Page 1



3GPP TSG-SA WG4 Meeting #85 
S4-150915
Kobe, Japan, 24-28 August, 2015










revision of S4-150609
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	26.445
	CR
	0005
	rev
	1
	Current version:
	12.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at 
http://www.3gpp.org/Change-Requests.

	


	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X


	

	Title:

	Corrections to the Algorithmic Description

	
	

	Source to WG:
	Ericsson LM, Fraunhofer IIS, Huawei Technologies Co. Ltd, Nokia Corporation, NTT, 

NTT DOCOMO, INC., ORANGE, Panasonic Corporation, Qualcomm Incorporated, Samsung Electronics Co., Ltd., VoiceAge and ZTE Corporation

	Source to TSG:
	S4

	
	

	Work item code:
	EVS_Codec
	
	Date:
	2015-08-18

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-12

	
	Use one of the following categories:
F  (correction)
A  (mirror corresponding to a change in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	Following a review of the text, several errors have been identified in the main body of the text.

	
	

	Summary of change:
	Correction of errors in the text and clarification of confusing descriptions.

	
	

	Consequences if not approved:
	Inconsistencies, innaccuracies and possible ambiguities will be present in the text.

	
	

	Clauses affected:
	2, 5.1.12.6, 5.1.12.7, 5.1.14, 5.1.14.1.1.1, 5.2.2.1.5.1, 5.2.3.1.5.2, 5.2.6.1.1, 5.2.6.1.6, 5.2.6.2.1.5, 5.2.6.2.2.3, 5.3.2.2, 5.3.3.2.11, 5.3.3.2.11.1.5, 5.3.3.2.11.1.7, 5.3.3.2.11.1.8, 5.3.3.2.11.2, 5.3.3.2.11.6, 5.3.3.2.11.6.3, 5.3.4.1.3, 5.3.4.1.3.3, 5.3.4.1.3.3.2, 5.3.4.1.3.3.3, 5.3.4.1.4.1.5.1.2, 5.3.4.2.1.3a.3, 5.3.4.2.4.2, 5.4.1, 5.5.6, 5.6.2.1, 5.6.2.1.8, 5.8.4, 6.1.1.1.2, 6.7.2.1.7

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ... 

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ... 

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ... 

	
	

	Other comments:
	


2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
…
[40]
3GPP TS 26.244: "3GPP file format (3GP)".

[41]
IETF RFC 3839 (2004): "MIME Type Registrations for 3rd Generation Partnership Project (3GPP) Multimedia files", R. Castagno and D. Singer.
[42]
IEEE Transactions on Information Theory, Vol. 37, no. 6, Nov., pp. 1551-1566 (1991): "Trellis Coded Vector Quantization", T.R. Fischer, M.W. Marcellin, and M. Wang.
5.1.12.6
SAD3 module
The SAD3 module is shown in Figure 12. The processing steps are described as follows:

a) Extract features of the signal according to the input QMF data. The QMF data is from CLDFB.
b) Calculate some SNR parameters according to the extracted features of the signal and make a decision of background music.
c) Make a pre-decision of SAD3 according to the features of the signal, the SNR parameters, and the output flag of the decision of background music and then output a pre-decision flag.
d) The output of SAD3 is generated through the addition of SAD3 hangover.
…
5.1.12.7
Final SAD decision

The feature parameters mentioned above divide into two categories. The first feature category includes the number of continuous active frames
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 is the average of SNR over all sub-bands for a predetermined number of frames. The second feature category includes the flag of noise type, 
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 in a predetermined period of time, the number of continuous noise frames, frequency-domain SNR.
First, the parameters in the first and second feature categories and 
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 and 
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 are obtained. The first and second feature categories are used for the SAD detection.

The combined decision is made in the following steps:

a) Compute the energy of background noise over all sub-bands for the previous frame with the background update flag, the energy parameters, and the tonality signal flag of the previous frame and the energy of background noise over all sub-bands of the previous 2 frames. Computing the background update flag is described in subclause 5.1.12.6.5.
b) Compute the above-mentioned 
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 with the energy of background noise over all sub-bands of the previous frame and the energy parameters of the current frame.
c) Determine the flag of noise type according to the above-mentioned parameters 
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. First, the noise type is set to non-silence. Then, when 
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 is greater than the first preset threshold and 
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 is greater than the second preset threshold, the flag of noise type is set to silence.
Then, the first and second feature categories, 
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 are used for active-sound detection in order to make the combined decision of SAD.
When the input sampling frequency is 16 kHz and 32 kHz, the decision procedure is carried out as follows:

a) Select 
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 as the initial value of the combined
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;

b) If the noise type is silence, and the frequency-domain SNR 
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 is greater than 0.2 and the combined 
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 set 0, 
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 is selected as the output of the SAD, combined 
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 . Otherwise, go to Step c).

c) If the smoothed long-time frequency-domain average SNR is smaller than 10.5 or the noise type is not silence, go to Step d). Otherwise, the initial value of the combined 
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 in Step a) is still selected as the decision result of the SAD;
d) If any one of the following conditions is met, the result of a logical operation  OR  of 
[image: image22.wmf]3

SAD

f

 and 
[image: image23.wmf]SAD

f

 is used as the output of the SAD. Otherwise, go to Step e):

Condition 1: The average total SNR of all sub-bands is greater than the first threshold, e.g. 2.2;

Condition 2: The average total SNR of all sub-bands is greater than the second threshold, e.g. 1.5 and the number of continuous active frames is greater than 40;

Condition 3: The tonality signal flag is set to 1.

e) When the input sampling frequency is 32 kHz: If the noise type is silence, 
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 is selected as the output of the SAD and the decision procedure is completed. Otherwise, the initial value of the combined 
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 in Step a) is still selected as the decision result of the SAD. When the input sampling frequency is 16 kHz: 
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 is selected as the output of the SAD and the decision procedure is completed.

