TSGR1#5(99)e65

TSG-RAN Working Group1 meeting #7bis Kyongju, Korea 4-5, October 1999

Source: Siemens

Title: Text Proposal: Update of TS 25.221

Document for: Approval

Introduction

In order to clean up specification for approval at the 3GPP TSG RAN meeting, we propose to apply three editorial corrections for specification document TS25.221-'Physical channels and mapping of transport channels onto physical channels (TDD)'. The first two changes are according to agreed text proposals, but replacement of figures in the specification became erroneous. Third change is updating references.

- 1) Figure 15 ('Scheme for Physical Synchronisation channel PSCH') in section 5.4 still contains the old figure in the first part. This should be removed.
- 2) Figure 18 ('Mapping of PDU onto the physical bearer') in section 6.1 should be replaced by the appropriate version from TDoc R1-99d02. This new figure is also in line with figure 6-6 in section 6.2.12 of TS25.222, which shows the grid for time alignment of transport channels.
- 3) The reference [2] to TS25.102 in section 2 and the reference [3] in section 5.3.2.1 were removed because they do not apply. References to 25.231 are replaced by TS25.215/TS25.225. Erroneous references were corrected.

These changes reflect mainly editorial corrections and were distributed on the WG1 mail reflector beforehand. According to the agreement from WG1 meeting #7 in Hanover no change regarding the technical content is proposed.

Text proposal

Please see attachment.

Conclusion

We propose to adopt the changes shown in the attached text proposal in order to further improve the basis for approval of specifications at 3GPP TSG RAN meeting.

Text proposal according to TDoc R1-99e65

 $\underline{\text{Text proposal for}}\ TS\ 25.221\ \text{V2.0.}\underline{\textbf{1009}})$

Technical Specification

3rd Generation Partnership Project (3GPP);
Technical Specification Group (TSG)
Radio Access Network (RAN);
Working Group 1 (WG1);
Physical channels and mapping of transport channels
onto physical channels (TDD)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Reference	
xxxx	
Kevwords	

3GPP	
Postal address	
Office address	
Internet	
http://www.3gpp.org	

Copyright Notification

Content

C(CONTENT	3
IN	NTELLECTUAL PROPERTY RIGHTS	4
	OREWORD	
1		
2		
3		
4		
•	4.1 Transport channels 4.1.1 Dedicated transport channels	
	4.1.2 Common transport channels	
5	•	
	5.1 Frame structure	
•	5.2.1 Spreading codes	
	5.2.2 Burst Types	
	5.2.3 Training sequences for spread bursts	
	5.3 COMMON CONTROL PHYSICAL CHANNELS (CCPCH)	
	5.3.1 Downlink common control physical channel	
	5.3.2 The physical random access channel (PRACH)	
	5.4 THE PHYSICAL SYNCHRONISATION CHANNEL (PSCH)	
	5.5 PHYSICAL UPLINK SHARED CHANNEL (PUSCH)	
	 5.6 PHYSICAL DOWNLINK SHARED CHANNEL (PDSCH) 5.7 THE PAGE INDICATOR CHANNEL (PICH) 	
	• • •	
6		
	6.1 DEDICATED TRANSPORT CHANNELS	
•	6.2 COMMON TRANSPORT CHANNELS	
	6.2.2 The Paging Channel (PCH)	
	6.2.3 The Forward Channel (FACH)	
	6.2.4 The Random Access Channel (RACH)	
	6.2.5 The Synchronisation Channel (SCH)	
	6.2.6 Common Transport Channels for ODMA networks	24
	6.2.7 The Uplink Shared Channel (USCH)	
	6.2.8 The Downlink Shared Channel (DSCH)	24
ΑN	NNEX A	25
	A.1 BASIC MIDAMBLE CODES FOR BURST TYPE 1 AND PRACH BURST TYPE	
	A.2 BASIC MIDAMBLE CODES FOR BURST TYPE 2	
Αľ	NNEX B (INFORMATIVE)	34
	CCPCH MULTIFRAME STRUCTURE	34

Intellectual Property Rights

<IPR notice shall be provided once correct notice is available within 3GPP>

Foreword

This Technical Specification has been produced by the 3GPP.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 Indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the specification;

1 Scope

This specification describes the characteristics of the physicals channels and the mapping of the transport channels to physical channels in the TDD mode of UTRA.

2 References

References may be made to:

- a) specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply;
- b) publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

[1] TS 25.201: "Physical layer - general description"

[2]TS 25.102: "UE physical layer capabilities"

[3][2] TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)"

[4][3] TS 25.212: "Multiplexing and channel coding (FDD)"

[5][4] TS 25.213: "Spreading and modulation (FDD)"

[6][5] TS 25.214: "Physical layer procedures (FDD)"

[6] TS 25.215: "Physical layer – Measurements (FDD)"

[7] TS 25.222: "Multiplexing and channel coding (TDD)"

[8] TS 25.223: "Spreading and modulation (TDD)"

[9] TS 25.224: "Physical layer procedures (TDD)"

[10]TS 25.225: "Physical layer - Measurements (TDD)"

[10]TS 25.231: "Measurements"

[11]TS 25.301: "Radio Interface Protocol Architecture"

[12]TS 25.302: "Services Provided by the Physical Layer"

[13]TS 25.401: "UTRAN Overall Description"

3 Definitions and abbreviations

BCH Broadcast Channel

CCPCH Common Control Physical Channel CCTrCH Coded Composite Transport Channel

CDMA Code Division Multiple Access

DPCH Dedicated Physical Channel DSCH Downlink Shared Channel

FACH Forward Access Channel FDD Frequency Division Duplex FEC Forward Error Correction

GP Guard Period

GSM Global System for Mobile Communication

NRT Non-Real Time

ODCH ODMA Dedicated Transport Channel
ODMA Opportunity Driven Multiple Access
ORACH ODMA Random Access Channel
OVSF Orthogonal Variable Spreading Factor

PCH Paging Channel

PDSCH Physical Downlink Shared Channel

PDU Protocol Data Unit

PRACH Physical Random Access Channel
PSCH Physical Synchronisation Channel
PUSCH Physical Uplink Shared Channel

RACH Random Access Channel

RLC Radio Link Control RF Radio Frame RT Real Time

SACCH Slow Associated Control Channel

SCH Synchronisation Channel

SDCCH Stand-alone Dedicated Control Channel

TCH Traffic Channel
TDD Time Division Duplex

TDMA Time Division Multiple Access

USCH Uplink Shared Channel

4 Transport channels

4.1 Transport channels

Transport channels are the services offered by layer 1 to the higher layers. A transport channel is defined by how and with what characteristics data is transferred over the air interface. A general classification of transport channels is into two groups:

- common channels (where there is a need for in-band identification of the UEs when particular UEs are addressed) and
- dedicated channels (where the UEs are identified by the physical channel)

General concepts about transport channels are described in 3GPP RAN TS25.302 (L2 specification).

1.1.14.1.1 Dedicated transport channels

The Dedicated Channel (DCH) is an up- or down-link transport channel that is used to carry user or control information between the UTRAN and a UE.

Two types of dedicated transport channels have been identified:

- 1. Dedicated Channel (DCH)
- 2. ODMA Dedicated Transport Channel (ODCH)

1.1.24.1.2 Common transport channels

Common transport channels are:

1. Broadcast Channel (BCH)

The Broadcast Channel (BCH) is a downlink transport channel that is used to broadcast system- and cell-specific information.

