3GPP TSG RAN WG1 Meeting #72
R1-120387
St. Julian’s, Malta, January 28 – February 1, 2013
Title:
Remaining details of TDD PUCCH Resource Allocation for EPDCCH
Source:
Research In Motion, UK Limited

Agenda Item:
7.2.3
Document for:
Decision
1. Introduction
In RAN1#71, some remaining issues related to PUCCH resource allocation for TDD were left undecided. Following the meeting, tentative text corresponding to these issues was agreed via email discussion [2], with the bracketed portions of the text to be replaced with corrections in RAN1#72. The issues and agreements are:
Point 1a: The definition of values for ARO for TDD
· Question: Are the values defined for FDD sufficient, or is there a need to have e.g. larger offset values?
· Agreed text: The four ARI values are {[-2], [-1], 0, 2}. (i.e. the values 0 and 2 are agreed).
Point 1b: Usage of ARO when DAI > 1 and the UE is configured with format 3
· Agreed text: [The ARO bits are set to zero if DAI>1 and UE is configured with PUCCH format 3.]
Point 2: Resource allocation in the case when UE is configured not to monitor EPDCCH in some of the subframes within the same bundling window

· Question: Is there a need to define additional resource allocation rules for this case?
· Agreed text: [The PUCCH resource allocation is based on all subframes.]
In this contribution, we discuss open aspects of these issues, and propose how the remaining details can be finalized.
2. Discussion

We treat each of the email discussion points in turn below:
2.1. Point 1a: ARO values for TDD
There are two main alternatives to ARO values: using those agreed for FDD, or replacing -1 and -2 with larger ARO values. In our understanding, the larger ARO values are selected such that they shift the PUCCH resource between PUCCH resource regions associated with different DL subframes in the UE’s bundling window. If large negative offsets are used, it could be possible to compress the PUCCH resources to those only used by the first few subframes. The unused PUCCH resource corresponding to the last subframe(s) could then be reused for PUSCH.
We note that using the large values does have some tradeoffs. If large negative values are used, PUCCH resources corresponding to earlier subframes are more heavily used, which can increase blocking in these subframes. Since completely overlapped PUCCH resource would likely be used to improve efficiency in scenarios where large ARO might have benefits, and overlap between EPDCCH sets also increases PUCCH blocking, the ability to exploit large offset ARO could be reduced in this case. Furthermore, using 2 ARO values for large offsets can reduce the ability of ARO to avoid collisions within PUCCH resources corresponding to a subframe, thereby increasing blocking.
While there could be some potential benefit to large ARO values, considering that evaluations of large ARO values are not available to our knowledge and that blocking may diminish gains when PUCCH resource for different EPDCCH sets is overlapped, we are not sure of the gain from large ARO values. Therefore, we somewhat prefer that -1 and -2 are used in ARO values for both TDD and FDD.
2.2. Point 1b: ARO usage with DAI>1 for format 3
If the UE is configured for PDCCH and format 3, when the UE is scheduled only on PCell, the power control bits are used for power control for DAI=1 and for ARI when DAI>1. Since 2 bits were added to DCI formats for ARO, the question arose on how the PC bits should be used when format 3 and EPDCCH are configured.

