3GPP TSG-SA WG1 e-Meeting #91
S1-203158
24 August - 2 September 2020

Title:
FS_AMMT: Annex – Introduction to AI/ML models
Agenda Item:
7.4.1
Source:
OPPO
Contact:
Jia SHEN, sj@oppo.com

Abstract: this doc proposes an introduction to AI/ML models for AMMT TR.
************************Change Starts************************
1
Scope

2
Reference

[1]
Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer, “Efficient processing of deep neural networks: A tutorial and survey”, Proceeding of the IEEE, 2017, Volume 105, Issue 12.
[2]
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, May 2015.

[3]
P. A. Merolla, et al., “A million spikingneuron integrated circuit with a scalable communication network and interface”,Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[4]
Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, Junshan Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing”, Proceeding of the IEEE, 2019, Volume 107, Issue 8.
[5]
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach. Learn. Res., vol. 12 pp. 2493–2537, Aug. 2011.
[6]
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks”, in Proc. NIPS, 2012, pp. 1097–1105.
[7]
T. N. Sainath, A.-R. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep convolutionalneural networks for LVCSR”, in Proc. ICASSP, 2013, pp. 8614–8618.
[8]
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 2014, arXiv:1409.1556. [Online]. Available: https://arxiv.org/abs/1409.1556
[9]
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE CVPR, Jun. 2016, pp. 770-778.

[10]
A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,” 2017, arXiv:1704.04861. [Online]. Available: https://arxiv.org/abs/1704.04861
[11]
C. Szegedy, et al., “Going deeper with convolutions”, in Proc. CVPR, 2015, pp. 1-9.
[12]
L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey”, J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285, Jan. 1996.
[13]
3 AI Trends for Enterprise Computing. [Online]. Available: https://www.gartner.com/smarterwithgartner/3-ai-trends-for-enterprise-computing/
……
Annex X: Introduction to AI/ML models
X.1
AI and ML
Artificial Intelligence (AI)/Machine Learning (ML) is being used in a range of application domains across industry sectors, realizing significant productivity gains. In particular, in mobile communications systems, mobile devices (e.g. smartphones, smart vechicles, UAVs, mobile robots) are increasingly replacing conventional algorithms (e.g. speech recognition, mechine translation, image recognition, video processing, user behavior prediction) with AI/ML models to enable applications like enhanced photography, intelligent personal assistants, VR/AR, video gaming, video analytics, personalized shopping recommendation, autonomous driving/navigation, smart home appliances, mobile robotics, mobile medicals, as well as mobile finance. As forecast by Gartner [13], more than 80% of enterprise IoT projects will include an AI component by 2022, up from only 10% today.
Artificial Intelligence (AI) is the science and engineering to build intelligent machines capable of carrying out tasks as humans do, defined by John McCarthy in 1956. The catagorization of AI approaches can be illustrated in Figure X.1-1 [1].
[image: image1.png]
Figure X.1-1. Catagorization of AI/ML approaches (figure adopted from [1])
Within AI is a large subfield called machine learning (ML), which was defined in 1959 by Arthur Samuel as the field of study that gives computers the ability to learn without being explicitly programmed. Instead of the laborious and hit-or-miss approach of creating a distinct, custom program to solve each individual problem in a domain, a single ML algorithm simply needs to learn, via a processes called training, to handle each new problem [1]. Many ML methodologies as exemplified by decision tree, K-means clustering, and Bayesian network have been developed to train the model to make classifications and predictions, based on the data obtained from the real world [10].

X.2
Deep neural network
Within the ML field, there is an area that is often referred to as brain-inspired computation, which is a program aiming to emulate some aspects of how we understand the brain to operate. Since it is believed that the main computational elements a human brain are 86 billion neurons, the two subareas of brain-inspired computation are both inspired by the architecture of a neuron [1], as shown in Figure X.2-1 (a).
Compared to spiking computing approaches, e.g. [3], the more popular ML approaches are using “neural network” as the model. Neural networks (NN) take their inspiration from the notion that a neuron’s computation involves a weighted sum of the input values. But instead of simply outputing the weighted sum, a NN applies a nonlinear function to generate an output only if the inputs cross some threshold, as shown in Figure X.2-1(a). Figure X.2-1(b) shows a diagrammatic picture of a computational neural network. The neurons in the input layer receive some values and propagate them to the neurons in the middle layer of the network, which is also called a “hidden layer”. The weighted sums from one or more hidden layers are ultimately propagated to the output layer, which presents the final outputs of the network [1].
[image: image2.jpg] [image: image3.jpg]
(a) (b)

