Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 #84
R2-134522
San Francisco, US, 11th – 15th November 2013
Agenda Item:
10.1.2
Source:
Qualcomm Incorporated
Title:
Remaining text proposal for UL data compression
Document for:
Discussion, Decision
1
Introduction

During RAN2#83bis, the document ‘Remaining text proposal for UL data compression’ [2] was discussed and the following agreements were made with regard to the TR 25.700 [1].
=>
We will agree to remove the sections 5.2.3.2.1 and 5.2.3.2.2 on evaluation for this meeting. For the next meeting we agree that we will include the results shown in this TP together with the assumptions.

=>
The structure of the text will remain the same once the results are included next meeting

=>
With these changes the TP is agreed without sections 5.2.3.2.1 and 5.2.3.2.2
This document provides a TP that captures updates to sections 5.2.2, 5.2.3.1.3.1, 5.2.3.2.1, 5.2.3.2.2 and 5.2.4 of [1].
2
Text Proposal
[-- TEXT START---]
5.2.2
Analysis
Current mechanisms for compression include the header compression algorithms IPHC and RoHC. These algorithms operate on the TCP, UDP, IP headers of data packets. The payload of these data packets is left untouched by these algorithms; hence they cannot be used for compressing the HTTP requests.

IPHC [4] and RoHC [5] are well-studied mechanisms used to compress the TCP/IP headers of data packets. Generally, header compression may provide a compression factor of 5x (i.e. TCP/IP header is reduced by a factor of 5). The performance of current header compression algorithms is captured in section 5.2.3.2.

	
	

	
	

[-- NEXT CHANGE--]
5.2.3.1.3.1
Existing compression methods

Gzip is a popular tool used for compressing data. The format of the file generated by Gzip is provided in [15]. It, in turn, uses the DEFLATE compressed data format specified in [14]. The DEFLATE data format supports compression of data by two mechanisms. One mechanism, which can be thought of as pattern-matching, is by identifying repeated string of bytes in data and replacing such occurrences with pointers to previous instances. The other mechanism is entropy coding of symbols using Huffman algorithm. It is worth noting that the DEFLATE format limits the pattern-match, to point to instances at most 32K bytes in the past and match length to be of at most 258 bytes. When applied to data packets, the algorithm faces the limitation that the pattern-match pointers can only point to instances within the packet. Due to this it fails to make use of redundancy across packets.

LZMA (Lempel–Ziv–Markov chain algorithm) is another compression mechanism, which is widely adopted in a number of operating systems and environments. This algorithm uses a dictionary compression scheme similar to the LZ77 algorithm with a variable compression-dictionary size. When compared to the gzip/bzip2 algorithms, it features a possibility to detect non-compressible data, where upon it avoids a situation when “compressed” data becomes larger than the original one.
[-- NEXT CHANGE--]
5.2.3.2
Evaluation of solution

5.2.3.2.1
General aspects of RAN-level compression
The compression of data will be carried out at the UE. The following nodes are candidates for the placement of the decompression entity: SGSN/GGSN, RNC, NodeB. Any compression mechanism that is supported should operate over the RLC layer so that the compression mechanism can avoid dealing with sequence errors and re-transmission issues. Hence the UE – NodeB approach should be ruled out. If the UE – SGSN/GGSN approach is adopted, middle-boxes that look in to packet payload , such as proxy caches, deployed at the RNC will not be able to function properly since they will encounter compressed packets. This approach also means that the computational resource requirement, for decompression, will be much higher since a lot more data passes through the SGSN/GGSN than the RNC.
It should be noted that compressing ciphered data or certain pre-compressed data such as image/video/audio is not expected to provide much gains. If the payload data is ciphered or pre-compressed, the compression gain will come only from compressing IP/UDP/TCP/HTTP headers. In this scenario, the overall performance might not show significant savings compared to the case where no compression is performed.
A competing scheme to RAN-level compression could be to perform compression and decompression at a higher layer, such as IP or application layers. In such a design, the compression would occur at the UE and decompression at each IP address it communicates with. For instance, if a website visit triggers the web browser to load text from ip-address-1, images from ip-address-2 and advertisements from ip-address-3, the compression algorithm would not be able to take advantage of redundancy between data going to the different IP addresses. Another point to note in such an approach is that due to the end-to-end nature, any middle-boxes – such as proxy caches – may not be able to function as they do today since they will not be able to decode the compressed data. These problems do not arise in RAN-level compression.
5.2.3.2.2
Evaluation of compression algorithms
5.2.3.2.2.1
Evaluation setup
The various algorithms described above were evaluated using two evaluation setups described below.

