[bookmark: OLE_LINK1][bookmark: OLE_LINK2]3GPP TSG RAN WG1 #89	R1-1708047
Hangzhou, China, May 15th – 19th, 2017
[bookmark: Source]Agenda item:	7.1.4.2.1.1
Source: 	Samsung
Title: 	Early Termination of Polar Decoding
[bookmark: DocumentFor]Document for:	Discussion and Decision

Introduction
In the RAN1 #88bis meeting, it was agreed that the early termination supported by polar code construction needs to be further investigated and compared with implementation based methods.

	Conclusion:
· Study until RAN1#89 polar code construction techniques to facilitate early termination (i.e. before decoding all the information bits) without degrading BLER performance or latency (especially considering the time for deinterleaving the information and assistance bits) compared to purely implementation based methods such as path-metric based pruning
· e.g. assistance bits distributed in the codeword in such a way that error detection can be performed after partial decoding
· Investigate performance, complexity and FAR impacts
· Study of use of data-independent scrambling to facilitate early termination is also not precluded

This contribution discusses the effectiveness of distributed CRC-based and path metric-based early termination schemes.

Distributed CRC Polar Codes
In [1], distributed CRC-based early termination is shown to be effective for some parameters and this is further investigated in this contribution.

1.1 Generation of Distributed CRC Bits
As suggested in [2], encoding of distributed CRC polar codes can be implemented as shown in the following block diagram.

The systematic generator matrix of a CRC code results in information bits followed by CRC bits. To find a generator matrix suitable for distributed CRC bits, row and column swapping needs to be applied to the systematic generator matrix. The corresponding pre- and post-permutations allow us to use the simple conventional CRC encoder with shift registers. Since the main purpose of the distributed CRC is to help early termination of polar decoding, CRC bits are desired to locate as early as possible among the information bits, which implies that the row and column swapping should be carefully done.
Let denote the generator matrix of a CRC code. A generator matrix suitable for distributed CRC is found in three steps. First, apply row swapping to and column swapping to only and then is obtained, where is a permutation matrix. Second, apply column swapping to to become the identity matrix again, which results in . This generator matrix produces another form of CRC bits and, lastly, they are distributed (locate among the information bits) so that each column of goes ahead to obtain until it can be still represented as a linear combination of some earlier columns. Hence, the row and column swapping determines the distribution of CRC bits and one example for the rule of row and column swapping is shown as follows.

	Greedy Search for P’

	1) Find a minimum-weight column and locate it as the first column.
2) Swap rows so that the first column has consecutive 1’s from the top.
3) Look at only the submatrix made by excluding the first column and the rows incident to the first column.
4) Repeat 1)-3).

This algorithm actually tries to find a CRC bit such that it involves a smallest number of information bits in a greedy manner. An example is given with the parameters and . The systematic generator matrix of a CRC-6 code (normal type 0x2F) is shown as

	
	　
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	　

	
	　
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	　

	
	　
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	　

	
	　
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	　

	G=
	　
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	　

	
	　
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0
	1
	0
	　

	
	　
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0
	1
	　

	
	　
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	0
	1
	　

	
	　
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	1
	　

To clearly show each swapping, every 1’s in a row is replaced by the row number. By the greedy search method, the new parity part is obtained from through a few steps as follows.