2. Paging Channel (PCH)

The Paging Channel (PCH) is a downlink transport channel that is used to carry control information to a mobile station when the system does not know the location cell of the mobile station.

3. Forward Access Channel(s) (FACH)

The Forward Access Channel (FACH) is a downlink transport channel that is used to carry control information to a mobile station when the system knows the location cell of the mobile station. The FACH may also carry short user packets.

4. Random Access Channel(s) (RACH)

The Random Access Channel (RACH) is an up link transport channel that is used to carry control information from mobile station. The RACH may also carry short user packets.

- 5. ODMA Random Access Channel (ORACH)
- 6. Synchronisation Channel (SCH)
- 7. Uplink Shared Channel (USCH)

The uplink shared channel (USCH) is a uplink transport channel shared by several UEs carrying dedicated control or traffic data.

7. Downlink Shared Channel (DSCH)

The downlink shared channel (DSCH) is a downlink transport channel shared by several UEs carrying dedicated control or traffic data.

5 Physical channels

All physical channels take three-layer structure of superframes, radio frames, and timeslots. Depending on the resource allocation, the configuration of radio frames or timeslots becomes different. All physical channels need guard symbols in every timeslot. The time slots are used in the sense of a TDMA component to separate different user signals in the time and the code domain. The physical channel signal format is presented in Figure 1.

A burst is the combination of a data part, a midamble and a guard period. The duration of a burst is one time slot. Several bursts can be transmitted at the same time from one transmitter. In this case, the data part must use different OVSF channelisation codes, but the same scrambling code. The midamble part has to use the same basic midamble code, but can use different midambles.

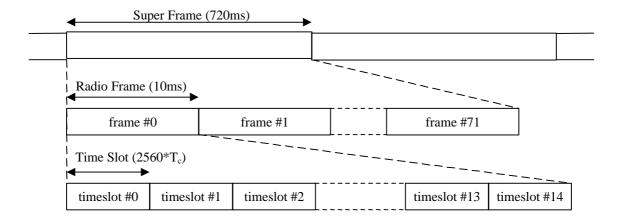


Figure 1 Physical channel signal format

A physical channel in TDD is a burst, which is repeated in the same timeslot with a certain repetition length of consecutive RF in and after each RF defined by a repetition period, starting at a certain frame number defined by the superframe offset in the multiframe, where the repetition period is a submultiple of 72, i.e. 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, or 72, and the superframe offset is in the interval 0...(repetition period-1). The repetition length of each repeated allocation can have the values 1, 2, 4 or 8 frames. It should be equal to the longest interleaving depth of all transport channels on this physical channel.

The data part of the burst is spread with a channelisation code. This channelisation code is a OVSF code, that can have a spreading factor of 1, 2, 4, 8, or 16. The data rate of the physical channel is depending on the used spreading factor of the used OVSF code.

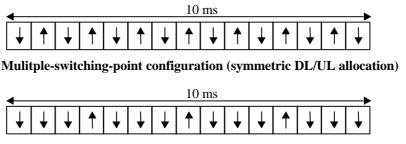
The midamble part of the burst can contain two different types of midambles: a short one of length 256 chips, or a long one of 512 chips. The data rate of the physical channel is depending on the used midamble length.

So a physical channel is defined by frequency, timeslot, channelisation code, burst type, repetition period, superframe offset and repetition length. The scrambling code and the basic midamble code are broadcasted and may be constant within a cell. When a physical channel is established, a start frame is given. The physical channels can either be of infinite duration, or a duration for the allocation can be defined.

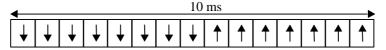
5.1 Frame structure

The TDMA frame has a duration of 10 ms and is subdivided into 15 time slots (TS) of 2560^*T_c duration each. A time slot corresponds to 2560 chips. The physical content of the time slots are the bursts of corresponding length as described in section 5.2.2.

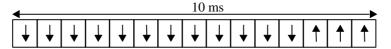
Each 10 ms frame consists of 15 time slots, each allocated to either the uplink or the downlink (Figure 2). With such a flexibility, the TDD mode can be adapted to different environments and deployment scenarios. In any configuration at least one time slot has to be allocated for the downlink and at least one time slot has to be allocated for the uplink.


Figure 2 The TDD frame structure

Examples for multiple and single switching point configurations as well as for symmetric and asymmetric


Page 9 of 36

Text proposal for TS25.221 V2.0.01


UL/DL allocations are given in Figure 3.

Multiple-switching-point configuration (asymmetric DL/UL allocation)

Single-switching-point configuration (symmetric DL/UL allocation)

Single-switching-point configuration (asymmetric DL/UL allocation)

Figure 3 TDD frame structure examples

When operating ODMA at least one common timeslot has to be allocated for the ORACH. If large quantities of information have to be transferred between ODMA nodes then it is normal to use at least one timeslot for the ODCH (Figure 4). As Figure 4 shows, any timeslot in the TDD frame may potentially be used by the ODCH.

A common timeslot indicates a carrier-timeslot combination which can be used for transmission and reception by a group of mobiles operating ODMA.

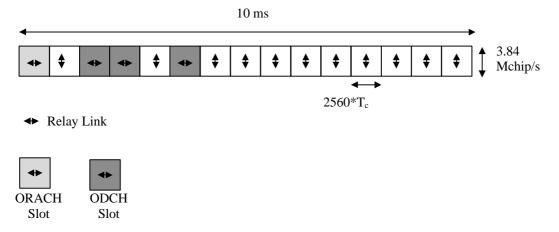


Figure 4 TDD frame structure example for ODMA operation.

5.2 Dedicated physical channel (DPCH)

The DCH or in case of ODMA networks the ODCH as described in section 4.1.1 are mapped onto the dedicated physical channel.

Page 10 of 36

Text proposal for TS25.221 V2.0.01

5.2.1 Spreading codes

Two options are being considered for the bursts that can be sent as described below. Both options allow a high degree of bit rate granularity and flexibility, thus allowing the implementation of the whole service range from low to high bit rates.

Spreading factor of and the number of codes for multicode transmission are assigned independently for uplink and downlink. The number of timeslots is also assigned independently for uplink and downlink.

1.1.1.1 Multicode transmission with fixed spreading

Within each time slot of length 2560^*T_c , an additional separation of user signals by spreading codes is used. This means, that within one time slot of length 2560^*T_c , more than one burst of corresponding length as described in section 5.2.2 can be transmitted. These multiple bursts within the same time slot can be allocated to different users as well as partly or all to a single user. For the multiple bursts within the same time slot, different spreading codes are used to allow the distinction of the multiple bursts.

5.2.1.2 Single code transmission with variable spreading

Within each time slot of 2560*T_c duration,

- a UE always uses single code transmission by adapting the spreading factor as a function of the data
 rate. This limits the peak-to-average ratio of the modulated signal and consequently the stress imposed to
 the power amplifier resulting in an improved terminal autonomy. Several mobiles can be received in the
 same time slot by the base station, they are separated by their codes and the individual decoding can
 take profit of the joint detection.
- a base station should broadcast a single burst per mobile again by adapting the spreading as a function of the data rate. High rate data transmissions requiring more than one timeslot per mobile can be supported by terminals having the processing power for joint detection on a single slot: the required throughput occupies in a general way an integer number of slots plus a fraction of an extra slot. Single burst transmission should occur in the integer number of slots, while the extra slot can be occupied by a burst for the considered mobile plus extra bursts for other mobiles, joint detection is only needed for this last time slot in the considered mobile.

