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1 Introduction
In RAN#94-e, Rel-18 new study item on “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” is endorsed. The objective of the study item is as follows.
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment, model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
· Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference), and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.


In this contribution, we will provide our view on AI/ML for beam management, including the discussion on the representative sub use cases for beam management and the corresponding specification impact.
2 General discussion
In NR, FR2 beam management is challenging. In order to identify the optimal beam pair between a gNB and a UE, a large number of beam measurements and reports are required. This results in significant overhead and latency. The situation is even worse when UE mobility is considered. In a high-speed scenario, due to the latency of beam management procedure, it is almost impossible to maintain a desired narrow beam pair between a gNB and a UE.
In order to address the latency and overhead issue above, AI/ML-based solution has drawn a great deal of interest. Excellent in prediction and compression, AI/ML is expected to be a promising tool for beam prediction and beam measurement feedback compression. In the following, several AI/ML representative sub use cases for beam prediction and beam measurement feedback compression are discussed.
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3 Representative sub use cases for beam prediction in spatial domain
As mentioned in SID [1], the representative sub use cases for beam prediction includes the beam prediction in spatial domain and beam prediction in time domain. In this section, the representative sub use cases for beam prediction in spatial domain is discussed.
In general, one of our basic assumptions for beam prediction in spatial domain is that prediction (AI model inference) is performed either at UE-side or at gNB-side (corresponding to collaboration level B).
3.1 Prediction performed at gNB-side
In the following, the sub use cases of gNB-side prediction are discussed.
Case-1a
This is the case for DL beam prediction. The procedure of this case is as follows: 
· Step#1. gNB transmits RSs on a subset beam that corresponds to a full beam set. 
· For example, a gNB intends to transmit 64 beams for different directions. Conventional method is to transmit 64 corresponding SSBs/TRSs for those 64 beams for the purpose of beam sweeping. However, for this case, the gNB only transmits SSBs/TRSs on a subset of those beams (e.g., 16 SSBs/TRSs for 16 beams).
· Step#2. UE measures the RSs and provides corresponding L1-RSRP report.
· UE measures the 16 SSBs/TRSs, and provides to the gNB four RSs indexes with the highest L1-RSRP.
· Step#3. gNB predicts the best beams within the full beam set on the basis of the L1-RSRP report.
· For the final step, gNB collects the four RS indexes provided by UE and use them as the input of an AI model. Correspondingly, the L1-RSRP of the 64 beams can be provided by the AI model as output. With those predicted L1-RSRP results of the full beam set, gNB can choose the ones that correspond to the highest L1-RSRP as the predicted best beams.
One benefit of this case is overhead reduction. As mentioned above, gNB can transmit less RSs in comparison with legacy. Also, from the perspective of UE, less RSs are required to be measured. Another benefit of this case is latency reduction, especially the time period for gNB Tx beam sweeping can be reduced since only a subset of beams are needed for beam sweeping.
For this case, there are potentially two specification impacts. One potential specification impact is the enhancement to the existing beam measurement/reporting mechanism to assist gNB prediction. This is because the existing beam reporting mechanism is targeting for beam selection but may not be accurate enough for beam predicting. For example, the quantization step size of L1-RSRP may not be adequate for proper beam prediction at gNB-side. The other potential specification impact is from the perspective of UE-side. For example, a gNB may provide assistance information for a UE to identify the predicted gNB Tx beam (for the better refinement of UE Rx beam).

Case-1b
This case is similar to Case-1a but is for UL beam prediction. The procedure of this case is as follows: 
· Step#1. UE transmits SRSs on a subset beam that corresponds to a full beam set. 
· For example, a UE intends to transmit 8 beams for different directions. Conventional method is to transmit 8 corresponding SRSs for those 8 beams for the purpose of UE beam sweeping. However, for this case, the UE only transmits SRSs on a subset of those beams (e.g., 4 SRSs for 4 beams).
· Step#2. gNB measures the L1-RSRP of the SRSs.
· For this step, the gNB measures the 4 SRSs in terms of L1-RSRP.
· Step#3. gNB predicts the best beams within the full beam set.
· For the final step, the gNB collects the SRS indexes and the corresponding measurement result of those four RS and use them as the input of an AI model. Correspondingly, the L1-RSRP of the 8 beams can be provided by the AI model as output. With those predicted RSRP results of full beam set, gNB choose the ones that correspond to the highest L1-RSRP as the predict best beams for UE.
One benefit of this case is overhead reduction. Similar as Case-1a, a UE can transmit less RSs in comparison with the legacy. Also, from the perspective of a gNB, less RSs are required to be measured. Another benefit of this case is latency reduction, especially the time period for UE Tx beam sweeping can be reduced since only a subset of beams are needed for beam sweeping.
