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Introduction
The Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface NR positioning evolution was agreed upon during the RAN#94-e [1] meeting, where one of the objectives included the discussion on potential specification impacts encompassing the positioning use case. The following highlighted SID objectives were outlined to support the discussion:
	2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced



This contribution provides a discussion on the use cases to consider and potential impacts to the specification in relation to application of AI/ML techniques to enhance positioning performance. 
Framework for RAN and Air-Interface Intelligence

[bookmark: _Ref93412014]Figure 1: Overview of AI/ML Functional Blocks
The general AI/ML model and relationship between different entities has already been studied and captured from RAN3 perspective [2], comprising of the key components of the AI/ML model lifecycle including data collection, model training and model inference. As detailed in our companion contribution in [3], Figure 1 illustrates the various AI/ML sub-components in relation to the air interface with some adaptations towards positioning. As with the other cases, the positioning framework is foreseen to have impacts to the AI/ML procedures among the different components, e.g., data set construction, data processing, model management and model inference.
Network-UE collaboration levels
The positioning framework essentially involves three key entities to support the features and functionality of both RAT-dependent and RAT-independent positioning methods, i.e., the LMF (location server), base station (gNB) and UE. Due to the different type of learning approaches, e.g., centralized learning or federated learning, it is recommended that the network-UE collaboration levels be broadly defined. Table 1 describes the different Network-UE collaboration levels in the context of positioning (for a further detailed description on the categories, please refer to our companion contribution in [3]). The collaboration level classification may be broadly divided into four categories and is shown in Table 1.

[bookmark: _Ref101363379]Table 1: AI/ML Network-UE collaboration levels for Positioning
	Category
	Collaboration for the model management
	Collaboration for the model inference
	Description

	Cat.1
	×
	×
	A single node is responsible the AI/ML internal management of the positioning configurations/measurements e.g., LMF or UE. Therefore, no specification impact is expected

	Cat.1a
	×
	×
	A single node is responsible for the training and inference of the different positioning AI/ML models, however signalling is needed across nodes (e.g., between UE and LMF or gNB and LMF) to communicate non-AI parameters.

	Cat.2
	
	×
	Signalling across nodes to exchange positioning AI/ML model management related parameters, e.g., model training, model deployment, etc. as outlined in Figure 1.

	Cat.3
	
	
	Signalling across nodes to exchange positioning AI/ML model management related parameters, as well as AI-based inference of the UE’s estimated position, e.g., improved positioning estimate based on predictive models of UE’s position and radio propagation environment



Defining the different collaboration levels can broadly assist in determining the associated specification impact at each of the nodes involved in the positioning procedures. 
 
Observation 1: Network-UE collaboration levels for positioning may assist in assessing any potential specification impact.

Proposal 1: Study various positioning AI/ML management and models based on network-UE collaboration levels.
Identification of Positioning Sub-use cases
The positioning framework can be broadly split into three categories: 
1) RAT-dependent Positioning: UE’s position is calculated using network-based reference signal transmissions and measurements for UL, DL and both UL+DL.
2) RAT-independent Positioning: UE’s position is calculated using non-3GPP measurements based on other technologies such as GNSS, WLAN, Bluetooth and IMU sensors.
3) Hybrid Positioning: Makes use of both RAT-dependent and RAT-independent positioning to calculate UE’s position.
AI/ML has the potential to improve positioning performance across all three types of positioning categories. This includes the cases where the position is computed locally in the UE (device) or centrally in the LMF. Accordingly, AI/ML techniques can potentially impact different positioning procedures depending on e.g., type of learning approach, the deployment location of the training and/or inference model.
Figure 2 is a simplified and generalised overview of the key procedures involved when performing DL-based positioning. 

