Agenda item:	Ad hoc 9	
Source:	Philips	
Title:	Algorithm 2 power control in soft handover	
Document for:	Discussion	

1 Introduction

Algorithm 2 power control enables the UE to use the minimum 1dB power control step size to emulate the effect of using a smaller step size. The UE accomplishes this by considering blocks of N consecutive TPC commands, and only implementing a power control step if all N commands are the same.

Simulation results demonstrating that Algorithm 2 can give significant benefits at high UE speeds and also some benefit at low speeds, have been presented in [1], [2] and [3]. For normal mode when not in soft handover, a value of N = 5 has been agreed [4].

For algorithm 2 in soft handover, some simulation results addressing the value of N were presented in [5], reaching the conclusion that N=3 is best in this case. In the present paper, we present further simulation results for soft handover, using the metrics of SIR variance and E_b/N_0 .

2 Description of Simulations

The basic simulation conditions were as follows:

2GHz carrier frequency 15 slots per frame Physical channel rate 30kbps UE in soft handover with 2 cells Pedestrian A channel in both cells AWGN interference Perfect Rake receivers tracking 2 paths in each of the two cells Ideal channel estimation Soft combining performed in UTRAN for the 2 cells SIR estimation error based on UL SIR, using 6 pilot bits 1 slot loop delay for inner loop power control Inner loop power control step size 1dB AWGN TPC error on DL in each cell: 4% in normal mode; 7% in recovery period No control channel overhead in Eb/No Approx. 4dB coding gain from $\frac{1}{3}$ -rate K=9 convolutional coder Target BER after decoding = 10^{-3} UE uses algorithm set out in [6] for combining TPC commands from different cells.

3 Simulation Results

The metrics used for comparison are:

- UL SIR variance (average of the 2 cells)
- UL received Eb/No (after soft combining in the UTRAN from the 2 cells)
- UL transmitted Eb/No

UE speed / km/h	Power control algorithm	Rx'ed Eb/No / dB	Tx'ed Eb/No / dB	Average SIR variance / dB^2
100	Algorithm 1	4.0	4.9	19.9
	Algorithm 2, N=3	3.9	4.7	19.2
300	Algorithm 1	4.1	4.8	19.7
	Algorithm 2, N=3	3.8	4.6	18.3

Figure 1: Comparison of power control algorithms in soft handover

4 Conclusions

The results shown in Figure 1 confirm that the use of Algorithm 2 power control with N=3 can be beneficial in the soft handover case, as well as in the normal (non-handover) case.

A text proposal is presented in [6].

5 References

- [1] TSGR1#5(99)553 "Implementation of small power control steps", Philips, June 1999
- [2] TSGR1#6(99)959 "Further Results on Emulation of Small Power Control Steps , Philips, July 1999
- [3] TSGR1#7(99)b41 "Algorithm 2 Power Control in Normal Mode", Philips, August 1999
- [4] TSGR1#7(99)e20 TS25.214 v1.2.2
- [5] TSGR1#7(99)c47 "Emulated small step size during soft handover", Nortel, August 1999
- [6] TSGR1#7(99)d65 "*Text proposal for power control in soft handover*", Philips, Nortel, September 1999