5.2.2 Burst Types

As explained in the section 5.2.1, two options are being considered for the spreading. The bursts described in this section can be used for both options.

Two types of bursts for dedicated physical channels are defined: The burst type 1 and the burst type 2. Both consist of two data symbol fields, a midamble and a guard period. The bursts type 1 has a longer midamble of 512 chips than the burst type 2 with a midamble of 256 chips. Sample sets of midambles are given in section 7.2.3.1 and 7.2.3.2.

Because of the longer midamble, the burst type 1 is suited for the uplink, where up to 16 different channel impulse responses can be estimated. The burst type 2 can be used for the downlink and, if the bursts within a time slot are allocated to less than four users, also for the uplink.

Thus the burst type 1 can be used for

- uplink, independent of the number of active users in one time slot
- downlink, independent of the number of active users in one time slot

The burst type 2 can be used for

- uplink, if the bursts within a time slot are allocated to less than four users
- downlink, independent of the number of active users in one time slot

The data fields of the burst type 1 are 976 chips long, whereas the data fields length of the burst type 2 are 1104 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in

Table 1 below. The guard period for the burst type 1 and type 2 is 96 chip periods long.

The bursts type 1 and type 2 are shown in Figure 5 and Figure 6. The contents of the burst fields are

Page 11 of 36

Text proposal for TS25.221 V2.0.01

described in Table 2 and Table 3.

Table 1 number of symbols per data field in bursts 1	Table 1 num	iber of symbol	s per data	field in	bursts 1	and 2
--	-------------	----------------	------------	----------	----------	-------

Spreading factor (Q)	Number of symbols (N) per data field in Burst 1	Number of symbols (N) per data field in Burst 2
1	976	1104
2	488	552
4	244	276
8	122	138
16	61	69

Table 2 The contents of the burst type 1 fields

Chip number (CN)	Length of field in chips	Length of field in symbols	Contents of field
0-975	976	cf	Data symbols
		Table 1	
976-1487	512	-	Midamble
1488-2463	976	cf	Data symbols
		Table 1	
2464-2559	96	-	Guard period

Data symbols 976 chips	Midamble 512 chips	Data symbols 976 chips	GP 96 CP
4	2560*T _c		

Figure 5 Burst structure of the burst type 1. GP denotes the guard period and CP the chip periods.

Table 3 The contents of the burst type 2 fields

Chip number (CN)	Length of field in chips	Length of field in symbols	Contents of field
0-1103	1104	cf	Data symbols
		Table 1	
1104-1359	256	-	Midamble
1360-2463	1104	cf	Data symbols
		Table 1	
2464-2559	96	-	Guard period

Data symbols 1104 chips	Midamble 256 chips	Data symbols 1104 chips	GP 96 CP
•	2560*T _c		—

Figure 6 Burst structure of the burst type 2. GP denotes the guard period and CP the chip periods.

Page 12 of 36

Text proposal for TS25.221 V2.0.01

The two different bursts defined here are well-suited for the different applications mentioned above. It may be possible to further optimise the burst structure for specific applications, for instance for unlicensed operation.

5.2.2.1 Transmission of TFCI

Both burst types 1 and 2 provide the possibility for transmission of TFCI both in up- and downlink.

The transmission of TFCI is negotiated at call setup and can be re-negotiated during the call. This means, it is indicated whether the TFCI is applied or not and how many bits are to be allocated for this purpose. If applied, transmission of TFCI is done in the data parts of the traffic burst. Hence the midamble structure and length is not changed. The TFCI information is to be transmitted directly adjacent to the midamble, possibly after the TPC. Figure 7 shows the position of the TFCI in a traffic burst, if no TPC is transmitted. Figure 8 shows the position of the TFCI in a traffic burst, if TPC is transmitted.

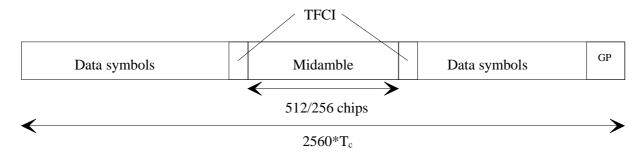


Figure 7 Position of TFCI information in the traffic burst in case of no TPC

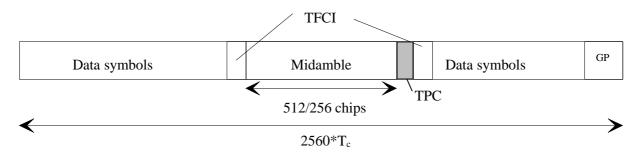


Figure 8 Position of TFCI information in the traffic burst in case of TPC

For every user the TFCI information is to be transmitted once per frame. Different numbers of symbols can be allocated for TFCI. The TFCI is spread with the same spreading factor (SF) as the data parts. The SF of the burst which contains the TFCI is applied to both data and signalling and shall be constant, except when a negotiation between transmitter and receiver initiates a change of the SF. Variable Data Rates shall be handled by DTX.

Two examples of TFCI transmission in the case of multiple DPCHs used for a connection are given in the Figure 9 and Figure 10 below. Combinations of the two schemes shown are also applicable. It should be noted that the SF can vary for the DPCHs not carrying TFCI information.

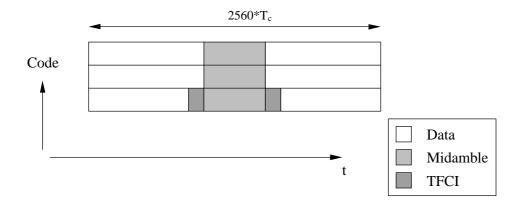


Figure 9 Example of TFCI transmission with physical channels multiplexed in code domain

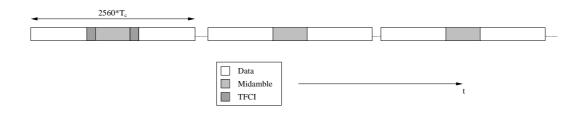


Figure 10 Example of TFCI transmission with physical channels multiplexed in time domain

5.2.2.2 Transmission of TPC

Both burst types 1 and 2 for dedicated channels provide the possibility for transmission of TPC in uplink.

The transmission of TPC is negotiated at call setup and can be re-negotiated during the call. If applied, transmission of TPC is done in the data parts of the traffic burst. Hence the midamble structure and length is not changed. The TPC information is to be transmitted directly after the midamble. Figure 11 shows the position of the TPC in a traffic burst.

For every user the TPC information is to be transmitted once per frame. The TPC is spread with the same spreading factor (SF) as the data parts. TPC and TFCI are always transmitted in the same physical channel.

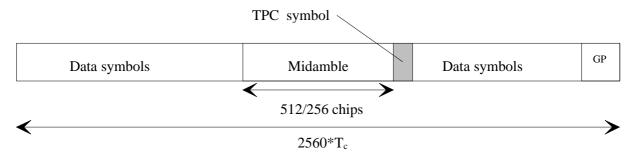


Figure 11 Position of TPC information in the traffic burst

5.2.3 Training sequences for spread bursts

As explained in the section 5.2.1, two options are being considered for the spreading. The training sequences presented here are common to both options.

The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of one single periodic basic code. Different cells use different periodic basic codes, i.e. different midamble sets. In this way a joint channel estimation for the channel impulse responses of all active users within one time slot can be done by one single cyclic correlation. The different user specific channel impulse response estimates are obtained sequentially in time at the output of the correlator. Following this principle it is shown hereafter how to derive the midambles from the periodic basic code.