[bookmark: _Ref101361065]Figure 2: Simplified overview of the DL-based positioning procedures
· Steps 1) and 2): The LMF aligns with the serving and neighbouring gNBs on the available DL-PRS configurations via request and response signalling using a specialized NRPPa protocol between gNBs and LMF. 
· Step 3): The LMF provides a consolidated DL-PRS configuration to the Target-UE via assistance data signalling using the higher layer (NAS) LPP protocol. A common DL-PRS configuration for multiple UEs may be provide (via broadcast) in addition to the UE-specific DL-PRS configuration based on the configured positioning technique (via LPP). Note that in case of the UE-based positioning the UE may separately request for assistance data.
· Step 4): The LMF may trigger the Target-UE to perform and report RAT-dependent measurements in the case of UE-assisted methods, while for UE-based positioning, the LMF may optionally request the final computed location estimate from the Target-UE. Note that RAT-independent measurement such as GNSS, etc. may also be reported to the LMF.
· Step 5): The Target-UE may report the available measurements to the LMF for UE-assisted methods, while for UE-based methods the Target-UE may report the final location estimate.
· Step 6): In the case of UE-assisted methods, the LMF processes the measurements and computes the location estimate, while for UE-based methods, this process is performed at the UE-side. Current implementations may make use of Cat 1. AI/ML network-UE collaboration level as defined in Table 1, since both the positioning AI/ML training and inference models may be independently deployed at either the LMF (UE-assisted) or UE (UE-based), which has no specification impact.
Observation 2: Current positioning deployments may already have the flexibility to make use of Cat. 1 AI/ML Network-UE collaboration level.
Similarly, the model in Figure 2, may also be extended to UL-based positioning methods where key differences include the configuration (from gNB) and activation/deactivation of the SRS (from LMF) for positioning as well as the UL measurements being reported from the gNB to the LMF.
It is also worthy to note that the use cases and positioning procedures have thus far catered to absolute positioning requirements, while in a parallel Rel-18 agenda item on SL positioning, support for relative positioning requirements are yet to be discussed. It is therefore recommended that AI/ML study focus on the absolute positioning requirements already supported in Rel-16 and Rel-17. Further AI/ML enhancements may be considered for relative positioning requirements once SL positioning work has been completed.
Proposal 2: RAN1 to prioritize the AI/ML-based study support for absolute positioning use cases and requirements.
The following sub-sections identify the potential positioning sub-use cases for consideration in the context of relevant AI/ML impacts.
NLOS and Multipath 
It has been well-established that NLOS and multipath effects have detrimental positioning performance arising from ambiguous path and time-of-arrival (ToA) measurements. In Rel-17, multi-path (additional path) report enhancements and LOS/NLOS indication were introduced in order to address the issues prevalent in Indoor factory scenarios. Enhancements included:
· The maximum number of additional paths that can be reported is increased (up to 8) with per path RSRP measurements and associated relative timing supported. 
· Multiple UL-AOAs (up to 8) per additional path reporting is supported for the UL-TDOA and Multi-RTT positioning methods. 
· The LOS/NLOS indicator was introduced that can be associated with specific measurements, DL/UL reference signals / resources for positioning. 
However, despite these reporting enhancements, a few open issues remain which may be fall under the scope of AI/ML methods including: 1) Selection criteria of the ‘best’ additional paths to be reported out of the total number of received paths, 2) NLOS Classification algorithms used at either the gNB (for UL-based measurements) or UE-side (DL-based measurements) and quality/accuracy of such classification algorithms. 
[bookmark: _Hlk101547603]Observation 3: Rel-17 focused on reporting enhancements for NLOS and multipath effects.
Figure 3  shows an example of the impact of NLOS on the current DL-AoD technique leading to various issues at different components of the overall procedure. As mentioned earlier, LOS/NLOS classification accuracy of the DL-PRS RSRP measurements may lead to inaccurate data set construction for all positioning techniques including DL-AoD. The inaccurate data construction may also then lead to incorrect mapping of the beam antenna information to DL-PRS RSRP leading to the selection of an incorrect AoD. Alternatively, the inaccurate data construction may lead to further accuracies of a trained model at the LMF. 

