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Discussion and decision
1 Introduction
In the Study Item (SI) of MTC coverage extension, a key assumption on the propagation channel needs to be clarified. It is reasonable to assume that the MTC devices in the basement are purely fixed. In this contribution, we examine some typical channel data for fixed wireless access channels to consider the effects over long periods of time, as it is assumed that the uplink and downlink latencies can be as long as 1 hour and 10 seconds respectively. 
2 Discussion

2.1 Fixed wireless channel for MTC
The MTC device is assumed to be located within a basement and hence we firstly consider an outdoor to indoor propagation channel.  Field measurement studies performed for outdoor to indoor propagation channel in [1] suggested a CIR delay spread of less than 405 ns (for CIR all multi paths with relative power above -25 dB from the strongest path). To simplify the study, we attempt to reuse an existing 3GPP propagation channel with similar characteristics.  We suggest using the EPA model from 36.101 as shown in Table 1, which has similar delay spread and is used for a Doppler of up to 5 Hz.  :
Table 1: Extended Pedestrian A model (EPA) from 36.101
	Excess tap delay [ns]
	Relative power 

[dB]

	0
	0.0

	30
	-1.0

	70
	-2.0

	90
	-3.0

	110
	-8.0

	190
	-17.2

	410
	-20.8


Although MTC devices in basements typically do not move, the Doppler spread caused by moving reflectors needs to be considered. According to the study in [2], the Doppler spread is around 1Hz, while in [3] it is found to be in the range of 2~8 Hz. In [4], Stanford University Interim (SUI) channels are studied, where the Doppler spread values are 0.25Hz and 0.5Hz. In [5], the Doppler spread is considered to be distributed in the range 0 – 2.5 Hz. In general, the Doppler frequency may be affected by foliage, windspeed, and proximity to traffic, so as shown by the measurements in [6], the Doppler frequency may vary at different places. In [7], it is stated the observed maximum Doppler frequency is 2.4Hz. In conclusion, we believe 1Hz could be a reasonable value to assume as the baseline.
It has also been observed that the Doppler power spectrum for fixed wireless access channels is not U shaped like Jake’s model. In Fixed wireless access, a round shaped Doppler spectrum is often used, as for IEEE802.16. Other models are also available, e.g. in [2], where a new model is derived. For simplicity we propose to use the round shaped Doppler spectrum:
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a0 = 1, a2 = -1.72, a4 = 0.785 are real finite coefficients, as used in IEEE802.16.
2.2 Channel simulation and observation

In a 10MHz BW, the fast fading gains over a period of 30s for each PRB pair are shown below in Figure 1. 
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Figure 1. Fast fading gains over a 10MHz BW
In Figure 2, the fast fading of PRBs [1, 10, 20, 30, 40, 50] are illustrated. It can be seen that there are quite some periods when the fast fading gains are over 10dB and even approach 20dB occasionally. Significant time diversity gain can be achieved if signals are retransmitted over a long period of time. 
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Figure 2. Fast fading gains of selected PRBs
The CDF of the fast fading gain is shown in Figure 3. 8.7% of PRBs experience 10dB fast fading gain, and 1.4% of PRBs experience 15dB fast fading gain.
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Figure 3. CDF of fast fading gain
Figure 4 shows the CDF of the duration of the fast fading gain. For 10dB fast fading gain, 50% occurrences have a duration longer than 317ms. For 5dB gain, this increases to 472ms.
[image: image6.emf]0 500 1000 1500 2000 2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fast fading gain duration (ms)

CDF

 

 

15dB

10dB

5dB


Figure 4. Fast fading gain duration CDF
2.3 Channel coherence time
The channel autocorrelation is the inverse Fourier transform of the power spectrum function. The spectrum function can be written as:
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So the channel autocorrelation is:
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The coherence time is the solution of t under a specific magnitude squared autocorrelation value, e.g. 0.5. The data based on the proposed model is analyzed and the autocorrelation vs. time is shown in Figure 5 It can be seen that 0.5 correlation coefficient corresponds to 325ms coherence time, and 0.9 corresponds to approximate 120ms, 0.95 to 80ms respectively. Higher Doppler spread in certain deployment scenarios will shorten the coherence time. 
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Figure 5. Channel autocorrelation vs. time, 1Hz dopper spread
The significance of this is that if repeated transmissions are combined outside the channel coherence time, multiple channel estimates will have to be made before the retransmissions can be combined. Since the RS density is limited, channel estimation accuracy may therefore become the limiting factor for coverage enhancement schemes that require many retransmissions over a long period of time. If this is the case, it may be necessary to consider mechanisms to increase the RS density to give sufficiently accurate channel channel estimation within the coherence time of the channel. Alternatively, any repetition schemes should be constrained within say 120ms for 90% coherence. 
3 Conclusion

In this paper, we have considered the channel model for fixed MTC devices and its impact on channel estimation and repetition methods of coverage boosting. 

We make the following observations:

1. 1Hz Doppler spread is a reasonable assumption

2. A round-shaped Doppler spectrum is more realistic

3. Under these conditions, 90% channel coherence can be assumed over a period of 120ms. In order to avoid channel estimation becoming the limiting factor, any repetition schemes that may be considered for MTC coverage enhancement should be constrained within 120ms at most. 
These observations could be captured in TR36.888. 
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