	
	　
	1
	1
	1
	0
	0
	0
	　
	
	　
	1
	1
	1
	0
	0
	0
	　

	
	　
	0
	2
	2
	2
	0
	0
	　
	
	　
	5
	5
	0
	5
	0
	0
	　

	
	　
	0
	0
	3
	3
	3
	0
	　
	
	　
	8
	8
	0
	0
	0
	8
	　

	
	　
	0
	0
	0
	4
	4
	4
	　
	
	　
	9
	0
	9
	9
	9
	9
	　

	P =
	　
	5
	5
	0
	5
	0
	0
	　
	→
	　
	0
	2
	2
	2
	0
	0
	　

	
	　
	0
	6
	6
	0
	6
	0
	　
	
	　
	0
	0
	3
	3
	3
	0
	　

	
	　
	0
	0
	7
	7
	0
	7
	　
	
	　
	0
	0
	0
	4
	4
	4
	　

	
	　
	8
	8
	0
	0
	0
	8
	　
	
	　
	0
	6
	6
	0
	6
	0
	　

	
	　
	9
	0
	9
	9
	9
	9
	　
	
	　
	0
	0
	7
	7
	0
	7
	　

	
	　
	1
	1
	1
	0
	0
	0
	　
	
	
	　
	1
	1
	1
	0
	0
	0
	　

	
	　
	5
	5
	0
	5
	0
	0
	　
	
	
	　
	5
	5
	0
	5
	0
	0
	　

	
	　
	8
	8
	0
	0
	0
	8
	　
	
	
	
	8
	8
	0
	0
	0
	8
	　

	
	　
	9
	0
	9
	9
	9
	9
	　
	
	
	　
	9
	0
	9
	9
	9
	9
	　

	→
	　
	0
	2
	2
	2
	0
	0
	　
	→
	P'=
	　
	0
	2
	2
	2
	0
	0
	　

	
	　
	0
	6
	6
	0
	6
	0
	　
	
	
	　
	0
	6
	6
	0
	6
	0
	　

	
	　
	0
	0
	3
	3
	3
	0
	　
	
	
	　
	0
	0
	3
	3
	3
	0
	　

	
	　
	0
	0
	0
	4
	4
	4
	　
	
	
	　
	0
	0
	7
	7
	0
	7
	　

	
	　
	0
	0
	7
	7
	0
	7
	　
	
	
	　
	0
	0
	0
	4
	4
	4
	　

Then, and are obtained as below.

	
	　
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	　

	
	　
	0
	0
	0
	0
	5
	0
	0
	0
	0
	5
	5
	0
	5
	0
	0
	　

	
	　
	0
	0
	0
	0
	0
	0
	0
	8
	0
	8
	8
	0
	0
	0
	8
	　

	
	　
	0
	0
	0
	0
	0
	0
	0
	0
	9
	9
	0
	9
	9
	9
	9
	　

	G' =
	　
	0
	2
	0
	0
	0
	0
	0
	0
	0
	0
	2
	2
	2
	0
	0
	　

	
	　
	0
	0
	0
	0
	0
	6
	0
	0
	0
	0
	6
	6
	0
	6
	0
	　

	
	　
	0
	0
	3
	0
	0
	0
	0
	0
	0
	0
	0
	3
	3
	3
	0
	　

	
	　
	0
	0
	0
	0
	0
	0
	7
	0
	0
	0
	0
	7
	7
	0
	7
	　

	
	　
	0
	0
	0
	4
	0
	0
	0
	0
	0
	0
	0
	0
	4
	4
	4
	　

	
	　
	1
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	　

	
	　
	0
	1
	0
	0
	1
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0
	　

	
	　
	0
	0
	1
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0
	0
	1
	　

	
	　
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	　

	GDCRC =
	　
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	0
	1
	0
	0
	　

	
	　
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	0
	1
	0
	　

	
	　
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	0
	　

	
	　
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	1
	　

	
	　
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	　

For this kind of distributed CRC scheme to be effective in early termination, some CRC bits are needed to locate very early but the resulting distribution of CRC bits does not satisfy this property in most cases. For example, the distribution of CRC bits generated by the greedy algorithm is shown in Table 1 for and 19-CRC (normal type 0x2D0B5) and most CRC bits actually locate in the late part of the codeword.

Table 1 Number of earlier information bits for each CRC bit when 19-CRC is used and
	CRC bit index
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	# of earlier info. bits
	29
	43
	48
	55
	58
	59
	61
	62
	62
	63

	CRC bit index
	11
	12
	13
	14
	15
	16
	17
	18
	19
	

	# of earlier info. bits
	63
	63
	64
	64
	64
	64
	64
	64
	64
	

Moreover, it is observed that CRC bits cannot locate earlier than near the midpoint of information bits with any row and column swapping when is large.