Section 5.2.2 contains a description of the spread speech/data bursts. These bursts contain Lm midamble chips, which are also termed midamble elements. The Lm elements $\underline{m}_i^{(k)}$; i=1,...,Lm; k=1,...,K; of the midamble codes $\mathbf{m}^{(k)}$; k=1,...,K; are taken from the complex set

$$\underline{\mathbf{V}}_{m} = \{1, j, -1, -j\}. \tag{1}$$

K is the maximum number of users, i.e. the available number of spreading codes per time slot.

The elements $m_i^{(k)}$ of the complex midamble codes $\mathbf{m}^{(k)}$ fulfil the relation

$$m_i^{(k)} = (j)^i \cdot m_i^{(k)} \quad m_i^{(k)} \in \{1, -1\}; i = 1, ..., L_m; k = 1, ..., K.$$
 (2)

Hence, the elements $\underline{m}_i^{(k)}$ of the complex midamble codes $\underline{\mathbf{m}}^{(k)}$ of the K users are alternating real and imaginary.

With W being the number of taps of the impulse response of the mobile radio channels, the Lm binary elements $m_i^{(k)}$; $i=1,...,L_m$; k=1,...,K; of (2) for the complex midambles $\underline{\mathbf{m}}^{(k)}$; k=1,...,K; of the K users are generated according to the following method from a single periodic basic code

$$\mathbf{m} = \left(m_1, m_2, ..., m_{L_m + (K'-1)W + \lfloor P/K \rfloor} \right)^{\mathrm{T}} \ m_i \in \{1, -1\}, \ i = 1, ..., (L_m + (K'-1)W + \lfloor P/K \rfloor).$$
 (3)

 $\lfloor x \rfloor$ denotes the largest integer smaller or equal to x, K' = K/2.

The elements m_i ; $i = 1,...,(L_m + (K'-1)W + |P/K|)$, of (3) fulfil the relation

$$m_i = m_{i-P}$$
 for the subset $i = (P+1), ..., (L_m + (K'-1)W + | P/K |).$ (4)

The P elements m_i ; i = 1,...,P, of one period of m according to (3) are contained in the vector

$$\mathbf{m}_{\mathrm{p}} = (m_1, m_2, \dots, m_p)^{\mathrm{T}}.$$
 (5)

With \mathbf{m} according to (3) the Lm binary elements $m_i^{(k)}$; $\mathbf{i} = 1,...,L_m$; k = 1,...,K; of (2) for the midambles of the first K' users are generated based on the following formula

$$m_i^{(k)} = m_{i+(K-k)W} \quad i = 1, ..., L_m; k = 1, ..., K.$$
 (6)

The midambles for the second K' users are generated based on a slight modification of this formula introducing intermediate shifts

$$m_i^{(k)} = m_{i+(K'-k)W+\lfloor P/K \rfloor} \quad i = 1,...,L_m; k = K'+1,...,K.$$
 (7)

Whether intermediate shifts are allowed in a cell is broadcast on the BCH.

In the following the term 'a midamble code set' or 'a midamble code family' denotes K specific midamble codes $\underline{\mathbf{m}}^{(k)}$; k=1,...,K. Different midamble code sets $\underline{\mathbf{m}}^{(k)}$; k=1,...,K; are specified based on different periods \mathbf{m}_{P} according (5).

In adjacent cells of the cellular mobile radio system, different midamble codes sets $\underline{\mathbf{m}}^{(k)}$; k=1,...,K; should be used to guarantee a proper channel estimation.

As mentioned above a single midamble code set $\underline{\mathbf{m}}^{(k)}$; k=1,...,K; consisting of K midamble codes is based on a single period $\mathbf{m}_{\rm p}$ according to (5).

In the Annex A the periods \mathbf{m}_{P} according to (5), i.e. the Basic Midamble Codes, which shall be used to generate different midamble code sets $\underline{\mathbf{m}}^{(k)}$; k=1,...,K; are listed in tables in a hexadecimal representation. As shown in Table 4 always 4 binary elements m_i are mapped on a single hexadecimal digit.

Mapped on hexadecimal 4 binary elements m_i digit -1 -1 -1 -1 0 -1 -1 -1 1 1 -1 -1 1 -1 2 -1 -1 1 1 3 4 -1 1-1-1 5 1 -1 1 1 1 – 1 6 -1 1 1 1 7 8 1 -1 -1 1 9 Α -1 1 -1 -1 1 1 В C 1 1-1 1 D Ε 1 1 1 –1 1 1 1 1

Table 4 Mapping of 4 binary elements m_i on a single hexadecimal digits

As different Basic Midamble Codes are required for different burst formats, the Annex A shows the codes m_{PL} for burst type 1 and m_{PS} for burst type 2. It should be noted that the different burst types must not be mixed in the same timeslot of one cell.

5.2.3.1 Midamble Transmit Power

If in the downlink all users in one time slot have a common midamble, the transmit power of this common midamble is such that there is no power offset between the data part and the midamble part of the transmit signal within the time slot.

In the case of user specific midambles, the transmit power of the user specific midamble is such that there is no power offset between the data parts and the midamble part for this user within one slot.

5.2.4 Beamforming and Transmit Diversity

When DL beamforming or TX Diversity is used, at least that user to which beamforming/Tx Diversity is applied and which has a dedicated channel shall get one individual midamble according to chapter 5.2.3, even in DL.

5.3 Common control physical channels (CCPCH)

5.3.1 Downlink common control physical channel

Either the BCH, the PCH or the FACH as described in section 4.1.2 are mapped onto one or more downlink common control physical channels (CCPCH). In such a way the capacity of BCH, PCH and FACH can be adopted depending on the operators need.

5.3.1.1 Spreading codes

The downlink CCPCH uses fixed spreading with a spreading factor SF = 16 as described in section 5.2.1.1.

5.3.1.2 Burst Types

The burst type 1 as described in section 5.2.2 is used for the downlink CCPCH. No TFCI is applied for CCPCHs.

5.3.1.3 Training sequences for spread bursts

The training sequences, i.e. midambles, as described in section 5.2.3 are used for the downlink CCPCH.

5.3.1.4 Primary Common Control Physical Channels (PCCPCH)

A CCPCH is referred to as Primary Common Control Physical Channel (PCCPCH) if it is characterised by:

- Transmitted with reference power
- No beamforming
- Known position (timeslot, burst format and code) in frame. The position is known from the Synchronisation Channel (SCH), see section 5.4.
- Carrying BCH

If another physical channel is allocated to the same channelisation code and same timeslot as a PCCPCH, i.e. the same physical resource is used in a multiframe pattern, then this channel has also to use reference power and no beamforming can be applied.

5.3.2 The physical random access channel (PRACH)

The RACH or in case of ODMA networks the ORACH as described in section 4.1.2 are mapped onto one or more uplink physical random access channels (PRACH). In such a way the capacity of RACH and ORACH can be flexibly scaled depending on the operators need.

This description of the physical properties of the PRACH also applies to bursts carrying other signaling or user traffic if they are scheduled on a time slot which is (partly) allocated to the RACH or ORACH.

5.3.2.1 PRACH Spreading codes

The uplink PRACH uses either spreading factor SF=16 or SF=8 as described in section 5.2.1.1. The set of admissible spreading codes for use on the PRACH and the associated spreading factors are broadcast on the BCH (within the RACH configuration parameters on the BCH, see Ref.[3])

5.3.2.2 PRACH Burst Types

The mobile stations send the uplink access bursts randomly in the PRACH. The PRACH burst consists of two data symbol fields, a midamble and a guard period. The second data symbol field is shorter than the first symbol data field by 96 chips in order to provide additional guard time at the end of the PRACH time slot.