When the input sampling frequency is neither 16 kHz nor 32 kHz, the procedure of the combined decision is performed as follows:

a) Select 
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 as the initial value of the combined
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;

b) If the noise type is silence, go to Step c). Otherwise, go to Step d);

c) If the smoothed long-time frequency-domain average SNR is greater than 12.5 and 
[image: image29.wmf]signal

tonal

f

_

=0, the combined 
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. Otherwise, the initial value of combined 
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 in Step a) is selected as the decision result of the SAD;

d) If any one of the following conditions is met, the result of a logical operation OR of 
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 and  
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 is used as the output of the final SAD, combined 
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. Otherwise, the initial value of combined 
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  in Step a) is selected as the decision result of the SAD;

Condition 1: The average total SNR of all sub-bands is greater than 2.0;

Condition 2: The average total SNR of all sub-bands is greater than 1.5 and the number of continuous active frames is greater than 30;

Condition 3: The tonality signal flag is set to 1.
After the combined 
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 is obtained by using the above-mentioned method, it needs to be modified as follows:
a) Compute the number of background-noise updates, 
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 according to the background update flag, specifically:

When the current frame is indicated as background noise by the background update flag and 
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 is smaller than 1000, 
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 increases by 1. Note that 
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 is set to zero at the initialization of the codec.
b) Compute number of modified frames for active sound , 
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 according to the SAD3 decision 
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, and the number of hangover frames for active sound 
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, specifically:
When the current frame is indicated as active sound by 
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 is smaller than 12, 
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 is selected as max(20, 
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c) Compute the final decision of SAD for the current frame according to the number of modified frames for active sound 
[image: image50.wmf]md_frames

N

 and the combined 
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, specifically:

When the current frame is indicated as inactive sound by the combined 
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 and 
[image: image53.wmf]md_frames

N

 is greater than 0, the final decision of SAD for the current frame, the combined 
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   is modifiedas active sound and 
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 decreases by 1.
5.1.14
Coder technology selection

Multiple coding technologies are employed within the EVS codec, based on one of the following two generic principles for speech and audio coding, the LP-based (analysis-by-synthesis) approach and the transform-domain (MDCT) approach. There is no clearly defined borderline between the two approaches in the context of this codec. The LP-based coder is essentially based on the CELP technology, optimized and tuned specifically for each bitrate. The transform-domain approach is adopted by the HQ MDCT technology. There are also two hybrid schemes in which both approaches are combined, the GSC technology and the TCX technology. The selection of the coder technology depends on the actual bitrate, the bandwidth, speech/music classification, the selected coding mode and other parameters. The following table shows the allocation of technologies based on bitrate, bandwidth and content.

Table 19: Allocation of coder technologies per bitrate, bandwidth and content

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	bitrate
	7.2
	8
	9.6
	13.2
	16.4
	24.4
	32
	48
	64

	NB
	
	
	
	
	
	
	
	
	

	speech
	ACELP
	ACELP
	ACELP
	ACELP
	ACELP
	ACELP
	
	
	

	audio
	HQ MDCT
	HQ MDCT
	TCX
	TCX/HQ MDCT
	TCX/HQ MDCT
	TCX
	
	
	

	noise
	GSC
	GSC
	TCX
	GSC
	TCX
	TCX
	
	
	

	WB
	
	
	
	
	
	
	
	
	

	speech
	ACELP
	ACELP
	ACELP
	ACELP
	ACELP
	ACELP
	ACELP
	TCX
	ACELP

	audio
	GSC
	GSC
	TCX
	GSC/TCX/HQ MDCT
	TCX/HQ MDCT
	TCX
	HQ MDCT
	TCX
	HQ MDCT

	noise
	GSC
	GSC
	TCX
	GSC
	TCX
	TCX
	ACELP
	TCX
	ACELP

	SWB
	
	
	
	
	
	
	
	
	

	speech
	
	
	
	ACELP
	ACELP
	ACELP
	ACELP
	TCX
	ACELP

	audio
	
	
	
	GSC/TCX/HQ MDCT
	TCX/HQ MDCT
	TCX/HQ MDCT
	TCX/HQ MDCT
	TCX
	HQ MDCT

	noise
	
	
	
	GSC
	TCX
	TCX
	ACELP
	TCX
	ACELP

	FB
	
	
	
	
	
	
	
	
	

	speech
	
	
	
	
	ACELP
	ACELP
	ACELP
	TCX
	ACELP

	audio
	
	
	
	
	TCX
	TCX/HQ MDCT
	TCX/HQ MDCT
	TCX
	HQ MDCT

	noise
	
	
	
	
	TCX
	TCX
	ACELP
	TCX
	ACELP




…

5.1.14.1.1.1
Long term prediction (LTP) filtering
The LTP filter parameters (pitch lag and gain) are first estimated. The LTP parameters are not only used for filtering the audio input signal for estimating the segmental SNR of the transform-based technology. The LTP parameters are also encoded into the bitstream in case the TCX coding mode is selected, such that the TCX LTP postfilter described in subclause 6.9.2.2 can use them. Note that the LTP filter parameter estimation is also performed at 48kbps, 96kbps and 128kbps even though the parameters are not used to filter the audio input signal in this case.
A pitch lag with fractional sample resolution is determined, using the open-loop pitch lag 
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 and an interpolated autocorrelation. The LTP pitch lag has a minimum value of 
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 are used. If the pitch lag is less than 
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, the full fractional precision 
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 is used. If the pitch lag is greater than 
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, no fractional lag is used. For pitch lags in between, half of the fractional precision 
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 is used. These parameters depend on the bitrate and are given in the table below.

Table 20: LTP parameters vs bitrate
	Bitrate
	Bandwidth
	LTP sampling rate
	LTP frame length 
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	9.6kbps
	NB, WB, SWB
	12.8kHz
	256
	4
	29
	231
	154
	121

	16.4-24.4kbps
	NB
	12.8kHz
	256
	4
	29
	231
	154
	121

	16.4-24.4kbps
	WB, SWB, FB
	16kHz
	320
	6
	36
	289
	165
	36

	48kbps
	WB, SWB, FB
	25.6kHz
	512
	4
	58
	463
	164
	58

	96-128kbps
	WB, SWB, FB
	32kHz
	640
	6
	72
	577
	75
	72


…

5.2.2.1.5.1
Block-constrained trellis coded vector quantization (BC-TCVQ)

The VC mode operating at 16 kHz internal sampling frequency has two decoding rates: 31 bits per frame and 40 bits per frame.  The VC mode is quantized by a 16-state and 8 stage block-constrained trellis coded vector quantization (BC-TCVQ) scheme.
Trellis coded vector quantization (TCVQ) [42] generalizes trellis vector quantization (TCQ) to allow vector codebooks and branch labels. The main feature of TCVQ is the partitioning of an expanded set of VQ symbols into subsets and the labelling of the trellis branches with these subsets. TCVQ is based on a rate-1/2 convolutional code, which has 
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 trellis states and two branches entering/leaving each trellis state. Given a block of m source vectors, the Viterbi algorithm (VA) is used to find the minimum distortion path. This encoding procedure allows the best trellis path to begin in any of N initial states and end in any of N terminal states.  In TCVQ, the codebook has 
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 vector codewords. 
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 is referred to as “codebook expansion factor” (in bits per dimension) since the codebook has 
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times as many codewords as a nominal rate-
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 VQ. The encoding is accomplished in the following two steps.

. . .