Since they would not be needed, one proposal sets the ARO bits to known fixed values (e.g. zeros) when DAI>1. In this case, it was discussed if these ARO bits could be used to improve EPDCCH detection, since they may act e.g. as ‘virtual CRC’ bits. However, a counter argument was made that since the UE does not know the DAI values before decoding EPDCCH, it is doubtful if known bits can be used to improve EPDCCH detection performance.
An alternative proposal was to use ARO bits in EPDCCH with DAI > 1 as Rel-10 ARI bits and to use the PC bits for power control for all values of DAI. While having power control bits available in all subframes could improve performance at UE speeds where power control could not track channel variations, it is not clear to us that format 3 would be commonly used for these UE speeds. Since channel selection is available for up to 4 A/N bits, and since more than 4 A/N bits are used when more than 2 DL MIMO carriers are configured, format 3 is likely more suitable for when more than 2 DL carriers are configured. We expect that UEs configured with more than 2 DL carriers would not likely be moving too rapidly. Therefore, it is not obvious to us that there would be large benefits from improved power control in the scenarios where format 3 is most likely used.
While there is potential benefit from using PC bits in DAI>1, given that no evaluations of power control for format 3 under relevant scenarios have been discussed, it is not yet clear to us that there is a strong need to deviate from Rel-10 behavior for ARI. On the other hand, we do not expect there are link performance benefits from setting the ARO bits to zero when DAI>1. Therefore, we have no strong view, and somewhat prefer either to 1) use ARO bits in EPDCCH with DAI > 1 as Rel-10 ARI bits or 2) leave the ARO bits undefined for DAI > 1, and to use Rel-10 mechanisms to determine PUCCH resource in these subframes. In case 2), more optimized uses for these bits could be introduced in a later release (if needed).
2.3. Point 2: Resource allocation for subframes where UE does not monitor EPDCCH
This point can be seen as the broader problem of calculating the offset between PUCCH resources corresponding to different DL subframes in a UE’s bundling window. Consequently, we first provide some background on the offset calculation before addressing details of how it is calculated when EPDCCH is or is not monitored.
2.3.1. Background:
In RAN1#71, it was agreed [1] that in Rel-11 for TDD the PUCCH resource depends also on:

[image: image1.wmf]å

-

=

1

0

,

,

m

i

j

i

eCCE

N

(Eq. 1)

where

· NeCCE,i,j is equal to the number of eCCEs in subframe i in the EPDCCH set j configured for that UE, and

· m (0...M-1) is the relative index of the DL subframe of the PDSCH scheduled by EPDCCH

Following the approach of [1], an equation of the following form can be used to express PUCCH resource allocation for EPDCCH using ARO:

[image: image2.wmf](

)

(

)

(

)

)

1

(

,

,

,

0

)

1

(

,

'

,

,

j

PUCCH

j

m

eCCE

i

ARO

T

l

PUCCH

N

n

n

f

k

n

j

n

N

n

+

+

-

D

+

=

(Eq. 2)
Where
·
[image: image3.wmf])

1

(

,

l

PUCCH

n

 is the lth PUCCH resource index in subframe n. It corresponds to a DL grant received at subframe n-ki.
·
[image: image4.wmf](

)

i

ARO

k

n

-

D

 is the ARO value indicated in subframe n-ki.

·
[image: image5.wmf](

)

'

,

,

,

n

n

f

j

m

eCCE

 is the implicit component of the PUCCH resource indication, calculated using the method for FDD (although with possibly different values for ARO).
·
[image: image6.wmf]j

m

eCCE

n

,

,

is the index of the first ECCE of an EPDCCH received by the UE in the EPDCCH set with index j in the subframe that corresponds to the relative index m
·
[image: image7.wmf])

1

(

,

j

PUCCH

N

 is the PUCCH resource offset associated with an EPDCCH set ‘j’
·
[image: image8.wmf](

)

(

)

å

-

=

-

=

1

0

,

,

0

0

,

m

i

j

k

n

eCCE

T

i

N

g

j

n

N

(Eq. 3)

And:
· m (0...M-1) is the relative index of the DL subframe of the PDSCH scheduled by EPDCCH in subframe n,

· j0 is an index of the EPDCCH set used to compute a number of eCCEs,
[image: image9.wmf]0

,

,

j

k

n

eCCE

i

N

-

, defined below.

·
[image: image10.wmf]0

,

,

j

k

n

eCCE

i

N

-

 is equal to the number of eCCEs in an EPDCCH set with index j0 in a subframe with index n-ki in which a downlink grant for the UE may be detected.

· ki is an integer constant that is an element of
[image: image11.wmf]{

}

011

,,

M

kkk

-

L

· M is the number of elements in a downlink association set index
[image: image12.wmf]K

.

· Variables m, M, n,
[image: image13.wmf]K

, and
[image: image14.wmf]{

}

011

,,

M

kkk

-

L

are defined as in 36.213.
·
[image: image15.wmf](

)

g

 is a function that produces a PUCCH resource offset value for subframe n, and will need to be defined as described more below.
A few details need to be specified in order to calculate the subframe offset
[image: image16.wmf](

)

0

,

j

n

N

T

, for when EPDCCH is monitored and when it is not monitored, as discussed below.