The precise number of collision groups depends on the spreading codes (i.e. the selected RACH configuration. The access burst is depicted in Figure 10, the contents of the access burst fields are listed in Table 7 and Table 8.

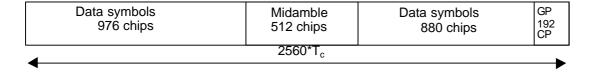


Figure 12 PRACH burst, GP denotes the guard period

Table 7 number of symbols per data field in PRACH burst

Spreading factor (Q)	Number of symbols in data field 1	Number of symbols in data field 2
8	122	110
16	61	55

Table 8 The contents of the PRACH burst field

Page 17 of 36

Text proposal for TS25.221 V2.0.01

Chip number (CN)	Length of field in chips	Length of field in symbols	Contents of field
0-975	976	cf	Data symbols
		Table 1	
976-1487	512	-	Midamble
1488-2367	880	cf	Data symbols
		Table 1	
2368-2559	192	-	Guard period

5.3.2.3 PRACH Training sequences

The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of a single periodic basic code. The basic midamble codes used for PRACH bursts are the same as for burst type 1 and are shown in Annex A. The necessary time shifts are obtained by choosing either *all* k=1,2,3...,K' (for cells with small radius) or *uneven* $k=1,3,5,...\le K'$ (for cells with large radius). Different cells use different periodic basic codes, i.e. different midamble sets.

For cells with large radius additional midambles may be derived from the time-inverted Basic Midamble Sequence. Thus, the second Basic Midamble Code m_2 is the time inverted version of Basic Midamble Code m_4 .

In this way, a joint channel estimation for the channel impulse responses of all active users within one time slot can be performed by a maximum of two cyclic correlations (in cells with small radius, a single cyclic correlator suffices). The different user specific channel impulse response estimates are obtained sequentially in time at the output of the cyclic correlators.

5.3.2.4 Association between Training Sequences and Spreading Codes

For the PRACH there exists a fixed association between the training sequence and the spreading code. The generic rule to define this association is based on the order of the spreading codes $\mathbf{a}_{Q}^{(k)}$ given by k and the order of the midambles $\mathbf{m}_{j}^{(k)}$ given by k, firstly, and j, secondly, with the constraint that the midamble for a spreading factor Q is the same as in the upper branch for the spreading factor Q. The index j=1 or Q indicates whether the original Basic Midamble Sequence (Q=1) or the time-inverted Basic Midamble Sequence is used (Q=2).

- For the case that all k are allowed and only one periodic basic code m_1 is available for the RACH, the association depicted in Figure 13 is straightforward.
- ♦ For the case that only odd *k* are allowed the principle of the association is shown in Figure 14. This association is applied for one and two basic periodic codes.

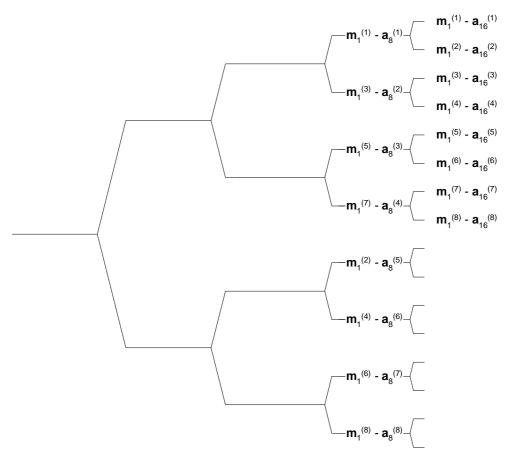


Figure 13 Association of Midambles to Spreading Codes in the OVSF tree for all k

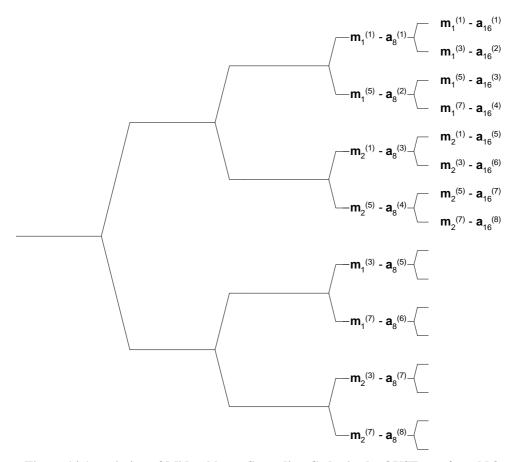


Figure 14 Association of Midambles to Spreading Codes in the OVSF tree for odd k

5.4 The physical synchronisation channel (PSCH)

In TDD mode code group of a cell can be derived from the synchronisation channel. Additional information, received from higher layers on SCH transport channel, is also transmitted to the UE in PSCH in case 3 from below. In order not to limit the uplink/downlink asymmetry the PSCH is mapped on one or two downlink slots per frame only.

There are three cases of PSCH and PCCPCH allocation as follows:

- Case 1) PSCH and PCCPCH allocated in TS#k, k=0....14
- Case 2) PSCH in two TS and PCCPCH in the same two TS: TS#k and TS#k+8, k=0...6
- Case 3) PSCH in two TS, TS#k and TS#k+8, k=0...6, and the PCCPCH in TS#i, i=0...14, pointed by PSCH. Pointing is determined via the SCH from the higher layers.

These three cases are addressed by higher layers using the SCCH in TDD Mode. The position of PSCH (value of k) in frame can change on a long term basis in any case.

Due to this PSCH scheme, the position of PCCPCH is known from the PSCH. The PCCPCH are using burst type 1, spreading code $a_{\mathcal{Q}=16}^{(k=1)}$ and midamble $m_1^{(1)}$. To simplify measurements of PCCPCH power, this midamble shall not be used by other physical channels in the same timeslot.

Figure 15 is an example for transmission of PSCH, k=0, of Case 2 or Case 3.

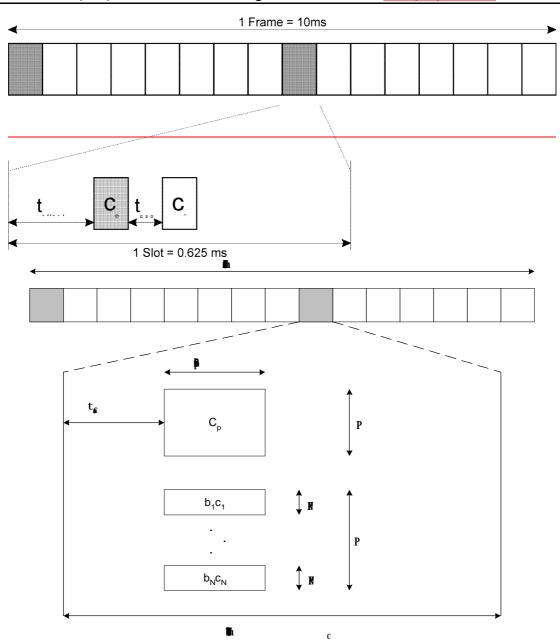


Figure 15 Scheme for Physical Synchronisation channel PSCH consisting of one primary sequence C_{p} and N=3 parallel secondary sequences in slot k and k+8

(example for k=0 in Case 2 or Case 3)

As depicted in Figure 15, the PSCH consists of a primary and three secondary code sequences with 256 chips length. The primary and secondary code sequences are defined in TS 25.223 chapter 7 'Synchronisation codes'. The secondary codes are transmitted either in the I channel or the Q channel, depending on the code group.

