Kyongju, Korea
October 3-4, 1999

Agenda Item:	4.2 AH14
Source:	Golden Bridge Technology
Title:	Proposed CPCH-related insertions to 25.212
Document for:	Discussion and Approval

4.2.3 Channel coding

Code blocks are delivered to the channel coding block. They are denoted by $o_{i r 1}, o_{i r 2}, o_{i r 3}, \ldots, o_{i r K_{i}}$, where i is the TrCH number, r is the code block number, and K_{i} is the number of bits in each code block. The number of code blocks on $\operatorname{TrCH} i$ is denoted by C_{i}. After encoding the bits are denoted by
$x_{i r 1}, x_{i r 2}, x_{i r 3}, \ldots, x_{i r X_{i}}$. The encoded blocks are serially multiplexed so that the block with lowest index r is output first from the channel coding block. The bits output are denoted by $c_{i 1}, c_{i 2}, c_{i 3}, \ldots, c_{i E_{i}}$, where i is the TrCH number and $E_{i}=C_{i} X_{i}$. The output bits are defined by the following relations:
$c_{i k}=x_{i 1 k}$
$k=1,2, \ldots, X_{i}$
$c_{i k}=x_{i, 2,\left(k-X_{i}\right)}$
$k=X_{i}+1, X_{i}+2, \ldots, 2 X_{i}$
$c_{i k}=x_{i, 3,\left(k-2 X_{i}\right)}$
$k=2 X_{i}+1,2 X_{i}+2, \ldots, 3 X_{i}$
...
$c_{i k}=x_{i, C_{i},\left(k-\left(C_{i}-1\right) X_{i}\right)} \quad k=\left(C_{i}-1\right) X_{i}+1,\left(C_{i}-1\right) X_{i}+2, \ldots, C_{i} X_{i}$
The relation between $O_{i r k}$ and $x_{i r k}$ and between K_{i} and X_{i} is dependent on the channel coding scheme.
The following channel coding schemes can be applied to TrCHs :

- Convolutional coding
- Turbo coding
- No channel coding

Table 1: Error Correction Coding Parameters

Transport channel type	Coding scheme	Coding rate
BCH	Convolutional code	$1 / 2$
PCH		
FACH		$\underline{1 / 3,1 / 2 \text { or no coding }}$
RACH		$1 / 3$ or no coding
CPCH	Turbo Code	
DCH		
CPCH		
DCH		

<Editor's note: Removal of 1/2 Turbo code rate is a working assumption.>

4.2.13.3 Common Packet Channel (CPCH)

- The maximum value of the number of $\mathrm{TrCHs} I$ in a CCTrCH , the maximum value of the number of transport blocks M_{i} on each transport channel, and the maximum value of the number of DPDCHs P are given from the UE capability class.
Note 1: The need to multiplex several CPCH transport channels is FFS (this note is taken from TS 25.302).
- Note 17: Only the data part of the CPCH can be mapped on multiple physical channels (this note is taken from TS 25.302).