[bookmark: _Ref101370934]Figure 3: Example of NLOS impact on the DL-AoD procedure
Proposal 3: RAN1 to further study the impact of AI/ML on the NLOS/multipath sub-use case for timing-based and angular-based positioning techniques.
DL-PRS Resource Efficiency
Another sub use case which may be considered for the study is the use of AI/ML methods to improve the PRS resource efficiency of localizing a large set of UEs in a given area. In other words, the LMF and gNB may efficiently coordinate and manage the scheduling and allocation of PRS resources based on the number of UEs. In Rel-17, a feature known as LMF-initiated on-demand PRS was supported in order to enable the LMF to request the gNB to turn on/off certain beams carrying DL-PRS transmissions. This assisted in enhancing resource efficiency by switching off PRS transmissions in beams, which were considered not useful/beneficial for performing measurements and subsequent location estimation. However, the on-demand procedure is usually an update of a prior PRS configuration, in which the DL-PRS is beam swept across all beams without prior knowledge of UE’s location.
The use of AI/ML methods offer the opportunity to better optimize the air-interface transmission of DL-PRS by “learning” the position and mobility behaviour of the UE. This may involve a certain level of prediction of the UE’s location in order to optimize DL-PRS transmission. This can also vary depending on whether UE’s movement is deterministic or not.
Proposal 4: RAN1 to further study the benefits of improving DL-PRS resource efficiency using AI/ML techniques.
Fingerprinting
RF Fingerprinting is a well-known positioning technique, which leverages RSS measurements collected offline which are then mapped to ground truth locations. Any subsequent measurements received by the UE during the online phase are then mapped to these ground truth locations, in order to determine a UE’s location. The accuracy of this technique is coarse and can at best indicate the rough position/geographic location of the UE. The accuracy also depends on the granularity of the ground truth locations. In the context of 3GPP positioning, fingerprinting techniques have already been employed in some form, e.g., in the case of DL-AoD (used to map gNB antenna information to DL-PRS based beam-specific RSRP measurements in order to determine the AoD, or in the case of E-CID where RRM measurements are used to map the UE’s location on cell level (based on the cell ID).
The ground truth location granularity may increase the amount of measurement data to be collected, which may prove to be advantageous for certain AI/ML models. The study should also aim to focus on the following scenarios:
· Online training of the data since it is not foreseeable that offline training is feasible or practical in dynamic and large environments, e.g., urban outdoor scenarios. The analysis in this scenario should consider that the environment variables are not constant (which constitutes the majority of practical use cases).
· Offline training of the data in small and relatively predictable environments, such as indoor office or indoor factory settings 

Proposal 5: Study the use of AI/ML techniques to enhance positioning methods employing fingerprinting.
Potential Specification Impacts
Data Set Construction
The training and inference models are largely influenced by the scale of data as well as the type and quality/accuracy of data used to train it. In the context of positioning, the source of data may primarily include positioning measurement data. If the training and inference is performed at the LMF, then the gNB and UE positioning measurements are key to the data set construction. If the training and inference are performed on the gNB and UE side, then data set is constructed based on locally collected measurements. Such positioning measurements may be provided on a semi-offline basis based on a historic time period (e.g., in the order of past hours, days, etc.) or when performing online training. 
Furthermore, the use of unsupervised or supervised learning models at each node also depends on whether the data set is composed of raw measurements or associated labels. For example, in the case of the labelled data, further discussion may be required on a common framework to structure such labels. In addition, associated mechanisms to enable exchange of assistance information to assist with optimal data set construction depending on the type of learning model deployed at each entity may be needed.
Proposal 6: Study the use of assistance information signalling related to positioning data set construction to enhance the accuracy of the training and inference models at each node.
Measurement Configuration and Reporting
The measurement configuration and reporting framework can be further enhanced to optimize the various AI/ML models deployed at each node. For example, the LMF may request a set of measurements based on a set of measurement criteria, that are to be optimized for a particular AI/ML model, e.g., explicit request of certain features based on the type of positioning technique, request raw or specific labels. This effectively improves the way measurement data is collected, especially for the AI/ML-based positioning.
Signalling of AI/ML Model Management and Inference Model parameters
As mentioned in Table 1, Cat 2 and 3 collaboration levels involve the exchange of AI/ML model management and inference parameters among different nodes. In the context of enhancing AI/ML-based positioning, three impacts are foreseen depending on the location of the deployed training and inference model:
· Signalling exchange between LMF and UE, with impacts to LPP
· Signalling exchange between LMF and gNB, with impacts to NRPPa
· Signalling exchange between gNB and UE, with impacts to lower layer signalling, e.g., RRC, MAC CE, etc.