Due to mobile to mobile interference, it is mandatory for public TDD systems to keep synchronisation between base stations. As a consequence of this, a capture effect concerning PSCH can arise. The time offset to the system to overcome the capture effect.

The time offset t_{offset} is one of 32 values, depending on the cell parameter, thus on the code group of the cell, cf. 'Table 7 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and t_{offset} ' in [8]. The exact value for t_{offset} , regarding column 'Associated t_{offset} ' in Table 7 from [8] is given by:

$$t_{offset,n} = n \cdot T_c \left[\frac{2560 - 96 - 256}{31} \right]$$
$$= n \cdot 71T_c \; ; \quad n = 0, ..., 31$$

Please note that $\lfloor x \rfloor$ denotes the largest integer number less or equal to x and that T_c denotes the chip duration.

5.5 Physical Uplink Shared Channel (PUSCH)

For Physical Uplink Shared Channel (PUSCH) the burst structure of DPCH as described in section 5.2 shall be used. User specific physical layer parameters like power control, timing advance or directive antenna settings are derived from the associated channel (FACH or DCH). PUSCH provides the possibility for transmission of TFCI in uplink.

5.6 Physical Downlink Shared Channel (PDSCH)

For Physical Downlink Shared Channel (PDSCH) the burst structure of DPCH as described in section 5.2 shall be used. User specific physical layer parameters like power control or directive antenna settings are derived from the associated channel (FACH or DCH). PDSCH provides the possibility for transmission of TFCI in downlink.

To indicate to the UE that there is data to decode on the DSCH, three signalling methods are available:

- 1) using the TFCI field of the associated channel or PDSCH
- 2) using on the DSCH user specific midamble derived from the set of midambles used for that cell
- 3) using higher layer signalling.

When the midamble based method is used, the UE shall decode the PDSCH if the PDSCH was transmitted with the midamble indicated for the UE by UTRAN.

5.7 The Page Indicator Channel (PICH)

The Page Indicator Channel (PICH) is a physical channel used to carry the Page Indicators (PI). The PICH substitutes one or more paging sub-channels that are mapped on a CCPCH, see 6.2.2. The page indicator indicates a paging message for one or more UEs that are associated with it.

The page indicators of length L_{Pl} =2, L_{Pl} =4 or L_{Pl} =8 symbols are transmitted in a normal burst (type 1 or 2) as seen in Figure 16 figure 24. The PI may be repeated within one superframe. The number of repetitions within one superframe is given by the repetition factor RF_{Pl} . The number of page indicators N_{Pl} per superframe is given by the number of time slots per superframe N_{PlCH} , used for the PICH, the number L_{Pl} of symbols for the page indicators, the burst type BT and the repetition factor of the paging indicators, RF_{Pl} . The same burst type is used for the PICH in every cell. In case of L_{Pl} =4 or L_{Pl} =8, one symbol in each data part adjacent to the midamble is left over. These symbols are filled by dummy bits that are transmitted with the same power as the PI. Figure 16 Figure 24 shows an example for L_{Pl} =4, RF_{Pl} =2.

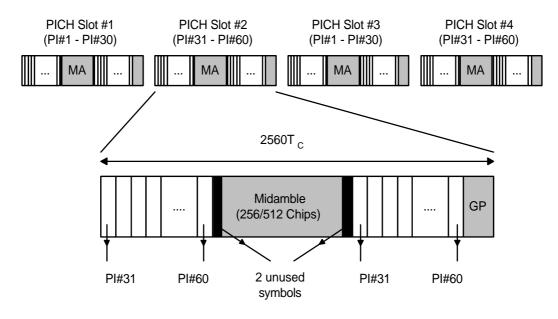


Figure 16 Example of PI Transmission in the PICH

6 Mapping of transport channels to physical channels

This section describes the way in which transport channels are mapped onto physical resources, see Figure 17.

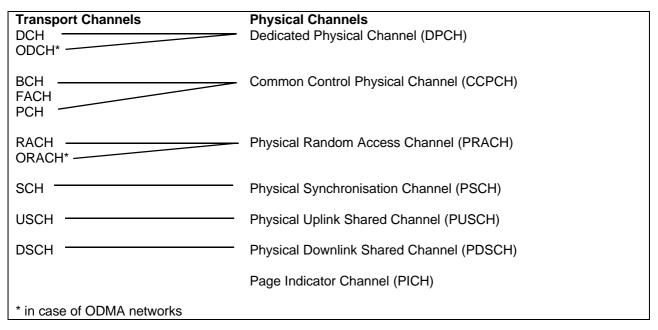


Figure 17 Transport channel to physical channel mapping

6.1 Dedicated Transport Channels

A dedicated transport channel is mapped onto one or more physical channels. An interleaving period is associated with each allocation. The frame is subdivided into slots that are available for uplink and downlink information transfer. The mapping of transport blocks on physical channels is described in TS25.222 ("multiplexing and channel coding").

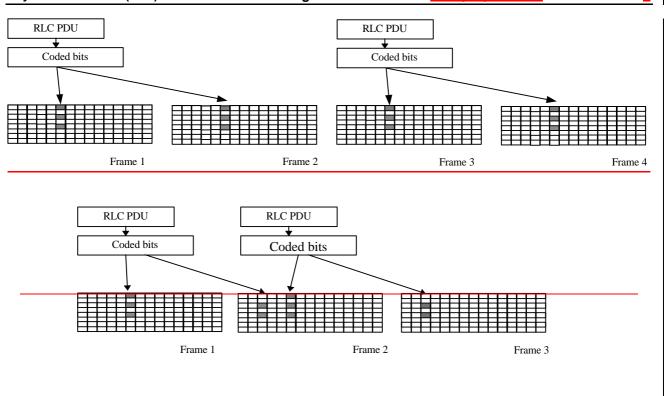


Figure 18 Mapping of PDU onto the physical bearer

For NRT packet data services, shared channels (USCH and DSCH) can be used to allow efficient allocations for a short period of time.

An ODCH is also mapped onto one or more sets of slots and codes within a TDD frame as shown in Figure 4 Figure 6. The actual transmission mode (i.e. combination of slots, codes, TX power, interleaving depth etc.) chosen for a relay link will be negotiated between nodes prior to transmission. Several of these transmission mode parameters can be adapted during transmission due to changes in propagation and data traffic.

6.2 Common Transport Channels

6.2.1 The Broadcast Channel (BCH)

The BCH is mapped on one or several CCPCHs. The secondary SCH indicates in which timeslot a mobile can find the PCCPCH containing BCH. If the BCH uses more resources than PCCPCH, the BCH in PCCPCH comprises a pointer to additional CCPCH resources for BCH. The CCPCHs allocated by BCH can be shared with other common control channels, e.g. PCH or FACH, according to a multi-frame structure.

6.2.2 The Paging Channel (PCH)

The PCH is mapped onto one or several CCPCHs so that capacity can be matched to requirements. The location of the PCH is indicated on the BCH. It is always transmitted at a reference power level.

To allow an efficient DRX, the PCH is divided into several paging sub-channels within the multiframe structure of one superframe. Examples of multiframe structures are given in the Annex B of this document. Each paging sub-channel is mapped on 2 consecutive frames that are allocated to the PCH on the same CCPCH. Thus, the number of paging sub-channels per CCPCH is half of the number of frames used for the PCH in one superframe. Layer 3 information to a particular paging group is transmitted only in the associated paging sub-channel. The assignment of UEs to paging groups is independent of the assignment of UEs to page indicators.