2.3.2. Determining PUCCH resource subframe offset in subframes where EPDCCH is monitored

Three basic approaches come to mind for when EPDCCH is monitored.

1. Different EPDCCH set sizes in different subframes

One reasonable way would be to pick the maximum EPDCCH set size in each subframe, as proposed in [3]. In this case, then:
[image: image17.wmf](

)

(

)

å

-

=

-

=

1

0

,

,

0

0

0

max

,

m

i

j

k

n

eCCE

j

T

i

N

j

n

N

.

2. One EPDCCH set size for all subframes

Alternative 1 can be extended to use the largest EPDCCH set size in all monitored subframes. The subframe offset would then be:
[image: image18.wmf](

)

(

)

j

i

eCCE

j

i

T

N

m

j

n

N

,

,

,

0

max

,

×

=

 where i indexes over all subframes.
3. A fixed EPDCCH set
One simple approach would be to use the smallest EPDCCH set index j0 independent of the number of eCCEs in the sets. So, here the subframe offset is:
[image: image19.wmf](

)

å

-

=

-

=

1

0

,

,

0

0

,

m

i

j

k

n

eCCE

T

i

N

j

n

N

.
Comparing these 3 options:

· Alternative 2 uses the most resource, since the largest set size in any subframe is used to determine PUCCH resource.

· Alternative 1 is somewhat more efficient, since the allocated PUCCH resources can track special subframes.
· Alternative 3 is a superset of alternative 1, allowing the same, as well as less, resource to be allocated as alternative 1. We observe that the EPDCCH set sizes are independent of their indices. Therefore, if the EPDCCH set with the smallest index is used to determine the subframe offset, more or less PUCCH resource can be allocated depending on if the smallest EPDCCH set is the one with the largest or smallest value of
[image: image20.wmf]j

k

n

eCCE

i

N

,

,

-

. If the largest EPDCCH set has the smallest set index, the resources allocated are the same as alternative 1. If the smallest EPDCCH set has the smallest set index, fewer resources are allocated than alternative 1.
Since the network can better control the allocated PUCCH resource without additional signaling over the other alternatives, we tend to prefer alternative 3.

2.3.3. Determining PUCCH resource subframe offset in subframes where EPDCCH is not monitored
Where EPDCCH is not monitored, the alternatives include:
1. Excluding non-EPDCCH subframes
When non-EPDCCH subframes are excluded, they don’t contribute to
[image: image21.wmf](

)

0

,

j

n

N

T

. That is,
[image: image22.wmf](

)

0

0

,

,

=

-

j

k

n

eCCE

i

N

g

for subframes n-ki where EPDCCH is not monitored.
2. Using one of the above methods for when EPDCCH is monitored

[image: image23.wmf](

)

0

,

j

n

N

T

 could be computed as described above using different EPDCCH sizes in different subframes, one EPDCCH set size, or a fixed EPDCCH set.

We observe:
· Alternative 1 has the benefit that if all UEs in a cell are configured such that they simultaneously do not receive EPDCCH in a subframe, then some PUCCH resource can be saved. This requirement of a cell-specific configuration of monitored EPDCCH limits the ability to balance PDCCH load over subframes, and compatibility with eICIC.
· Alternative 2 naturally has the same behavior as when EPDCCH is monitored. Using the largest EPDCCH set size to compute the subframe offset on a subframe-by-subframe basis or over all subframes tends to be less resource efficient than allowing the network to control which EPDCCH set size is used to compute the offset through the use of a fixed EPDCCH set index.