LPP and RRC signalling impacts would fall under the scope of RAN2, while RAN3 would discuss the normative impacts related to NRPPa. Note that this does not preclude any RRC/LPP/NRPPa-related enhancements being in discussed in RAN1 since coordination with RAN2 and RAN3 is needed for the positioning use case. It is also envisioned that signalling support for triggering and actual deployment of particular AI/ML model at the target node would be necessary in order to align with the learning approach, e.g., centralised, distributed or federated learning. This is also related to type positioning model employed, e.g., UE-assisted or UE-based positioning.

Furthermore, support for AI/ML model maintenance is required via feedback and update procedures. Since the radio propagation channel environment and UE movements are dynamic, it is important to ensure the validity of the data set with respect to the trained model. This is to avoid invalidity of the data set based on updated conditions of the environment and UE. Regular AI/ML model monitoring and update procedures therefore need to be supported.

Proposal 7: RAN2/RAN3 to further study signalling exchange support for AI/ML positioning model management and inference model parameters. This does not preclude the study of the impacts of AI/ML model management and inference parameters in RAN1.
Capability Support
Due to the varying computing and processing capabilities of different gNB and LMF deployments as well as UE-types, the types of AI/ML models used are expected to vary. Further discussion is necessary on which nodes participating in a positioning session are expected to be aware of 1) General AI/ML capabilities of other nodes 2) Type of AI/ML capabilities. Such information may not explicitly impact the behaviour and functionality of the implemented AI/ML models but may rather serve to increase the network awareness on nodes utilising AI/ML. This may also align well with the Cat 1a collaboration level defined in Table 1. Furthermore, not all UEs may have the expected computing capabilities to support AI/ML-based positioning and therefore affect the configuration AI/ML-based and non-AI/ML-based positioning procedures.
Proposal 8: Study positioning capability support of AI/ML-based positioning depending on the network-UE collaboration levels.
Conclusion
The following observations are summarized as follows:
Observation 1: Network-UE collaboration levels for positioning may assist in assessing any potential specification impact.
Observation 2: Current positioning deployments may already have the flexibility to make use of Cat. 1 AI/ML Network-UE collaboration level.
Observation 3: Rel-17 focused on reporting enhancements for NLOS and multipath effects.
The proposals in this contribution are summarized as follows:
Proposal 1: Study various positioning AI/ML management and models based on network-UE collaboration levels.
Proposal 2: RAN1 to prioritize the AI/ML-based study support for absolute positioning use cases and requirements.

Proposal 3: RAN1 to further study the impact of AI/ML on the NLOS/multipath sub-use case for timing-based and angular-based positioning techniques.

Proposal 4: RAN1 to further study the benefits of improving DL-PRS resource efficiency using AI/ML techniques.

Proposal 5: Study the use of AI/ML techniques to enhance positioning methods employing fingerprinting.

Proposal 6: Study the use of assistance information signalling related to positioning data set construction to enhance the accuracy of the training and inference models at each node.

Proposal 7: RAN2/RAN3 to further study signalling exchange support for AI/ML positioning model management and inference model parameters. This does not preclude the study of the impacts of AI/ML model management and inference parameters in RAN1.

Proposal 8: Study positioning capability support of AI/ML-based positioning depending on the network-UE collaboration levels.
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