5.2.3.1.5.2
Overview of Algebraic codebooks used in EVS
Depending on the bitrate and rendered bandwidth, algebraic codebooks of different sizes are used in the EVS codec. The following tables summarize the codebooks used in each subframe at different bitrates of the EVS codec
Table 38: NB Algebraic codebook configurations (bits/subframe)
	Rate (kbps)
	IC
	UC
	VC
	GC

	7.2
	n.a.
	n.a.
	12/12/12/20
	12/12/12/20

	8.0
	n.a.
	n.a.
	12/20/12/20
	12/20/12/20

	9.6
	30/32/32/32
	30/32/32/32
	28/28/28/28
	24/26/24/26

	13.2
	n.a.
	n.a.
	36/43/36/43
	36/36/36/43

	16.4
	56/58/56/58
	56/58/56/58
	56/56/56/58
	55/56/55/56

	24.4
	96/98/96/98
	96/98/96/98
	96/96/96/98
	94/96/96/96


Table 39: WB Algebraic codebook configurations (bits/subframe)

	Rate (kbps)
	IC
	UC
	VC
	GC
	VC-FEC
	GC-FEC
	GSC

	7.2
	n.a.
	n.a.
	12/12/12/20
	12/12/12/20
	n.a.
	n.a.
	n.a.

	8.0
	n.a.
	n.a.
	12/20/12/20
	12/20/12/20
	n.a.
	n.a.
	n.a.

	9.6
	28/28/28/28
	28/28/28/28
	26/26/26/28
	20/26/24/24
	n.a.
	n.a.
	n.a.

	13.2
	n.a.
	n.a.
	28/36/36/36 (TD BWE)

36/36/36/43 (FD BWE)

	28/36/28/36 (TD BWE)

36/36/36/36 (FD BWE)


	n.a.
	n.a.
	n.a.

	16.4
	43/43/43/43/43
	43/43/43/43/43
	40/43/43/43/43
	40/43/40/43/43
	n.a.
	n.a.
	n.a.

	24.4
	75/75/75/75/75
	75/75/75/75/75
	73/75/73/75/75
	73/73/73/75/73
	73/73/73/73/75
	70/75/73/73/73
	n.a.

	32
	12/12/12/12/12
	n.a.
	n.a.
	36/36/36/36/36
	n.a.
	n.a.
	n.a.

	64
	12/12/12/12/12
	n.a.
	n.a.
	36/36/36/36/36
	n.a.
	n.a.
	n.a.


Table 40: SWB Algebraic codebook configurations (bits/subframe)

	Rate (kbps)
	IC
	UC
	VC
	GC
	VC-FEC
	GC-FEC
	GSC

	9.6
	24/26/24/26
	24/26/24/26
	20/26/24/24
	20/20/20/20
	n.a.
	n.a.
	n.a.

	13.2
	n.a.
	n.a.
	28/36/28/36
	28/28/28/36
	n.a.
	n.a.
	n.a.

	16.4
	36/36/36/36/36
	36/36/36/36/36
	34/36/36/36/36
	34/36/34/36/36
	n.a.
	n.a.
	n.a.

	24.4
	62/65/62/65/62
	62/65/62/65/62
	62/62/62/65/62
	62/62/62/62/62
	62/62/62/62/62
	61/61/62/61/62
	n.a.

	32
	12/12/12/12/12
	n.a.
	n.a.
	36/28/28/36/36
	n.a.
	n.a.
	n.a.

	64
	12/12/12/12/12
	n.a.
	n.a.
	36/36/36/36/36
	n.a.
	n.a.
	n.a.


Table 41: FB Algebraic codebook configurations (bits/subframe)
	Rate (kbps)
	IC
	UC
	VC
	GC
	VC-FEC
	GC-FEC

	16.4
	36/36/36/36/36
	36/36/36/36/36
	34/36/36/34/36
	34/34/36/34/36
	n.a.
	n.a.

	24.4
	62/62/65/62/65
	62/62/65/62/65
	62/62/62/62/62
	62/62/62/62/62
	61/62/61/62/62
	61/61/61/61/61

	32
	12/12/12/12/12
	n.a.
	n.a.
	36/28/28/36/36
	n.a.
	n.a.

	64
	12/12/12/12/12
	n.a.
	n.a.
	36/36/36/36/36
	n.a.
	n.a.


…

5.2.6.1.1
High band target signal generation

The input speech signal, [image: image77.wmf])
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,

(

k

t

X

CR

 and [image: image79.wmf])

,

(

k

t

X

CI

 are the real and imaginary sub-band values, respectively, [image: image80.wmf]t

 is the sub-band time index with [image: image81.wmf]015

t

££

 and [image: image82.wmf]k

 is sub-band frequency band index with [image: image83.wmf]C

L

k

£

£

0

. The number of sub-bands, [image: image84.wmf]Hz

F

L

s

C

800

/

=

, where Fs is the sample rate of the input signal, [image: image85.wmf])
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. For example, for a SWB 32 kHz sampled input, Lc = 40, and for a FB 48 kHz sampled input, Lc = 60 sub-bands.
The spectral flip and down mix module extracts the high band components from the input speech signal. The high band target signal contains the high frequency components of the input signal that are to be represented by the time domain bandwidth extension encoder. The frequency range of the high band depends on the coding bandwidth of the low band ACELP core. When the low band ACELP core codes up to a maximum bandwidth of 6.4 kHz, then the high band target signal, [image: image86.wmf])
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, contains input signal components in the 6.4 -- 14.4 kHz band. When the low band ACELP core codes up to a maximum bandwidth of 8 kHz, then the high band target signal contains input signal components in the 8 -- 16 kHz band. In the high band target signal, [image: image87.wmf])
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, the input signal components are arranged in a flipped and down-mixed format such that the 0 frequency value in the SWB high band target signal corresponds to the maximum frequency in the above mentioned bandwidth. The process of deriving the SWB high band target signal is shown pictorially in figure 45.
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Figure 45: Generation of high band target signal for SWB TBE
Similarly, the WB high band target signal containing signal components from 6 to 8 kHz is generated as shown in figure 46. In particular, a simple flip-and-decimate-by-4 operation is performed to extract the 6 to 8 kHz high band from the 16 kHz sampled WB input signal. In case of fixed point operation, the input signal is scaled dynamically based on the spectral tilt of the input signal prior to performing the flip-and-decimate-by-4 operation. This adjustment of the scaling is done such that for signals with low energy in the high band (indicated by having a spectral tilt >= 0.95), no headroom is provided prior to decimation to avoid any loss of precision after decimation, and for signals with relatively higher energy in the high band (indicated by having a spectral tilt < 0.95), a headroom of 3 bits is provided prior to decimation to avoid any saturation in the decimation operation.
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Figure 46: Generation of high band target signal for WB TBE
…

5.2.6.1.6
Generation of the upsampled version of the lowband excitation

An upsampled version of the low band excitation signal is derived from the ACELP core as show in figure 49 below.
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Figure 49: Generating the upsampled version of the lowband excitation
For each ACELP core coding subframe, i, a random noise scaled by a factor voice factor, [image: image91.wmf]i