Page 24 of 36

Text proposal for TS25.221 V2.0.01

6.2.3 The Forward Channel (FACH)

The FACH is mapped <u>onto</u> one or several CCPCHs. The location of the FACH is indicated on the BCH and both, capacity and location can be changed, if required. FACH may or may not be power controlled.

6.2.4 The Random Access Channel (RACH)

The RACH has intraslot interleaving only and is mapped onto PRACH. The same slot may be used for PRACH by more than one cell. Multiple transmissions using different spreading codes may be received in parallel. More than one slot per frame may be administered for the PRACH. The location of slots allocated to PRACH is broadcast on the BCH. The PRACH uses open loop power control. The details of the employed open loop power control algorithm may be different from the corresponding algorithm on other channels.

6.2.5 The Synchronisation Channel (SCH)

The SCH is mapped onto the PSCH as described in section 5.4.

6.2.6 Common Transport Channels for ODMA networks

The ORACH is used to transfer short probes or short protocol data units (PDU) between one or more nodes for routing and resource allocation control.

To limit the transmission time of short probe PDUs on the ORACH then this data should be transmitted as one burst on one code. That is, one probe burst should be transmitted on one 2560^*T_c timeslot (which as described in section 5.1 would be configured as an ORACH slot).

Since the ORACH is a common control channel used to transfer probes between one or more nodes a common fixed spreading factor should be adopted.

6.2.7 The Uplink Shared Channel (USCH)

The uplink shared channel is mapped on one or several PUSCH, see section 5.5.

6.2.8 The Downlink Shared Channel (DSCH)

The downlink shared channel is mapped on one or several PDSCH, see section 5.6.

Annex A

A.1 Basic Midamble Codes for Burst Type 1 and PRACH Burst Type

In the case of burst type 1 (see section 5.2.2) or in the case of PRACH burst the midamble has a length of Lm=512, which is corresponding to:

K'=8; W=57; P=456.

Depending on the possible delay spread cells are configured to use midambles which are generated from the Basic Midamble Codes (see Table A-1)

- for all k=1,2,...,K; K=2K' or
- for k=1,2,...,K', only, or
- for odd k=1,3,5,...,≤ K', only.

Depending on the cell size midambles for PRACH are generated from the Basic Midamble Codes (see Table A-1)

- for k=1,2,...,K' or
- for odd k=1,3,5,...,≤ K', only.

The cell configuration is broadcast on BCH.

The mapping of these Basic Midamble Codes to Cell Parameters is shown in TS25.223.

Table A-1: Basic Midamble Codes m_p according to equation (5) from section 5.2.3 for case of burst type 1

Code ID	Basic Midamble Codes m _{PL} of length <i>P</i> =456
m _{PL0}	8DF65B01E4650910A4BF89992E48F43860B07FE55FA0028E454EDCD1F0A09A6F0296 68F55427253FB8A71E5EF2EF360E539C489584413C6DC4
m _{PL1}	4C63F9BC3FD7B655D5401653BE75E1018DC26D271AADA1CF13FD348386759506270 F2F953E93A44468E0A76605EAE8526225903B1201077602
m _{PL2}	8522611FFCAEB55A5F07D966036C852E7B15B893B3ABA9672C327380283D168564B8 E1200F0E2205AF1BB23A58679899785CFA2A6C131CFDC4
m _{PL3}	F58107E6B777C221999BDE9340E192DC6C31AB8AE85E70AA9BBEB39727435412A5A 27C0EF73AB453ED0D28E5B032B94306EC1304736C91E922
m _{PL4}	89670985013DFD2223164B68A63BD58C7867E97316742D3ABD6CBDA4FC4E08C0B0CBE44451575C72F887507956BD1F27C466681800B4B016EE
m _{PL5}	FCDEF63500D6745CDB962594AF171740241E982E9210FC238C4DD85541F08C1A010 F7B3161A7F4DF19BAD916FD308AB1CED2A32538C184E92C
m _{PL6}	DB04CE77A5BA7C0E09B6D3551072B11A7A43B6A355C1D6FDCF725D5878749998957 48DD09832ABC35CEC3008338249612E6FE5005E13B03103
m _{PL7}	D2F61A622D0BA9E448CD29587D398EF8CDC3B6582B6CDD50E9E20BF5FE2B325804 1E14D60821DC6725132C22D787CD5D497780D4241E3B420D
m _{PL8}	7318524E62D806FA149ECC5435058A2B74111524B84727FE9A7923B4A1F0D8FCD892 08F34BEE5CADEB90130F9954BB30605A98C11045FF173D
m _{PL9}	8E832B4FA1A11E0BF318E84F54725C8052E0D099EF0AF54BC342BEE44976C9F38DE 701623C7BF6474DF90D2E2222A4915C8080E7CD3EC84DAC
m _{PL10}	CFA5BAC90780876C417933C43103B55699A8AD51164E590AF9DA6AF0C18804E1F748 62F00CE7ECC899C85B6ABB0CAD5E50836AD7A39878FE2F
m _{PL11}	AD539094A19858A75458F1B98E286A4F7DC3A117083D04724CBE83F34102817C5531 329CDB437FFF712241B644BDF0C1FEC8598A63C2F21BD7
m _{PL12}	BEB8483139529BDE23E42DA6AB8170DD0BFBB30CE28A4502FAF3C8EDA219B9A6D5 B849D9C9E4451F74E2408EA046061201E0C1D69CF48F3A94
m _{PL13}	C482462CA7846266060D21688BA00B72E1EC84A3D5B7194C8DA39E21A3CE12BF512 C8AAB6A7079F73C0D3E4F40AC555A4BCC453F1DFE3F6C82

