3GPP TSG-SA3 Meeting #110Ad-Hoc-e
S3-232222
Electronic meeting, Online, 17 - 21 April 2023
Source:
Samsung
Title:
Updates to Sol#11
Document for:
Approval

Agenda Item:
5.11
1
Decision/action requested

The contribution proposes to update sol#11 in TR 33.884.
2
References

 NA
3
Rationale

This pCR proposes to update solution #11 and proposes to add evaluation.
4
Detailed proposal

*************** Start of 1st Change ****************
6.11
Solution #11: Providing and Revoking Resource Owner Authorization using OAuth 2.0 Authorization Code Grant
6.11.1
Introduction

This solution addresses Key Issue #2 "Checking authorization before allowing access".

This solution proposes to use OAuth 2.0 Authorization Code Grant as specified in clause 4.1 of RFC 6749 [4], in which the resource owner can be authenticated by the resource owner's 3GPP credentials.

UE, API Invoker, and Authorization Function in this solution performs the role of User-Agent, Client, and Authorization server in RFC 6749 [4], respectively.

6.11.2
Solution details

6.11.2.1
Architecture

[image: image1.emf]API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1 CAPIF-2

PLMN Trust Domain

CAPIF-4

API publishing function

API provider domain

CAPIF APIs

CAPIF-5

API management function

Resource owner client(s)

CAPIF-8

Authorization function

CAPIF-9

CAPIF-10

CAPIF-10e

Authorization APIs

Figure 6.11.2.1-1 architecture for CAPIF with SNA enhancement

This solution uses an architecture proposed in solution #2 of TR 23.700-95 [3]. As defined in TR 23.700-95 [3], the Resource owner client is an application client used by end-user or subscriber of the API provider domain's service provider.

6.11.2.2
Procedure
Pre-requisite:
1. During the primary authentication, AUSF receives SNAAPPY Indication from UDM, which indicates that the AUSF and the UE need to generate the following pre-requisite 2.
2. After the primary authentication, UE and AUSF generate SNAAPPY Key Identifier (S-KID) and KSNAAPPY from KAUSF as detailed in 6.11.2.3 and 6.11.2.4 of this document, respectively. After the S-KID and KSNAAPPY are generated, AUSF sends the KSNAAPPY, S-KID, and SUPI to Authorization Function. The Authorization Function stores this information sent by the AUSF. If there were KSNAAPPY and S-KID corresponding to the same SUPI, they are overridden by the new KSNAAPPY and S-KID.

[image: image2.emf]API Invoker

CAPIF core

function

1. Onboarding procedure and mutual authentication

UE

API exposing

function

Authorization

Function

2. Authentication and authorization

5. Generate

Token

SNAAPPY

.

7. Token

SNAAPPY

response

8. API invocation request

(Token

SNAAPPY

)

9. Verify the

Token

SNAAPPY.

10. API invocation response

Resource

owner

4. If an API invocation needs resource owner's authorization, the API Invoker obtains an authorization code via OAuth 2.0 authorization code grant.

6. Token

SNAAPPY

 request

(Authorization Code)

12. Revocation request

11. Decide to revoke

the authorization.

13. Revocation request

14a. Revocation response

(Revocation time)

15. Revocation response

(Revocation time)

14b. Revocation notification

(Revocation time)

3. Need an authorization

from the resource owner

for a service API.

Figure 6.11.2.2-1 Procedure for resource owner authorization based API invocation

1. After API Invoker performs onboarding procedure to CAPIF core function as specified in clause 6.1 of TS 33.122 [5], the API Invoker mutually authenticates with the CAPIF core function as specified in clause 6.3 of TS 33.122 [5].

2. API Invoker performs mutual authentication with API exposing function and gets an authorization to invoke a service API using one of three methods specified in clause 6.5 of TS 33.122 [5].

3. For a service API which needs a resource owner's authorization, the API Invoker shall get an authorization from the resource owner in addition to the authorization that was obtained in step 2.

4. The API Invoker obtains Authorization Code via OAuth 2.0 Authorization Code Grant as specified in RFC 6749 [4]. While the API Invoker redirects the UE to the Authorization Function, the API Invoker includes requested scope (e.g., modifiy QoS, location etc.) and the UE sends a challenge_UE, S-KID, and SNAAPPY indicator, which indicates that the UE supports the resource owner authentication with KSNAAPPY, to the Authorization Function. If the Authorization Function decides to authenticate the resource owner using KSNAAPPY, the Authorization Function generates authentication material (e.g., MAC generated using the challenge_UE and KSNAAPPY which the Authorization Function can find based on the S-KID), and sends a challenge_AF and the authentication material to the UE. After UE verifies the authentication material the Authorization Function sent, UE responds with authentication material (e.g., MAC generated using the challenge_AF and KSNAAPPY). The Authorization Function verifies the authentication material using KSNAAPPY. In addition to the authentication, the Authorization Function obtains authorization from the resource owner by showing the requested scope that the API Invoker sent and API Invoker information (e.g. API Invoker identity) before sending Authorization Code to the API Invoker.
NOTE:
Although the Authorization Function is illustrated as a separate entity from CAPIF core function in Figure 6.11.2.2-1, it may be deployed within the CAPIF core function according to the decision in SA3.

NOTE: Other authentication method between the resource owner and the Authorization Function can be additionally performed before the Authorization Function obtains authorization from the resource owner.