Vf

 is first added to the fixed codebook excitation that is generated by the ACELP core encoder. The voice factor is determined using the subframe maximum normalized correlation parameter, [image: image92.wmf],

i

b

 that is derived during the ACELP encoding. First the [image: image93.wmf]i

b

 factors are combined to generate [image: image94.wmf]i

Vf

.
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[image: image96.wmf]i

Vf

 calculated above is limited to a maximum of 1 and a minimum of 0. 
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…

5.2.6.2.1.5

Spectral envelope calculation and quantization
…

The tonality measures used for the energy control are then calculated:
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The ratio between the tonality of the original high frequency spectrum ([image: image104.wmf](

)
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org
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_

) and the tonality of the base excitation spectrum ([image: image105.wmf](

)

j

Ton

sim

ec

_

) is then calculated as follows:
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where [image: image109.wmf]FD

gam

ec

_

is 0.35.
The envelope control factor [image: image110.wmf]_()
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 is then applied to the envelope [image: image111.wmf])

(

_

j

SHB

rms

f

:

[image: image112.wmf]13

,...,

0

 

 

          

)

(

_

 

*

 

)

(

)

(

_

=

=

j

for

j

fac

ec

j

rms

f

j

SHB

rms

f

FD


(811)

Next the spectral envelope is adjusted by subtracting the mean vectors[image: image114.wmf]mean

rms

f

_

 which are shown in table 67.
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Table 67: Mean vectors in FD BWE

	j
	TRANSIENT
	Non-TRANSIENT

	0
	27.23
	28.62

	1
	23.81
	28.96

	2
	23.87
	28.05

	3
	19.51
	27.97

	4
	-
	26.91

	5
	-
	26.82

	6
	-
	26.35

	7
	-
	25.98

	8
	-
	24.94

	9
	-
	24.03

	10
	-
	22.94

	11
	-
	22.14

	12
	-
	21.23

	13
	-
	20.40


If the current frame is a TRANSIENT frame, the following smoothing processes are applied before the envelope quantization.
–
If [image: image116.wmf]LF

t

IsTransien

_

is TRUE, the coder type is INACTIVE and the transient hangover is equal to one, the flag is set to 1, and the time envelope is adjusted as follows:
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    –
Otherwise, the adjustment is as follows:
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If the current frame is a Non-TRANSIENT frame,
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If the current frame is a TRANSIENT frame, the mean squared error (MSE) criterion is used for the search of the VQ, in a Non-TRANSIENT frame, the weighted mean squared error (WMSE) is used. The weighting serves to emphasise the lower frequency bands and is calculated by two methods; one is a deterministic weighting based solely on the frequency, and the other is a weighting that is calculated based upon the envelope. The first frequency weighting [image: image121.wmf])

(
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is defined in table 68 and the second frequency weighting [image: image122.wmf])

(
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is calculated as follows:
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Table 68: Frequency weighting [image: image124.wmf])
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	j
	Non-TRANSIENT

	0
	1.0

	1
	0.97826087

	2
	0.957446809

	3
	0.9375

	4
	0.918367347

	5
	0.9

	6
	0.882352941

	7
	0.865384615

	8
	0.849056604

	9
	0.833333333

	10
	0.818181818

	11
	0.803571429

	12
	0.789473684

	13
	0.775862069


The SWB spectral envelope is quantized with a multi-stage split VQ using envelope interpolation as in figure 52. In the first stage, two or three candidates’ ([image: image125.wmf]cand

N

, three in TRANSIENT frame, two in Non-TRANSIENT frame) indices are chosen using the error minimization criterion. The set of candidates with the least quantization error, taking into account all quantization steps, is then selected and the selected indices transmitted.  
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Figure 52: Envelope VQ in a TRANSIENT frame and a Non-TRANSIENT frame

Again during the first stage, values in even positions are selected and quantized using VQ with 5 bits for Non-TRANSIENT frames and 7 bits for TRANSIENT frames.
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In  Non-TRANSIENT frames, the candidate indices from the first stage VQ are defined as  [image: image130.wmf]1

1

_

1

_

0

,

env

env

idx

idx

. The quantization error [image: image132.wmf]1

err

is calculated and the error is split into [image: image134.wmf]21

err

 and [image: image135.wmf]22

err

and quantized using 7 bits and 6 bits respectively, as follows;
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then;


[image: image137.wmf](

)

(

)

3

,

2

,

1

,

0

 

       

)

3

(

ˆ

3

*

2

)

(

2

,

1

,

0

 

          

          

)

(

ˆ

)

*

2

(

)

(

1

_

22

1

_

21

=

+

-

+

=

=

-

=

j

for

j

nv

e

j

f

j

err

j

for

j

nv

e

j

f

j

err

SHB

rms

SHB

rms


(820)
The candidate indices from the second stage VQ are defined as [image: image138.wmf]21
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The two quantized values [image: image140.wmf]22
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are then combined:
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At odd positions, an interpolation using boundary values is applied for intra-frame prediction and the predicted error is calculated:
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The errors are then split into [image: image144.wmf]31

Ierr

 and [image: image145.wmf]32

Ierr

and quantized using 5 bits and 6 bits respectively.
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The candidate indices from the third stage VQ are defined as[image: image148.wmf]32

32

,

1

,

0

,

Ierr

Ierr

idx

idx

. In a TRANSIENT frame only 2 stages of quantization are applied. At odd positions, an interpolation using boundary values is applied for intra-frame prediction and the predicted error is calculated and quantized
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The candidate indices from the second stage VQ are defined as [image: image151.wmf]2
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The final selected set of indices [image: image152.wmf]{
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 for a Transient frame are then transmitted.

5.2.6.2.2.3
Spectral envelope calculation and quantization
…

The tonality measures used for the energy control are then calculated:
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The ratio between the tonality of the original high frequency spectrum ([image: image155.wmf](
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) and the tonality of the base excitation spectrum ([image: image156.wmf](
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_

) is then calculated as follows:
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where [image: image160.wmf]FD

gam

ec

_

is 0.35.
The envelope control factor [image: image161.wmf]_()
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 is then applied to the envelope[image: image162.wmf])
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…

5.3.2.2
Long block transformation (ALDO window)

The window used in long block transformation is an asymmetrical low delay optimized (ALDO) window.  This ALDO window is stored in ROM in two versions, one at 48 kHz and another at 25.6 kHz respectively; the ALDO window at other input sampling frequencies (namely 8, 12.8, 16, 32 kHz) is obtained by on-the-fly decimation in the folding process described in subclause 5.3.2.2.1.
The ALDO window has a time support of 40 ms and its definition is the same at 48 and 25.6 kHz. To simplify notations the sampling frequency (48 or 25.6 kHz) associated with the ALDO window is not included in the following text.  This window, [image: image164.wmf]1
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where [image: image167.wmf]L

is the frame length (20 ms) and [image: image168.wmf]z

L

 is the length of the last segment with a weight of 0 (5.625 ms). The different segments consist of an increasing segment [image: image169.wmf])
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, a constant segment [image: image170.wmf])
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 with a weight of 1, a decreasing segment [image: image171.wmf])

(
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w

, a constant segment [image: image172.wmf])
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w

 with a weight of 0, as illustrated in figure 53. Note that in practice the parts corresponding to weights of 1 and 0 are not stored explicitly.
Figure 53 is also useful to illustrate the time alignment of input signal frames at the MDCT encoder. As the fourth segment of the ALDO window has by definition a weight of 0, the frame of new input samples, [image: image173.wmf]1
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ALDO window at 48 kHz

At 48 kHz, the 20 ms frame has [image: image178.wmf]960
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where the first segment of the initial window is
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and the regularization factor is
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where the third segment of the initial window is
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and the regularization factor is
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 is the length of the first segment (420 samples at 48 kHz), 
[image: image192.wmf]93750

9428100585

.