Observation 1: Several steps of row/column swapping of CRC generator matrices in a greedy manner distribute CRC bits at the encoder. At the decoder, the SC-based decoding algorithm can be terminated early by checking each CRC bits individually.
Observation 2: The locations of CRC bits distributed by row/column swapping are restrictive due to the constraint of CRC polynomials. The 1st CRC bits cannot be located earlier than 1/3 of information bits in most cases, and the majority of the distributed CRC bits are located at the end of information bits.

1.2 Early Termination with Distributed CRC
Two methods of early termination using distributed CRC bits are proposed in [1]. The single-bit early termination checks a single distributed CRC bit at a time for all decoding paths in the list. When all the paths fail to pass the check, the decoding terminates. The multi-bit early termination checks the current CRC and the previous CRC bits all at a time for all decoding paths in the list. When all the paths fail to pass at least one of these CRC bits, the decoding terminates. Clearly, the multi-bit early termination scheme is stronger than the other in terms of early termination without BLER and FAR performance degradation.
The distributed CRC bits can also be used for path-pruning as indicated in [2] and this can result in BLER improvement but FAR degradation. When the distributed CRC bits are solely used for early termination, the FAR requirement can be maintained. Also, it is noted that FAR depends on the distribution of CRC bits.

1.3 Comparison with Path Metric-Based Early Termination
Path metric values in the list can be used to detect a decoding failure in an early stage. When a suboptimal decoder is used for polar codes, the path metric values do not decrease as decoding steps proceed. It is observed that the path metric values rapidly increase when a received signal is much corrupted. If we set a proper value as a threshold for each channel, we may detect a decoding failure early by observing each path metric value in the list. To determine the threshold, the statistics of path metric values could be used for each channel. We declare early termination when all path metric values in the list exceed the threshold.
For the early termination based on distributed CRC bits, the multi-bit early termination scheme is used in our simulations. Path pruning is not used and CRC bits are used only for error detections. For the generation of distributed CRC bits, the greedy search method introduced in the previous subsection is used.
Two scenarios are assumed for simulations. First, we evaluate the BLER performance of two early termination schemes for a scheduled UE and the computational complexity reduction owing to each early termination scheme is also evaluated. Second, we consider an unscheduled UE which receives another UE’s signals scrambled with UE- specific binary sequence. In this case, the complexity reduction is evaluated.
To evaluate the complexity, we consider a measure of total complexity reduction ratio (TCRR) that is defined as

The TCRR represents how many operations can be reduced by early termination schemes in practice. The greater this ratio is, the better the early termination scheme performs.
Three polar codes are simulated to compare the performance of early terminations. The parameters are given below.

1) , , , , CRC-19 (normal type 0x2D0B5),
2) , , , , CRC-8 (normal type 0x9B),
3) , , , CRC-19 (normal type 0x2D0B5), , unknown bit puncturing (QUP) [3]

In Figure 1, the BLER performance is shown and no BLER degradation is observed due to both early termination schemes for all codes.

Figure 1 Comparison of BLER performance of 1) no early termination case, 2) early termination based on distributed CRC, and 3) early termination based on path metric values

In Appendix, the complexity reduction is shown through six figures for both scenarios. For a scheduled UE, the complexity reduction of path metric-based early termination sensitively depends on channel value unlike distributed CRC-based early termination. For mid to high SNR region, distributed CRC-based early termination could have advantage. For an unscheduled UE, path metric-based early termination shows much better complexity reduction.

Observation 3: Both distributed CRC-based and path metric-based early termination schemes do not incur BLER degradation compared to no early termination case.
Observation 4: Path metric-based early termination is effective especially for unscheduled signals, e.g. codewords scrambled by another UE-ID.
[bookmark: _GoBack]
Proposal 1: Implementation-based path pruning should be considered for early termination of polar decoding, since it drastically reduces computational decoding complexity.

Conclusion
In this contribution, we present some simulation results to evaluate the early termination performance of polar codes based on distributed CRC bits and path metric values.

Observation 1: Several steps of row/column swapping of CRC generator matrices in a greedy manner distribute CRC bits at the encoder. At the decoder, the SC-based decoding algorithm can be terminated early by checking each CRC bits individually.
Observation 2: The locations of CRC bits distributed by row/column swapping are restrictive due to the constraint of CRC polynomials. The 1st CRC bits cannot be located earlier than 1/3 of information bits in most cases, and the majority of the distributed CRC bits are located at the end of information bits.
Observation 3: Both distributed CRC-based and path metric-based early termination schemes do not incur BLER degradation compared to no early termination case.
Observation 4: Path metric-based early termination is effective especially for unscheduled signals, e.g. codewords scrambled by another UE-ID.