Editor's Note: Which entity in the UE executes step 4 is FFS.
5. The Authorization Function generates an OAuth 2.0 token, TokenSNAAPPY. The TokenSNAAPPY conveys the S-KID or GPSI which is not MSISDN and the generated time of the TokenSNAAPPY, in addition to the token claims speicified in Annex C.2.2 of TS 33.122 [5].

6. The API Invoker requests the TokenSNAAPPY from the Authorization Function by presenting the Authorization Code sent by the Authorization Function in step 4.

7. The Authorization Function sends the TokenSNAAPPY to the API Invoker.

8. The API Invoker performs the service API invocation by presenting the TokenSNAAPPY.

9. API exposing function checks whether the API Invoker is authorized to invoke the service API based on the selected authorization method in step 2. If the API Invoker requested a service API that needs resource owner's authorization, API exposing function shall check whether the API Invoker presented a TokenSNAAPPY. If the API Invoker performed the service API invocation without TokenSNAAPPY in step 8, the API exposing function shall reject the request. If the verification of the TokenSNAAPPY is successful, API exposing function identifies the UE using the S-KID or GPSI which is included in the TokenSNAAPPY, possibly by communicating with the Authorization Function that stored the S-KID and SUPI.

10. API Invoker receives the service API invocation response from the API exposing function.

11. If the resource owner does not want for the API Invoker to invoke the service API, the resource owner can revoke the TokenSNAAPPY at anytime even before the validity time of the TokenSNAAPPY.

12. The UE requests the API Invoker to revoke the TokenSNAAPPY for the service API. This step is performed when e.g., the resource owner uninstalls the application on the UE or logouts from the application as described in RFC 7009 [7], or the resource owner clicks a revocation button on the application.
13. The API Invoker requests the Authorization Function to revoke the TokenSNAAPPY for the service API as specified in RFC 7009 [7].

14. If the Authorization Function receives a revocation request for TokenSNAAPPY,
a) The Authorization Function responds to the revocation request. The response includes revocation time and the TokenSNAAPPY with MAC which the Authorization Function generates using the TokenSNAAPPY, revocation time, and KSNAAPPY; and

b) The Authorization Function notifies the API exposing function of the revocation of the TokenSNAAPPY, with the revocation time. After the API exposing function receives the revocation notification of the TokenSNAAPPY, the API exposing function shall reject the API invocation from the API Invoker if the API Invoker invokes the service API with TokenSNAAPPY of which the generated time is prior to the revocation time.

15. The UE verifies the MAC using KSNAAPPY. The UE may inform the resource owner of the revocation result based on the verification.

Editor's Note: How a resource owner can enforce a malicious API Invoker to send a revocation request to CCF/AuF is FFS.
6.11.2.3
S-KID
S-KID is in NAI format as specified in clause 2.2 of IETF RFC 7542 [11], i.e. username@realm. The username part includes SNAAPPY Temporary UE Identifier (S-TID), and the realm part includes Home Network Identifier or Authorization Function Address.

When deriving S-TID from KAUSF, the following parameters shall be used to form the input S to the KDF:

· FC = 0xXX;

· P0 = "S-TID";

· L0 = length of "S-TID";

· P1 = SUPI;

· L1 = length of SUPI.

The input key KEY shall be KAUSF.

NOTE:
FC value to be determined during normative phase.
6.11.2.4
KSNAAPPY derivation function
When deriving KSNAAPPY from KAUSF, the following parameters shall be used to form the input S to the KDF:

· FC = 0xYY;

· P0 = “Authorization”;

· L0 = length of “Authorization”;
The input key KEY shall be the KAUSF.
NOTE:
FC value to be determined during normative phase.
6.11.3
Evaluation

This solution addresses KI#2.

This solution uses OAuth 2.0 Authorization Code Grant model where mutual authentication between UE and Authorization Function is performed using the key derived from 3GPP credential after API Invoker redirects the UE to the Authorization Function.

This solution introduces a new mechanism for the revocation check of OAuth 2.0 token by including the token generation time in the OAuth 2.0 token and sending the token revocation time from Authorization Function to API exposing function.
This solution prevents the API Invoker from acting like the token, which the resource owner requested to revoke, is revoked by sending the revoked token with MAC, which is generated using KSNAAPPY, from Authorization Function to the UE via API Invoker.
This solution requires access to the 5G key hierarchy and will only work with a 5G authenticated UE.
Impact on AUSF exists, i.e., AUSF generates a new key (KSNAAPPY) with corresponding identifier (S-KID) and sends them to Authorization Function.
Editor's Note: Further evaluation is FFS.
*************** End of 1st Change ****************
_1736745330.vsd
�

�

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

API Invoker
CAPIF core function
1. Onboarding procedure and mutual authentication
UE
API exposing function
Authorization Function
2. Authentication and authorization
5. Generate TokenSNAAPPY.
7. TokenSNAAPPY response
8. API invocation request
(TokenSNAAPPY)
9. Verify the TokenSNAAPPY.
10. API invocation response
Resource owner
4. If an API invocation needs resource owner's authorization, the API Invoker obtains an authorization code via OAuth 2.0 authorization code grant.
6. TokenSNAAPPY request
(Authorization Code)
12. Revocation request
11. Decide to revoke the authorization.
13. Revocation request
14a. Revocation response
(Revocation time)
15. Revocation response
(Revocation time)
14b. Revocation notification
(Revocation time)
3. Need an authorization from the resource owner for a service API.