0

2

=

C

is a constant. The fourth segment of the ALDO window is [image: image194.wmf]1

,

,

0

,

0

)

(

4

-

=

=

z

L

n

n

w

K

 (270 sample at 48 kHz).

ALDO window at 25.6 kHz
The ALDO window at 25.6 kHz is defined as the ALDO window at 48 kHz, except the following parameters are used:
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5.3.3.2.11
Intelligent Gap Filling

The Intelligent Gap Filling (IGF) tool is an enhanced noise filling technique to fill gaps (regions of zero values) in spectra. These gaps may occur due to coarse quantization in the encoding process where large portions of a given spectrum might be set to zero to meet bit constraints. However, with the IGF tool these missing signal portions are reconstructed on the receiver side (RX) with parametric information calculated on the transmission side (TX). IGF is used only if TCX mode is active.
See table 92 below for all IGF operating points:

Table 92: IGF application modes

	Bitrate
	Mode

	9.6 kbps
	WB

	9.6 kbps
	SWB

	13.2 kbps
	SWB

	16.4 kbps
	SWB

	24.4 kbps
	SWB

	32.2 kbps
	SWB

	48.0 kbps
	SWB

	
	

	16.4 kbps
	FB

	24.4 kbps
	FB

	32.0 kbps
	FB

	48.0 kbps
	FB

	
	

	96.0 kbps
	FB

	128.0 kbps
	FB


On transmission side, IGF calculates levels on scale factor bands, using a complex or real valued TCX spectrum. Additionally spectral whitening indices are calculated using a spectral flatness measurement and a crest-factor. An arithmetic coder is used for noiseless coding and efficient transmission to receiver (RX) side.
5.3.3.2.11.1.5
The mapping function [image: image203.wmf]hT


The [image: image204.wmf]hT

mapping function is defined with:
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where [image: image207.wmf]s

 is a calculated spectral flatness value and [image: image208.wmf]k

is the noise band in scope. For threshold values [image: image209.wmf]k

ThM

 

, [image: image210.wmf]k

ThS

 refer to table 93 below.

Table 93: Thresholds for whitening for [image: image211.wmf]nT

, [image: image212.wmf]ThM

and [image: image213.wmf]ThS


	Bitrate
	Mode
	nT
	ThM
	ThS

	9.6 kbps
	WB
	2
	0.36, 0.36
	1.41, 1.41

	9.6 kbps
	SWB
	3
	0.84, 0.89, 0.89
	1.30, 1.25, 1.25

	13.2 kbps
	SWB
	2
	0.84, 0.89
	1.30, 1.25

	16.4 kbps
	SWB
	3
	0.83, 0.89, 0.89
	1.31, 1.19, 1.19

	24.4 kbps
	SWB
	3
	0.81, 0.85, 0.85
	1.35, 1.23, 1.23

	32.2 kbps
	SWB
	3
	0.91, 0.85, 0.85
	1.34, 1.35, 1.35

	48.0 kbps
	SWB
	1
	1.15
	1.19

	
	
	
	
	

	16.4 kbps
	FB
	3
	0.63, 0.27, 0.36
	1.53, 1.32, 0.67

	24.4 kbps
	FB
	4
	0.78, 0.31, 0.34, 0.34
	1.49, 1.38, 0.65, 0.65

	32.0 kbps
	FB
	4
	0.78, 0.31, 0.34, 0.34
	1.49, 1.38, 0.65, 0.65

	48.0 kbps
	FB
	1
	0.80
	1.0

	
	
	
	
	

	96.0 kbps
	FB
	1
	0
	2.82

	128.0 kbps
	FB
	1
	0
	2.82


5.3.3.2.11.1.7
IGF scale factor tables

IGF scale factor tables are available for all modes where IGF is applied.

Table 94: Scale factor band offset table
	Bitrate
	Mode
	Number of bands (nB)
	Scale factor band offsets (t[0],t[1],…,t[nB])

	9.6 kbps
	WB
	3
	164, 186, 242, 320

	9.6 kbps
	SWB
	3
	200, 322, 444, 566

	13.2 kbps
	SWB
	6
	256, 288, 328, 376, 432, 496, 566

	16.4 kbps
	SWB
	7
	256, 288, 328, 376, 432, 496, 576, 640

	24.4 kbps
	SWB
	8
	256, 284, 318, 358, 402, 450, 508, 576, 640

	32.2 kbps
	SWB
	8
	256, 284, 318, 358, 402, 450, 508, 576, 640

	48.0 kbps
	SWB
	3
	512, 534, 576, 640

	
	
	
	

	16.4 kbps
	FB
	9
	256, 288, 328, 376, 432, 496, 576, 640, 720, 800

	24.4 kbps
	FB
	10
	256, 284, 318, 358, 402, 450, 508, 576, 640, 720, 800

	32.0 kbps
	FB
	10
	256, 284, 318, 358, 402, 450, 508, 576, 640, 720, 800

	48.0 kbps
	FB
	4
	512, 584, 656, 728, 800

	
	
	
	

	96.0 kbps
	FB
	2
	640, 720, 800

	128.0 kbps
	FB
	2
	640, 720, 800


…
5.3.3.2.11.1.8
The mapping function [image: image214.wmf]m


Table 95: IGF minimal source subband, [image: image215.wmf]minSb


	Bitrate
	mode
	
[image: image216.wmf]minSb



	9.6 kbps
	WB
	30

	9.6 kbps
	SWB
	32

	13.2 kbps
	SWB
	32

	16.4 kbps
	SWB
	32

	24.4 kbps
	SWB
	32

	32.2 kbps
	SWB
	32

	48.0 kbps
	SWB
	64

	
	
	

	16.4 kbps
	FB
	32

	24.4 kbps
	FB
	32

	32.0 kbps
	FB
	32

	48.0 kbps
	FB
	64

	
	
	

	96.0 kbps
	FB
	64

	128.0 kbps
	FB
	64


For every mode a mapping function is defined in order to access source lines from a given target line in IGF range.