For this case, one potential specification impact is that a UE is required to provide additional information to assist gNB prediction. For example, the gNB does not aware of the full Tx beam set from UE. Hence, at least the corresponding information (e.g., the spatial information of UE Tx beam) is needed for gNB to perform the beam prediction. 
3.2 Prediction performed at UE-side
In the following, the sub use cases of UE-side prediction are discussed.
Case-2a
This is the case for DL beam prediction. The procedure of this case is as follows:
· Step#1. gNB transmits RSs on a subset beam that corresponds to a full beam set. 
· For example, a gNB intends to transmit 64 beams for different directions. Conventional method is to transmit 64 corresponding SSBs/TRSs for those 64 beams for the purpose of beam sweeping. However, for this case, the gNB only transmits SSBs/TRSs on a subset of those beams (e.g., 16 SSBs/TRSs for 16 beams).
· Step#2. UE measures the RSs.
· For this step, UE measures the L1-RSRP of the 16 SSBs/TRSs accordingly.
· Step#3. UE reports the best predicted beams within the full beam set.
· For the final step, the UE collects the SSB/TRS indexes and the corresponding L1-RSRP and use them as the input of AI model. Correspondingly, the L1-RSRP of all 64 beams can be provided by the AI model as output. With those predicted L1-RSRP results of full beam set, the UE can choose the best four RS indexes that corresponds to the highest L1-RSRP and report those indexes and the corresponding L1-RSRP to gNB.
The benefit of this case is similar to Case-1a. Apart from that, since both RS measurement and beam prediction are at UE-side, there is no quantization penalty in terms of RS measurement result. However, in comparison with Case-1a, this case requires AI model inference at UE-side. This may increase the UE complexity.
For this case, one potential specification impact is that the gNB needs to provide additional information to assist UE prediction. For example, the UE does not aware of the full Tx beam set from gNB. Hence, at least the corresponding information (e.g., the spatial information of gNB Tx beam) is needed for the UE to perform the beam prediction.

Case-2b
This is the case for DL beam prediction. The procedure of this case is as follows:
· Step#1. gNB transmits SSBs or CSI-RSs with repetition on.
· For example, a UE consists of a full Rx beam set with 8 beams. Conventional method is to transmit 8 SSBs or CSI-RSs with repetition on for UE beam sweeping. However, for this case, the gNB transmits less than 8 SSBs or CSI-RSs (e.g., 4 SSBs or CSI-RSs with repetition on).
· Step#2. UE performs RX beam prediction within the full UE Rx beam set.
· For this step, UE measures the 4 SSBs or CSI-RSs with repetition on and perform Rx beam prediction for the purpose of Rx beam determination/refinement. Here, the measurement result of the SSBs or CSI-RSs can be used as the input for an AI model and the predicted L1-RSRP for the full Rx beam set can be regarded as output. By using this method, the best Rx beam within the full UE Rx beam set can be determined.   
· [Step#3. UE perform UL transmission using the same beam as the predicted Rx beam]
· For this step, gNB can further perform UL transmission using the predicted Rx beam.
One benefit of this case is overhead reduction. As mentioned above, the gNB can transmit less RSs in comparison with legacy. Also, from the perspective of UE, less RSs are required to be measured. Another benefit of this case is latency reduction, especially the time period for UE Rx beam determination or refinement can be reduced.
For this case, one potential specification impact is UE capability, where an advanced UE capability for Rx beam sweeping may be needed. Another potential specification impact is that UE may provide additional information to assist gNB for the reception of the UL transmission.
Proposal 1: Study the sub use cases for beam prediction in spatial domain.
· Consider gNB-side beam prediction as a sub use case, and 
· Consider UE-side beam prediction as a sub use case.
4 Representative sub use cases for beam prediction in time domain
Similarly, one of our basic assumptions for beam prediction in time domain is that prediction (AI model inference) is performed either at UE-side or at gNB-side (corresponding to collaboration level B).
4.1 Prediction performed at gNB-side
In the following, the sub use case of gNB-side prediction is discussed.
Case-3
This is the case for DL beam prediction. The procedure of this case is as follows:
· Step#1. gNB periodically transmits an RS.
· For example, a gNB periodically transmits an SSB/CSI-RS.
· Step#2. UE measures the RS and provides corresponding L1-RSRP report for each measurement time instance for the RS.
· For this step, UE measures the SSB/CSI-RS and provides corresponding RSRP report for each time instance of the measurement of the SSB/CSI-RS (e.g., timeRestrictionForChannelMeasurements = ‘configured’).
· Step#3. gNB predicts future L1-RSRP of the RS for the UE according to the historical L1-RSRP reporting.