· Alternative 2 allows consistent operation between when EPDCCH is monitored and when it isn’t, and thus is a little simpler than excluding subframes that are not monitored.
Given that the scenarios in which alternative 1 can have significantly improved resource efficiency may be limited and that alternative 2 can be reasonably resource efficient and is a bit simpler than alternative 1, we tend to prefer it.
3. Conclusions
We have considered some of the remaining issues needed to finalize PUCCH resource allocation for TDD, leading to the following conclusions and proposals:

· The definition of values for ARO for TDD
While there could be some potential benefit to large ARO values, considering that evaluations of large ARO values are not available to our knowledge and that blocking may diminish their gains when PUCCH resource for different EPDCCH sets is overlapped, we are not sure of the gain from large ARO values. Therefore, we somewhat prefer that -1 and -2 are used in ARO values for both TDD and FDD.
· Usage of ARO when DAI > 1 and the UE is configured with format 3
While there is potential benefit from using PC bits in DAI>1, since no evaluations of power control for format 3 under relevant scenarios have been discussed, it is not yet clear to us that there is a strong need to deviate from Rel-10 behavior for ARI. On the other hand, we do not expect there are link performance benefits from setting the ARO bits to zero when DAI>1. Therefore, we somewhat prefer either to 1) use ARO bits in EPDCCH with DAI > 1 as Rel-10 ARI bits or 2) leave the ARO bits undefined for DAI > 1, and to use Rel-10 mechanisms to determine PUCCH resource in these subframes. In case 2), more optimized uses for these bits could be introduced in a later release (if needed).
· Determining PUCCH resource subframe offset

While the discussion [2] originally considered resource allocation when the UE is configured not to monitor EPDCCH, this can be seen as a broader problem of how to calculate the offset between PUCCH resources corresponding to different DL subframes in the UE’s bundling window. We therefore considered how to calculate the subframe offset both when EPDCCH is monitored and when it is not.
Since methods that allow the PUCCH resource corresponding to a subframe in the subframe offset to vary on a subframe by subframe basis can increase efficiency with little impact on the calculation’s complexity, we tend to prefer those over using one time invariant value for each subframe’s resource in the offset. The subframe offset can be determined based on the maximum EPDCCH set size or by using a fixed EPDCCH set (e.g. the first EPDCCH set). Since using the first EPDCCH set to determine the subframe offset allows the network to select if the larger or smaller EPDCCH set size is used, the network can better control the resource allocated for EPDCCH using the first EPDCCH set.
When EPDCCH is not monitored, it is possible to either exclude the set size for that subframe from the subframe offset calculation, or to use the same method as for when EPDCCH is present. Excluding subframes could reduce PUCCH resource overhead, but this behaviour limits the ability to load balance PDCCH and to exploit eICIC. Given the limitations on the benefit of excluding subframes from the subframe offset calculation, since sufficient efficiency appears possible, it seems reasonable to use one calculation for when EPDCCH is and is not monitored.

Since using the first EPDCCH set allows for reasonable efficiency and can be used both when EPDCCH is and is not monitored, we propose that the PUCCH resource subframe offset be calculated using
[image: image24.wmf](

)

å

-

=

-

=

1

0

,

,

0

m

i

j

k

n

eCCE

T

i

N

n

N

 for all monitored subframes, where j0 is the smallest index of the EPDCCH sets, and where the PUCCH resource allocation is assumed to have the form:

[image: image25.wmf](

)

(

)

(

)

)

1

(

,

,

,

0

)

1

(

,

'

,

,

j

PUCCH

j

m

eCCE

i

ARO

T

l

PUCCH

N

n

n

f

k

n

j

n

N

n

+

+

-

D

+

=

4. References
[1] Nokia Siemens Networks, R1-125382, “Outcome of the Ad-Hoc session on PUCCH resource allocation for TDD”, 3GPP TSG RAN WG1#71, New Orleans, US, November 12-16, 2012

[2] RAN1 email discussion, “[71-10] FFS aspects of PUCCH resource allocation for TDD”, concluded November 28, 2012
[3] Panasonic, R1-124788, “Discussion on PUCCH resource allocation for EPDCCH for TDD”, 3GPP TSG RAN WG1#71, New Orleans, US, November 12-16, 2012

1

_1416755562.unknown

_1418367544.unknown

_1419849103.unknown

_1419849366.unknown

_1420043689.unknown

_1418367649.unknown

_1419772608.unknown

_1418367583.unknown

_1417248789.unknown

_1417250272.unknown

_1416994033.unknown

_1417012798.unknown

_1417010010.unknown

_1416925939.unknown

_1414417626.unknown

_1416748740.unknown

_1416725289.unknown

_1319138488.unknown

_1319137712.unknown