Table 96: Mapping functions for every mode
	Bitrate
	Mode
	nT
	mapping Function

	9.6 kbps
	WB
	2
	[image: image217.wmf]a

m

2



	9.6 kbps
	SWB
	3
	[image: image218.wmf]a

m

3



	13.2 1kbps
	SWB
	2
	[image: image219.wmf]b

m

2



	16.4 kbps
	SWB
	3
	[image: image220.wmf]b

m

3



	24.4 kbps
	SWB
	3
	[image: image221.wmf]c

m

3



	32.2 kbps
	SWB
	3
	[image: image222.wmf]c

m

3



	48.0 kbps
	SWB
	1
	[image: image223.wmf]1

m



	
	
	
	

	16.4 kbps
	FB
	3
	[image: image225.wmf]d

m

3



	24.4 kbps
	FB
	4
	[image: image226.wmf]4

m



	32.0 kbps
	FB
	4
	[image: image227.wmf]4

m



	48.0 kbps
	FB
	1
	[image: image228.wmf]1

m



	
	
	
	

	96.0 kbps
	FB
	1
	[image: image230.wmf]1

m



	128.0 kbps
	FB
	1
	[image: image231.wmf]1

m




…
5.3.3.2.11.2
IGF input elements (TX)
…
Table 97: TCX transitions, transition factor [image: image232.wmf]f

, window length[image: image233.wmf]n


	Bitrate / Mode
	
[image: image234.wmf]10

isTCX


	
[image: image235.wmf]20

isTCX


	
[image: image236.wmf]X

isCelpToTC


	Transition factor [image: image237.wmf]f


	Window length [image: image238.wmf]n



	9.6 kbps / WB
	false
	true
	false
	1.00
	320

	
	false
	true
	true
	1.25
	400

	9.6 kbps / SWB
	false
	true
	false
	1.00
	640

	
	false
	true
	true
	1.25
	800

	13.2 kbps / SWB
	false
	true
	false
	1.00
	640

	
	false
	true
	true
	1.25
	800

	16.4 kbps / SWB
	false
	true
	false
	1.00
	640

	
	false
	true
	true
	1.25
	800

	24.4 kbps / SWB
	false
	true
	false
	1.00
	640

	
	false
	true
	true
	1.25
	800

	32.0 kbps / SWB
	false
	true
	false
	1.00
	640

	
	false
	true
	true
	1.25
	800

	48.0 kbps / SWB
	false
	true
	false
	1.00
	640

	
	false
	true
	true
	1.00
	640

	
	true
	false
	false
	0.50
	320

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	


	16.4 kbps / FB
	false
	true
	false
	1.00
	960

	
	false
	true
	true
	1.25
	1200

	24.4 kbps / FB
	false
	true
	false
	1.00
	960

	
	false
	true
	true
	1.25
	1200

	32.0 kbps / FB
	false
	true
	false
	1.00
	960

	
	false
	true
	true
	1.25
	1200

	48.0 kbps / FB
	false
	true
	false
	1.00
	960

	
	false
	true
	true
	1.00
	960

	
	true
	false
	false
	0.50
	480

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	


	96.0 kbps / FB
	false
	true
	false
	1.00
	960

	
	false
	true
	true
	1.00
	960

	
	true
	false
	false
	0.50
	480

	128.0 kbps / FB
	false
	true
	false
	1.00
	960

	
	false
	true
	true
	1.00
	960

	
	true
	false
	false
	0.50
	480


5.3.3.2.11.6
IGF spectral flatness calculation

Table 98: Number of tiles [image: image239.wmf]nT

 and tile width [image: image240.wmf]wT


	Bitrate
	Mode
	
[image: image241.wmf]nT


	[image: image242.wmf]wT



	9.6 kbps
	WB
	2
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	13.2 kbps
	SWB
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	16.4 kbps
	SWB
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	24.4 kbps
	SWB
	3
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	32.2 kbps
	SWB
	3
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	48.0 kbps
	SWB
	1
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	16.4 kbps
	FB
	3
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	24.4 kbps
	FB
	4
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	32.0 kbps
	FB
	4
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	48.0 kbps
	FB
	1
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	96.0 kbps
	FB
	1
	[image: image256.wmf](
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	FB
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For the IGF spectral flatness calculation two static arrays,[image: image258.wmf]prevFIR

 

 and [image: image259.wmf]prevIIR

, both of size [image: image260.wmf]nT

are needed to hold filter-states over frames. Additionally a static flag [image: image261.wmf]nt

wasTransie

is needed to save the information of the input flag [image: image262.wmf]t

isTransien

 from the previous frame.
5.3.3.2.11.6.3
Calculation of spectral flatness indices
…

Table 99: modes for step 4) mapping

	Bitrate
	mode
	
mapping

	9.6 kbps
	WB
	apply

	9.6 kbps
	SWB
	apply

	13.2 kbps
	SWB
	NOP

	16.4 kbps
	SWB
	apply

	24.4 kbps
	SWB
	apply

	32.2 kbps
	SWB
	apply

	48.0 kbps
	SWB
	NOP

	
	
	

	16.4 kbps
	FB
	apply

	24.4 kbps
	FB
	apply

	32.0 kbps
	FB
	apply

	48.0 kbps
	FB
	NOP

	
	
	

	96.0 kbps
	FB
	NOP

	128.0 kbps
	FB
	NOP


After executing step 4) the whitening level index vector [image: image263.wmf] 

currWLevel

 is ready for transmission.

5.3.4.1.3
Energy Envelope coding

Energy envelope coding module is applied for all types of signal i.e., from NB, WB, SWB and FB for various bitrates as described in table 101. In this module, the spectrum energy of a band is computed the differential indices of scalar quantized band energies are encoded using either a Large symbol coding method or a Small symbol coding method. The coding method is selected according to the range required to represent all the differential indices and the bit consumption. The encoding of band energies is detailed below

The spectrum energy of a band, EM(b) is computed as follows:
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(1029)
In case of transient mode, the energies to be quantized are first reordered such that energy corresponding to even sub-frame index m = 0, 2 are in frequency-increasing order while the energy of odd sub-frame index m = 1, 3 are in frequency decreasing order which allows for an efficient differential energy encoding

In each frame, the energies are scalar quantized with a uniform scalar quantizer qint. The value of qint varies and it is selected based on table 109.The index of the quantized energy, IM (b), can easily be obtained as:
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(1030)
Table 109: Scalar quantizer values for NB, WB, SWB, FB modes

	BW
	Mode
	7.2 kbps
	8 kbps
	13.2 kbps
	16.4kbps

	NB
	Transient
	1.8
	2.2
	1.4
	-

	
	Normal
	1
	1
	0.8
	-

	WB
	Transient
	-
	-
	1.8
	1.8

	
	Normal
	-
	-
	0.8
	0.8

	SWB, FB
	Transient
	-
	-
	3
	1.2

	
	Normal, Harmonic
	-
	-
	0.6
	0.6


The quantized indices of the band energies are differentially coded by computing


[image: image266.wmf]1

,...,

1

),

1

(

)

