, UE ID)
15. Revoke Token_Auz.
9. Store Token_Auz with UE ID.