· For the final step, the gNB collects the L1-RSRP reports from the UE and use them as the input of AI model. Accordingly, the L1-RSRP for the RS in a future time instance can be provided by the AI model as output.
This case is beneficial to the link adaptation of gNB. For example, with the knowledge of the future L1-RSRP, gNB can perform beam switch or MCS adjustment in advance to avoid potential link failure or retransmission. Another benefit of this case is latency reduction, especially the time period for gNB Tx beam sweeping and/or indication/activation of the future beam can be reduced from the beam switch in advance.
One potential specification impact is the enhancement to the existing beam measurement/reporting mechanism to assist gNB prediction. This is because the existing beam reporting mechanism may not be accurate enough for gNB-side beam prediction. For example, the quantization step size of L1-RSRP report can be improved similar as mentioned in Case-1a. For another example, the reporting of positioning information also can be considered, which could be very useful for gNB prediction. Another potential specification impact is the enhancement to the existing TCI indication/activation to reduce the time period for future TX beam sweeping. For example, gNB can indicate/activate the future TCI of the CSI-RS or the RS for receiving the scheduled PDSCH from pre-configured future TCIs that are output form the AI model.
4.2 Prediction performed at UE-side
In the following, the sub use case of UE-side prediction is discussed.
Case-4
This is the case for DL beam prediction. The procedure of this case is as follows:
· Step#1. gNB periodically transmits an RS.
· For example, a gNB periodically transmits an SSB/CSI-RS.
· Step#2. UE measures the RS and provides the predicted/future L1-RSRP of the RS.
· For this step, the UE collects the historical L1-RSRP measurement results and use them as the input of AI model. Accordingly, the L1-RSRP for the RS in a future time instance can be provided by the AI model as output.
The benefit of this case is similar to Case-3. Apart from that, since both RS measurement and beam prediction are at UE-side, there is no quantization penalty in terms of RS measurement result. However, in comparison with Case-3, this case requires AI model inference at UE-side. This may increase the UE complexity.
For this case, one potential specification impact is the definition of future L1-RSRP for a RS measurement. Another potential specification impact is the UE-side case/events that can leverage the predicted/future L1-RSRP.
Proposal 2: Study the sub use cases for beam prediction in time domain.
· Consider gNB-side beam prediction as a sub use case, and 
· Consider UE-side beam prediction as a sub use case.
Apart from spatial domain only beam prediction and time domain only beam prediction, the combination of spatial domain beam prediction and time domain beam predication should be considered as well.
Proposal 3: Study the combination of spatial domain beam predication and time domain beam predication.
5 Representative sub use cases for beam measurement feedback compression
The basic assumption for beam measurement feedback compression is that AI model inference is performed at both UE-side and gNB-side (i.e., may involve specification impacts pertaining to collaboration level D).
Case-5
This is the sub-case for L1-RSRP report compression. The procedure of this case is as follows:
· Step#1. gNB transmits RSs. (e.g., SSB/CSI-RS)
· Step#2. UE measures the RSs on the corresponding beams and prepares the measurement vector.
· For this step, the UE prepares the measurement vector that corresponds to the measurement results from the RSs. For example, the measurement vector is generated after some pre-process (e.g., dimensionality reduction) of the measurement results.
· Step#3. UE compresses the measurement vector and provides corresponding compressed measurement vector report to the gNB.
· For this step, the measurement vector is put into an AI-based encoder (for compression) and generates the corresponding compressed measurement vector.
· Step#4. gNB decompresses the received measurement reconstruct the measurement vector.
· For the final step, the gNB obtain and decompress the vector provided by the UE (using AI-based decoder).
The benefit of this case is overhead reduction for beam measurement feedback. For example, if the beam measurement feedback for 16 RSs is required, the payload of the feedback includes 16 set of {RS index, RSRP}. By exploiting the sparsity of the payload, a compressed measurement vector can be generated accordingly, which can reduce the overhead of the payload.
For this case, the potential specification impact is the design for the AI-based encoder and the corresponding decoder for the compression of the beam measurement feedback. Also, the exchange of AI-based encoder/decoder between the gNB and the UE has specification impact.
Proposal 4: Study beam measurement feedback compression as a candidate sub use case.
6 Conclusion
The observations and proposals made in this contribution are summarized below.
Proposal 1: Study the sub use cases for beam prediction in spatial domain.
· Consider gNB-side beam prediction as a sub use case, and 
· Consider UE-side beam prediction as a sub use case.
Proposal 2: Study the sub use cases for beam prediction in time domain.
· Consider gNB-side beam prediction as a sub use case, and 
· Consider UE-side beam prediction as a sub use case.
Proposal 3: Study the combination of spatial domain beam predication and time domain beam predication.
Proposal 4: Study beam measurement feedback compression as a candidate sub use case.
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