Figure X.2-1. Architecture of neuron and neural network
Neural networks having more than three layers, i.e., more than one hidden layer are called deep neural networks (DNN). In contrast to the conventional shallow-structured NN architectures, DNNs, also referred to as deep learning, made amazing breakthroughs since 2010s in many essential application areas because they can achieve human-level accuracy or even exceed human accuracy. Deep learning techniques use supervised and/or unsupervised strategies to automatically learn hierarchical representations in deep architectures for classification [2]. With a large number of hidden layers, the superior performance of DNNs comes from its ability to extract high-level features from raw sensory data after using statistical learning over a large amount of data to obtain an effective representation of an input space [1]. In recent years, thanks to the big data obtained from the real world, the rapidly increased computaion capacity and continuously-evolved algorithms, DNNs have become the most popular ML models for many AI applications.
X.3
Training and inference
Training is a process in which a AI/ML model learns to perform its given tasks, more specifically, by optimizing the value of the weights in the DNN. A DNN is trained by inputting a training set, which are often correctly-labelled training samples. Taking image classification for instance, the training set includes correctly-classified images. When training a network, the weights are usually updated using a hill-climbing optimization process called gradient descent. The gradient indicates how the weights should change in order to reduce the loss (the gap between the correct outputs and the outputs computed by the DNN based on its current weights). The training process is repeated iteratively to continuously reduce the overall loss [1]. Until the loss is below a predefined threshold, the DNN with high precision is obtained.
There are multiple ways to train the network for different targets. The introduced above is supervised learning which uses the labeled training samples to find the correct outputs for a task. Unsupervised learning uses the unlabeled training samples to find the structure or clusters in the data. Reinforcement learning can be used to output what action the agent should take next to maximize expected rewards. Transfer learning is to adjust the previously-trained weights (e.g. weights in a global model) using a new training set, which is used for a faster or more accurate training for a personalized model [1].
After a DNN is trained, it can perform its task by computing the output of the network using the weights determined during the training process, which is referred to as inference. In the model inference process, the inputs from the real world are passed through the DNN. Then the prediction for the task is output, as shown in Figure X.3-1. For instance, the inputs can be pixels of an image, sampled amplitudes of an audio wave or the numerical representation of the state of some system or game. Correspondingly, the outputs of the network can be a probability that an image contains a particular object, the probability that an audio sequence contains a particular word or a bounding box in an image around an object or the proposed action that should be taken [1].
[image: image4.jpg]
Figure X.3-1. Example of AI/ML inference
The performance of DNNs is gained at the cost of high computational complexity. Hence more efficient compute engines are often used, e.g. graphics processing units (GPU) and network processing units (NPU). Compared to the inference which only involves the feedforward process, the training often requires more computation and storage resources because it involves also the backpropagation process [4].
X.4
Widely-used DNN models and algorithms
Many DNN models have been developed over the past two decades. Each of these models has a different “network architecture” in terms of number of layers, layer types, layer shapes (i.e., filter size, number of channels and filters), and connections between layers [1]. Figure X.4-1 presents three popular structures of DNNs: multilayer perceptrons (MLPs), convolution neural networks (CNNs), and recurrent neural networks (RNNs). Multilayer perceptrons (MLP) model is the most basic DNN, which is composed of a series of fully connected layers [5]. In a fully conncected layer, all outputs are connected to all inputs, as shown in Figure X.4-1. Hence MLP requires a significant amount of storage and computation.
[image: image5.jpg]
Figure X.4-1. MLP DNN model
An approach to limiting the number of weights that contribute to an output is to calculate the output only using a function of a fixed-size window of inputs. An extremely popular window-based DNN model uses a convolution operation to structure the computation, hence is named as convolution neural network (CNN) [1]. A CNN is composed of multiple convolutional layers, as shown in Figure X.4-2. Applying various convolutional filters, CNN models can capture the high-level representation of the input data, making it popular for image classification [6] and speech recognition [7] tasks. In recent years, the modern CNN models have dramatically improved the performance of image classification tasks (e.g., AlexNet [6], VGG network [8], GoogleNet [11], ResNet [9], MobileNet [10]), as shown in Figure X.4-3 [1].
[image: image6.jpg]
Figure X.4-2. CNN model
[image: image7.png]
Figure X.4-3. Image classification improvements made by CNN models (Figure adopted from [1])
Recurrent neural network (RNN) models are another type of DNNs, which use sequential data feeding. The input of RNN consists of the current input and the previous samples. Each neuron in an RNN owns an internal memory that keeps the information of the computation from the previous samples. As shown in Figure X.4-4, the basic unit of RNN is called cell, and further, each cell consists of layers and a series of cells enables the sequential processing of RNN models. RNN models have been widely used in the natural language processing task on mobile devices, e.g., language modeling, machine translation, question answering, word embedding, and document classification.
[image: image8.jpg]
Figure X.4-4. RNN model
Deep reinforcement learning (DRL) is not another DNN model. It is composed of DNNs and reinforcement learning [12]. As illustrated in Figure X.4-5, the goal of DRL is to create an intelligent agent that can perform efficient policies to maximize the rewards of long-term tasks with controllable actions. The typical application of DRL is to solve various scheduling problems, such as decision problems in games, rate selection of video transmission, and so on.
[image: image9.jpg]
Figure X.4-5. Deep reinforcement learning
*************************Change Ends************************