(

)

(

)

(

)

0

(

)

0

(

int

-

=

-

-

=

D

-

=

D

bands

M

M

M

ref

M

M

N

b

b

I

b

I

b

I

q

I

round

I

I


(1031)
where lowest frequency band quantized index is differentially coded using a reference band energy [image: image267.wmf]24

=

ref

I

.
The differential indices ∆IM (b) are constrained into the range of [–256, 255]. This is performed by first adjusting the negative differential indices and then adjusting the positive differential indices as follows:
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(1032)
The constrained differential indices are used for selecting the more efficient mode from either the Small symbol coding method or the Large symbol coding method. The method selection between the Small symbol coding mode and the Large symbol coding mode is described in subclause 5.3.4.1.3.2.
Using the coding method information obtained from subclause 5.3.4.1.3.2 differential indices are coded using the respective modes as indicated below.

A flag bit DENG_CMODE which was obtained from subclause 5.3.4.1.3.2 used to indicate the type of encoding method between the Small symbol coding method and the Large symbol coding method and transmitted as side information to the decoder. The flag DENG_CMODE is set to 1 when the Small coding method is used and it is set to zero for the Large symbol coding method and it is described in table 110.

If the flag DENG_CMODE is set to 1, in the Small symbol coding the band energies are either coded by resized or context based Huffman coding.  A flag bit LC_MODE is used to indicate the mode selection between resized or context based Huffman coding and it is transmitted as side information to the decoder. The mode selection between resized and context based coding is done based on the estimated number of bits consumed by the respective coding modes. The resized Huffman coding described in subclause 5.3.4.1.3.3.2 is used for coding the differential indices when LC_MODE is set to 1 and LC_MODE is set to 0 for coding the differential indices using context based coding which is described in subclause 5.3.4.1.3.3.1.
5.3.4.1.3.3
Small symbol coding method
If IsTransient is True,

In this module, the quantized indices obtained from equation (1030) are constrained into the range of [–15, 16] by calculating the differences as in equation (1031) and constraining the range. This is performed by first adjusting the negative differential indices and then adjusting the positive differential indices as follows:

1) Compute the differential indices for lowest frequency band using reference band energy as in equation (1031) 
2) For b = 0, if [image: image269.emf] 
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 and [image: image270.emf] 
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3)
For the rest of the bands, compute the differential indices defined in equation (1031) in order from the highest-frequency band to the lowest-frequency band.

4)
If [image: image273.emf] 

1,....1,15)()1(,15)( 

bandsMMM
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5)
Re-compute the differential indices in order from the lowest-frequency sub-vector from band b=1 to the highest-frequency sub-vector.

6)
If [image: image275.emf] 
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bandsMMMM
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7)
The adjusted differential indices in the range [0, 31] are obtained by adding an offset of 15 to ∆IM(b).

Context based Huffman coding mode is used for estimating the bit consumption, if the range of differential indices lies in between [10, 22] resized Huffman coding [b-Huffman] mode is enabled for estimating the bits consumption. The Huffman codes for the differential indices for resized Huffman coding mode when IsTransient is True are given in table 111. In the table 111, Hi denotes the index of the Huffman code, Hc is the Huffman code corresponding to index Hi and Hb denotes the bits required for representing the Huffman code corresponding to index Hi.
Table 111: Huffman code for Transient frames

	Hi
	Hc
	Hb
	Hi
	Hc
	Hb
	Hi
	Hc
	Hb
	Hi
	Hc
	Hb

	0
	0
	0
	8
	0
	0
	16
	11
	2
	24
	0
	0

	1
	0
	0
	9
	0
	0
	17
	0010
	4
	25
	0
	0

	2
	0
	0
	10
	0
	0
	18
	011010
	6
	26
	0
	0

	3
	0
	0
	11
	1111010
	7
	19
	00111010
	8
	27
	0
	0

	4
	0
	0
	12
	01010
	5
	20
	010111010
	9
	28
	0
	0

	5
	0
	0
	13
	110
	3
	21
	110111010
	9
	29
	0
	0

	6
	0
	0
	14
	01
	2
	22
	0
	0
	30
	0
	0

	7
	0
	0
	15
	00
	2
	23
	0
	0
	31
	0
	0


…
5.3.4.1.3.3.2
Resized Huffman coding mode

Resized Huffman coding is applied to the adjusted differential indices obtained from equation (1035). In this method, the span of the differential indices is reduced while being able to perfectly reconstruct the differential indices. Based on the newly modified differential indices obtained from equation (1040), number of bits consumed for coding the new differential indices [image: image276.wmf])
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5.3.4.1.3.3.3
Differential Indices Modification

The modification of differential indices is done according to the value of the differential index for the preceding sub band and a threshold. Equation (1040) is used for modifying the span of differential indices.
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Based on the new differential indices obtained from equation (1040), resized Huffman coding is applied, if any of the new differential indices lies outside [0 31] range, resized Huffman coding is not used for coding the differential indices.
…
5.3.4.1.4.1.5.1.2
TCQ and USQ with second bit allocation
…
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Figure 70: Block diagram of TCQ and USQ encoding with second bit allocation
The second bit allocation procedure analyzes two second bit allocation parameters. The two second bit allocation parameters include the total number of redundant bits and the characteristics of each band. Then, based on the second bit allocation parameters, select the two bands that will be allocated bits once again and quantized last from the bands to be processed in current frame. The characteristics of each band include the harmonic characteristics and the bit allocation state of each band. The tonality flags for the bands of current frame which are calculated in subclause 5.3.4.1.4.1.3 represent the harmonic characteristics of each band, and whether the highest two bands of the previous frame is quantized represents the bit allocation state of each band. If the tonality flag is equal to one, the signal type of corresponding band is harmonic. Otherwise, the signal type of corresponding band is not harmonic. If the tonality flags are not all zero or any one of the highest two bands of the previous frame is quantized, the two bands to be quantized last will be finally selected in the highest few bands. Otherwise, they will be selected in other bands than the highest few ones.
…
5.3.4.2.1.3a.3
Fine gain prediction, quantization and application
The fine gain adjustment is based on a predicted value, [image: image282.wmf])
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where 
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is the actual number of pulses used for encoding 
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where 
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approximates the optimal MMSE gain. In case there are bits allocated, further refinement of the fine gain may be done by encoding the gain prediction error [image: image296.wmf]err
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, defined as
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…
5.3.4.2.4.2
Bit allocation
The band-energy limitation factor [image: image298.wmf]harmonic

f

 is introduced before bit allocation to mitigate discontinuous core coding in the higher sub-band.
Initialize the band-energy limitation factor[image: image299.wmf]harmonic
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Calculate the energy of the first 10 sub-bands [image: image301.wmf]l
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 is the index of the highest encoded sub-band.
Reorder the quantized norms with the index range[image: image310.wmf]]
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Then, the bit allocation is performed based on the adjusted norms to the sub-bands with the index range[image: image313.wmf]]
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 as described in subclause 5.3.4.2.1.2.2.
5.4.1
General description
As described in subclause 5.2 and 5.3, the EVS codec supports a CELP coding mode as well as a MDCT coding mode. The transitions between both within the same bit rate and audio bandwidth are described in 5.4.2 and 5.4.3.