Evaluation Setup 1: The algorithms were run on tcpdump logs collected for mobile devices within a corporate network. It was ensured that only traffic going to the internet was collected. Table 5.2.3.2.2.1-1 lists the assumptions associated with the performance evaluation. Under this setup a 5x compression of the TCP/IP headers was assumed for evaluation of header compression schemes.
Table 5.2.3.2.2.1-1: Table of assumptions

	Gzip compression level setting
(Setting captures tradeoff between speed and compression. It lies between 0 and 9, both inclusive. Higher values provide better compression.)
	6 (This is the default setting)

	IPDC memory size
	32KB

	Number of UEs logged
	813

	Duration of time logged
	30mins

	Type of UEs
	Mobile devices

	Type of traffic logged
	Unencrypted

The distribution of packet sizes observed in the logs under this setup is captured in Figure 5.2.3.2.2.1-1.
[image: image1.jpg]CDF

200

400

600 800 1000
Pkt Size (bytes)

1200

1400

1600

Figure 5.2.3.2.2.1-1: Packet size distribution under Evaluation Setup 1
Evaluation Setup 2: The algorithms were run on data taken directly from the IuPS interface, i.e., the one connecting RNC further to the core network. Since the IuPS interface does not only carry the user plane data, but also the core network signalling information, all the non-GTP packets were filtered out. Furthermore, since the GTP protocol itself can carry control information, only the so-called T-PDUs were considered, Every T-PDU was processed further in such a way that the transport layer and the IP/UDP/GTP headers were removed, thus leaving the user plane IP packet. Every decoded IP packet was written into a separate file, which could then be individually analysed, compressed, from which it was possible to remove IP/TCP headers etc.
Under this setup, the header compression mechanism emulates functioning of the Robust Header Compression algorithm, as defined in [5]. The considered RoHC profile handles not only 40 bytes IP/TCP packets, which are compressed on average to 5 bytes, but also so-called 52 bytes IP/TCP packets with “options”, which are compressed on average to 8 bytes.
The distribution of packet sizes observed in the data collected under this setup is captured in Figure 5.2.3.2.2.1-2.

[image: image2.emf]
Figure 5.2.3.2.2.1-2: Packet size distribution under Evaluation Setup 2
5.2.3.2.2.2
Evaluation results
Table 5.2.3.2.2.2-1 compares compression statistics for the payload part of TCP/IP packets between Gzip and IPDC.

The metric ‘Compression Level’ is defined as (compressed_size / original_size)*100%.
Table 5.2.3.2.2.2-1: Compression statistics for the payload part of TCP/IP packets
	Scenario (Evaluation Setup)
	Compression level of Data Transmission for UL Payload only

(Avg_UL_payload_size_compressed / Avg_UL_payload_size_original)*100

	IPDC (1)
	14.7%

	Gzip (1)
	71.4%

The above statistics indicate that UL data compression that takes advantage of redundancy across packets (IPDC) performs significantly better than per-packet compression (gzip).

Table 5.2.3.2.2.2-2 lists the compression statistics computed over entire IP packets (i.e. IP header + IP payload) on the uplink. Here, one can see that header compression alone can provide up to 53%-68% reduction of net data transmission on UL (depending on the evaluation setup). This is because a large percentage of the bytes on uplink, in the analyzed logs, are from TCP/IP headers. Enabling payload compression can provide gains both with and without header compression. This provides the motivation for enabling header compression in addition to data compression of the payload.
Table 5.2.3.2.2.2-2: Compression statistics computed over entire IP packets (i.e. IP header + IP payload) on the uplink
	Scenario (Evaluation Setup)
	Compression level of Data Transmission for UL
(Avg_UL_packet_size_compressed / Avg_UL_packet_size_original)*100

	IPDC w Header Compression (1)
	17.9%

	Gzip w Header Compression (1)
	41.7%

	LZMA w Header Compression (2)
	48.0%

	Header Compression (1)
	52.6%

	Header Compression (2)
	67.8%

	IPDC w/o Header Compression (1)
	66.7%

	Gzip w/o Header Compression (1)
	90.9%

	LZMA w/o Header Compression (2)
	80.19%

Table 5.2.3.2.2.2-3 shows some further statistics for IPDC, collected by visiting individual websites (as opposed to from the entire log). For these results, the other assumptions are the same as described in evaluation setup 1:
Table 5.2.3.2.2.2-3: Compression statistics for the proposed algorithm
	Scenario (Evaluation Setup)
	Compression level of Data Transmission for UL Payload only
(Avg_UL_payload_size_compressed / Avg_UL_payload_size_original)*100

	Browsing to NYTimes.com (1)
	16.9%

	Browsing to PBS.org (1)
	14.9%

	Browsing to Whitehouse.gov (1)
	20.8%

	Browsing to Akamai.com (1)
	17.9%

	Browsing to Amazon.com (1)
	23.8%

5.2.4
Conclusions

Editor’s Note: Overall conclusions for the identified solutions should be captured here.

From the data provided, we notice that payload compression provides gains for compressible data. We can also draw the conclusion that compression that takes in to account redundancy across packets provides higher gains when compared to the individual packet compression. Since there is a noticeable amount of small packets in the UL direction, the header compression alone also provides gains. The highest amount of compression is achieved when both header and payload compression are enabled. Also, ciphered data or certain pre-compressed data such as image/video/audio may not be compressed. Finally, compression between UE and RNC does not require changes to the operation of middle boxes (such as proxy caches).
[-- TEXT END ---]
3
Conclusion

It is proposed to agree on the inclusion of the text proposal on UL data compression presented in this contribution in the Further EUL Enhancements Technical Report [1].

4
References

[1] TR25.700v0.4.2, “Study on Further EUL enhancements”

[2] R2-133672, “Remaining text proposal for UL data compression”

5/5