Proposal 1: Implementation-based path pruning should be considered for early termination of polar decoding, since it drastically reduces computational decoding complexity.

References
[1] R1-1705861, “Design details of distributed CRC,” Nokia, Alcatel-Lucent Shanghai Bell.
[2] R1-1705756, “CRC related design of polar codes,” NTT Docomo.
[3] K. Niu, K. Chen, and J.-R. Lin, “Beyond turbo codes: Rate-compatible punctured polar codes,” in Proc. IEEE Int. Conf. Commun., Budapest, Hungary, Jun. 2013.

Appendix. Complexity Reduction by Early Termination

[image:]
[image:]
[image:]

[image:]

[image:]

[image:]
Comparison of BLER
No-ET (512,85)	-6	-5.5	-5	-4.5	-4	-3.5	-3	-2.5	-2	0.94020000000000004	0.84019999999999995	0.6603	0.42280000000000001	0.20499999999999999	6.9919999999999996E-2	1.651E-2	2.4499999999999999E-3	2.5359999999999998E-4	ET-DCRC (512,85)	-6	-5.5	-5	-4.5	-4	-3.5	-3	-2.5	-2	0.93459999999999999	0.84030000000000005	0.67110000000000003	0.42549999999999999	0.1905	6.8729999999999999E-2	1.519E-2	2.31E-3	2.31E-4	ET-PM (512,85)	-6	-5.5	-5	-4.5	-4	-3.5	-3	-2.5	-2	0.94020000000000004	0.84050000000000002	0.66220000000000001	0.42	39	0.2059	7.0300000000000001E-2	1.669E-2	3.0000000000000001E-3	2.8219999999999997E-4	No-ET (128,64)	0	0.5	1	1.5	2	2.5	3	3.5	0.69350000000000001	0.50380000000000003	0.30659999999999998	0.14860000000000001	5.4210000000000001E-2	1.4829999999999999E-2	2.5999999999999999E-3	4.482E-4	ET-DCRC (128,64)	0	0.5	1	1.5	2	2.5	3	3.5	0.68969999999999998	0.50249999999999995	0.32050000000000001	0.1704	6.1800000000000001E-2	1.7899999999999999E-2	3.1519999999999999E-3	4.8069999999999997E-4	ET-PM (128,64)	0	0.5	1	1.5	2	2.5	3	3.5	0.69369999999999998	0.50560000000000005	0.3155	0.1714	5.7610000000000001E-2	1.5679999999999999E-2	2.9299999999999999E-3	4.8979999999999998E-4	No-ET (192,64)	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	0.89059999999999995	0.77	0.59260000000000002	0.38400000000000001	0.1993	7.8689999999999996E-2	2.333E-2	4.9300000000000004E-3	7.4049999999999995E-4	ET-DCRC (192,64)	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	0.89200000000000002	0.77769999999999995	0.60019999999999996	0.39979999999999999	0.20930000000000001	8.9109999999999995E-2	2.3480000000000001E-2	4.9500000000000004E-3	7.4529999999999996E-4	ET-PM (192,64)	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	0.89059999999999995	0.77829999999999999	0.62739999999999996	0.41249999999999998	0.21060000000000001	7.9810000000000006E-2	2.358E-2	5.0299999999999997E-3	7.737E-4	Es/No (dB)

BLER

oleObject1.bin
K bits

N bits

K+J+J' bits

CRC
(J+J' bits)

Polar Encoding

Rate matching

M bits

Post-permutation

K+J+J' bits

Pre-permutation

K bits

image2.png

image3.png

image4.png

image5.png

image6.png

image1.emf
K bitsN bitsK+J+J'bitsCRC

(J+J'bits)

Polar

Encoding

Rate matching

M bitsPost-

permutation

K+J+J'bitsPre-

permutation

K bits