The CELP or LP-based coding mode can operate on different sample rates depending on the frame configuration. The procedure how to handle sample rate changes during the encoding process is described in 5.4.4.

The switching between primary and AMR-WB IO modes is described in 5.4.5.

The handling of transitions in the context bit rate switches is described in 5.4.6.


5.5.6
Tonality flag information

The flag [image: image314.wmf]aveadjust
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 is set to one if the bit rate is one out of the set of {48 kbps, 96 kbps, 128 kbps}. For every frame for which [image: image315.wmf]aveadjust
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 is one, two parameters of spectral flatness are computed as follows:
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where 
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, and 
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 is the number of the frequency points. The MDCT coefficients are either the original MDCT coefficients or the spectrum-shaped MDCT coefficients.

The original MDCT coefficients and the spectrum-shaped MDCT coefficients are used to compute two parameters of spectral flatness of this frame, denoted 
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 and 
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 respectively. For the frame with the mode of TCX20, the spectral flatness of the frame is computed by using the MDCT coefficients of the whole frame. For the frame with the mode of TCX10, the spectral flatness of the frame is computed by using the MDCT coefficients of the second sub-frame. In both cases, 
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, the flag of frame type is reset to tonal type. Then the obtained flag of frame type, together with the coded bit stream, is transmitted to the decoder side.

5.6.2.1
LP-CNG CN parameters estimation

The CN parameters to be encoded into a LP-CNG SID frame are calculated over a certain period, which is called the CN averaging period. These parameters give information about the level and the spectrum of the background noise. The CN averaging period, NCN, is equal to the number of consecutive frames including the current SID frame and its preceding NO_DATA frames, upper-limited by the value of 8 consecutive frames. It is a variable value depending on the current SID transmission rate. In particular, the first SID frame immediately after an active signal burst always uses the value NCN = 1. The LP-CNG can generate two different types of SID frame – the WB SID frame, containing low-band (WB) only CN parameters, and the SWB SID frame, containing both low-band and high-band (SHB) CN parameters. One bit is encoded into the LP-CNG SID frame to indicate the bandwidth type of the SID frame, where “0” indicates WB SID and “1” indicates SWB SID. Only WB SID frames are transmitted when operating in NB/WB mode. In SWB/FB operation, the SWB SID frames are not always transmitted but WB SID frames can also be transmitted between two adjacent SWB SID updates. This means the high-band CN parameters are not updated at the decoder with the same rate the low-band CN parameters will be updated. Details in SWB/FB operation will be described in subclause 5.6.2.1.8. The bit allocation for the CN parameters in the respect WB and SWB SID frames are described in subclause 7.2.
5.6.2.1.8
LP-CNG high band analysis and quantization

…

The log average energy of the low band signal 
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where 
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 is the smoothed low band log average energy, 
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 denotes the smoothed log average energy in the previous frame. Step update to the smoothed low band and high band log average energy is allowed. If the low band log average energy 
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 is set to 1, the smoothed low band log average energy and the smoothed high band log average energy are respectively set to the low band log average energy 
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, then the high band parameter is transmitted in the SID frame. Besides, following conditions can also trigger the transmission of SWB SID frame, including: the first SID frame immediately after active frames, the SID frame which is within high band analysis initialization period, the SID frame before which there is no active and no SWB SID frame in the 100 preceding frames when operating in SWB mode or above, the SID frame where there is bandwidth switching between WB and SWB. If SWB SID transmission is not triggerd at an instance of SID frame update, the WB SID frame will be transmitted instead. 

In each SWB SID frame, the smoothed high band log average energy 
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Then a 4-bit arithmetic quantizer is used for quantizing 
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where 
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= 0.9 is the quantization step. The quantization index 
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 is bounded to [0, 15]. 
5.8.4
Channel aware mode encoder configurable parameters
The channel aware mode encoder may use the following configurable parameters to adapt its operation to track the channel characteristics seen at the receiver. These parameters maybe computed at the receiver (as described in subclause 6.3) and communicated to the encoder via a receiver triggered feedback mechanism.

Partial redundancy offset (
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): The difference in time units between the transmit time of the primary copy of a frame 
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 and the transmit time of the redundant copy of that frame which is piggy backed onto a future frame 
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 is called the partial redundancy offset or FEC offset 
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.  The optimal partial redundancy offset that maximizes the probability of partial redundant copy retrival may be computed in the decoder JBM solution and fed back to the encoder as described above. 
Frame erasure rate indicator (
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) having the following values: 
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 (low) for FER rates <5% or 
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 (high) for FER>5%. This parameter controls the threshold used to determine whether a particular frame is critical or not as described in subclause 5.8.3.2. Such an adjustment of the criticality threshold is used to control the frequency of partial copy transmission. The 
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 setting adjusts the criticality threshold to classify more frames as critical to transmit as compared to the 
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 setting.
It is noted that these encoder configurable parameters are optional with default set to 
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 and 
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6.1.1.1.2
LSF decoding for voiced coding mode at 16 kHz internal sampling frequency
The VC mode at the 16 kHz internal sampling frequency has two decoding rates: 31 bits per frame and 40 bits per frame.  The VC mode is decoded by a 16-state and 8-stage BC-TCVQ. figure 88 shows the decoder of the predictive BC-TCVQ with safety-net using an encoding rate of 31 bits. The 31bit LSF decoding performed by the predictive BC-TCVQ with safety-net proceeds as follows. First, one bit is decoded at the Scheme selection block.  This bit defines whether the predictive scheme or the safety-net scheme is used.
For the safety-net scheme, 
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where the prediction residual, 
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.
6.7.2.1.7
LP-CNG high-band decoding and synthesis
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where 
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 denotes the smoothed low-band log average energy of the previous frame. The smoothed high-band log average energy is extrapolated from the smoothed low-band log average energy, that is
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where 
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 is equivalent to extrapolating a non-smoothed high-band energy at the current frame from the low-band energy at the current frame and high-band to low-band energy ratio at the last received SWB SID frame. The high-band comfort noise is synthesized by filtering a 320-point white noise excitation signal through the LP synthesis filter derived earlier in this subclause. The synthesized comfort noise signal is then level adjusted to match the calculated smoothed high-band log average energy 
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*** End of changes ***
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