m_{PL14}	9663373935FD5C213AC58C0670206683D579D2526C05B0A81030DDF61A221D8A68EA D8D6F7AA0D662C07C6DCD0115A54D39F03F7122B0675AC
m _{PL15}	387397AE5CD3F2B3912C26B8F87CE82CEFEC55507DB08FB0C4CF2FD6858896201A CA7264281D0298440DD3481E5E9DDB24C16F30EB7A22948A
m _{PL16}	AFE9266843C892571B6230D808788C63B9065EA3BDFF687B92B8734A8D7099559FEA 22C9416576D0C087EB4503E87E356471B330182A24A3E6
m _{PL17}	6E6C550A4CB74010F6C3E0328651DF421C456D9A5E8AE9D3946C10189D72B579184 552EE3E799970969C870FE8A37B6C4BA890992103486DC0
m _{PL18}	D803CA71B6F99CFB3105D40F4695D61EB0B62E803F79302EE3D2A6BF12EA70D304B 181E8B38B3B74F5022B67EB8109808C62532688C563D4BE
m _{PL19}	E599ED48D01772055DBE9D343A4EA5EABE643DA38F06904FC7523B08C4101F021B1 99AF759A00D9AC298881D79413A77470992A75C771492D0
m _{PL20}	9F30AC4162CE5D185953705F3D45F026F38E9B5721AEFE07370214D526A2C4B344B5 08B57BFB2492320C05903C79CBEE08C6E7F218B57E14D6
m _{PL21}	B5971060DA84685B4D042ED0189FAF13C961B2EF61CC164E363B22AAB14AC8AF607 906C1C6E04F2054C687AA6741A9E70639857DA02B6FFFFA
m _{PL22}	97135FC2226C4B4A5CBA5FCA3732763B87455F73A1148006F3DF214BD4C936D061E0
m _{PL23}	4045160E2CE33B9CD09D08FDE2A37F4E998322B4401D27 4D256D57C861B9791151A78D5299C56D116B6178B2A2D04BB95FB76540AF28341DC6 EC4E7ED3BF9E508478D9C8F44914805DA82429E1CF320E
m _{PL24}	858EF5C84CE32D18D9ABA110EEA7474CF0CD70254D2928C3F4DFF6BB3A518587CA DA19029078AC90A8336C8178203BE3289E601F07D089CB64
m _{PL25}	920A8796A511650AEF32F93DD3C39C624E07AE03CE8C96139973F54DCB9803C5164 ADB502D4FF561564D607037FCD172921F1982B102C3312C
m _{PL26}	485C5DAE76B360A9C56E20B8422EA3E6ACF07CB093B5587CB0E6A5498A4714081EA 98DBCDB0482B26E0D097C03444473D233BEF3C8E440DEBF
m _{PL27}	565A9D54EA789892B024F97E728E8EE112411942C48BD0C5BC8AA457D8DC9941F0F 7424B38643FFE6521CD306FBC56FE10F1428D4C245B5606
m _{PL28}	5AEF2C0C2C378179A1AC36242E6B3EDB72C42D3624437674F8D51260C0898C20183 7CBA14E9E23D1EF6451C4ACF27AB031F457A8A1BFD148AE
m _{PL29}	87D8FE685417822A23D925307E6C11081ADAC4702BCCD9BE448E78984D109B50DEF 5B7C58BC71EA1F0A6826BA8AD1978843E7697F3E416AADA
m _{PL30}	84802B72AF27B5BE724D1FB629E0E627BDB0D9061292562F98350C1D0C9D4B9D8E2 BF71123C82EBB161003AE9829E07244D78F19926F8847A2
m _{PL31}	8CCB5128238BCB088E30972D62792AEF02B9BBDDCAD68C9916C00BF91CBE788B0F 03851FAAF88605534FD73436C259D270B1013CB14226F658
m _{PL32}	62F4E6FAC2BF1979CE6854AA2D33534BFB2F946519101A6589131C3640707D40E67E D804AF8736AD213CAF5935741900061967E8285C27E34C
m _{PL33}	4095E5B4EEAFCDF68A34B267EEA28D8444FA533900F41499E260D2E65C256A52E1D D5861F5227C98E00687D107233F51A1167BCF72FB184654
m _{PL34}	5630E9A79FCAD303404D9E5A802299162657AAC734761C6E90DA8BCE4F61A763E0B B48D3FEB3F78468C828ABA4828DAD06E0F904CFD40421DC
m _{PL35}	CD12B24C0BCA8AAC1FCBF0500A3BC684A180E863D888F2506B48C68ECF17F76CB2 85991FBA18EB6397211FAD002F482D57A258CD45DE3FF1A6
m _{PL36}	AFCF2A50877286CD3405442730C45514F082D9EC296B367C0F64F04C4E0007DCA9E 50BEED5C102126E319ACBC64F1729272F2F72C9397029FE
m _{PL37}	18F89EE8589D20882A72A44DCCDF0050F0A3D88DBA6531614973D26905FDF41E3F7 79FF0648E8AF1540928511BCF4C25D9C64AF34AC31B8965
m _{PL38}	F890D550F33F032ECDA3A51FED427D634F64EB29AF1332A23CD961258E4BAED040E 7B336918E250EC272A12816B9EBFFA1E0AE401185F08C10
m _{PL39}	ACE5DD61506047E80FB7D41BD3992DF4D7F18EB46CC145C0E9105428C2F8F299141 F5D66691904A7DC2513A3B83994ACB1292246B32818FE9D
m _{PL40}	150680FF900C9B46E1E24D54BE2238CB950A934E5CCDE9BC3939EB51CB0AE202B7 D339EEC2018B33A0AB9B63DA5D512D64FB58C0E51A1C82C2
m _{PL41}	51A579EED2663A002D32D10A0753173612F4D5BA167D1807C61F25C4D42C063682E8 E9DD019F79D446A046EB3F75E50FEB228DC52F08E694B6
m _{PL42}	CDC644FE4C0C6897604F9D14D714123BF16FFF0E49F35F674908CA60653702FE27B CCA2A47098453AF8661055C8C549EB6A951A8396AD4B94D
m _{PL43}	750A10366C595373C5001CA3E4239764B1409D602CF6052B39BC6A3255A15FE06C78

	2C4C5F847026A7E79838A2933A61C77BB6CBF5915B2DA5
m _{PL44}	B7490686D78E409082C4C48FE18D4C35429C20AADF96076B92FC4E85490664753DB0
m _{PL45}	D86E1B575B47D23DA811806A54C231281F03317830E7BD305D3CAA7D6382A5233104
m _{PL46}	CFD54D22DF9F34535E5B390D9040CF1375FEA44CEC29E2 828655960C026EC67B683480992AC2ED2C43ABC606F5220C2945F373470BE7ED5BC
	CF7C1AA0986BBCCC84F11F1658AA568FAA0A60C5F0B5BFA D76230E02C8533653AAB99B288AA2ADE25A1C1BF28516C04239240EAF1EFC0B9897
m _{PL47}	4B51F886861D8A1E9F5D62CFFEC309F071A9716B325101B
m_{PL48}	EA207662865B8A07D69648964DED818EE474A90B94473408871880E63EF0596B9FCF EC3C06B86EA6AD2B06C91672EFB33C70241A5450B59B8A
m _{PL49}	9CB5459549909835FAB22F0D99298C120ACF479F814CCE749079D40688F2810103776 2F125C776DA9C5FA1FCE0E76E452F8185354FDCDE94E2
m _{PL50}	227506304AEC1D6F93569B51FDC3405A0F38194F65BE17163A3CB9827A35AECEA75
m _{PL51}	7D020FE249377ECD561428A38FEED004EC859C272563185 96B9AEC9938910F0E533422A3977519B05CD4AD3909BC15A7502D48D49C124FA192
m _{PL52}	A8E57027CFEB11DF542010603CE5C9FDF8E626D4FBF8CF4 A6AAD06E095A9BE0BD9F8A2ED40C3CBDBAE91C700CBB778C8696CC06F3A675C16
m _{PL53}	BDB2918E5F2111005A8727206DC6A9684E05655185C398EEB CD168D384A78DA172991AD333EE2A9880905AFE59E2A2A4AC4414C40F82874F98A3
m _{PL54}	CBE7B44F4C7F4710B35FD88AFC0399FAEB070EB9CA4D30A 22016CA87AD1549174A8699DD65599697871091457E83E0912E7E77A06531C209394D 283D18A38662B73681DD9C5BF330FED978BDA7D487CA8
m _{PL55}	B9401B0843AA6F7827A13BD66C922287E8886C31EB5B90B82B472CCD6DA3D8D4FB F78B8F8496DFA8252B06429D5DD17142F1C908ACCD70EA0C
m _{PL56}	E42B9EFDC5D09AC27B3C7DA28D02493A70521223B9D7A76A9D13E9C171017964D16 A70C08EAD02C3DC948889C23E365AFCF01BF20B89B0BF5C
m _{PL57}	9DA0180168DB915E9F3597B59312198E1B5CC00D743C2ECB0DBAADA3E35A2465ED 1EAA9D74734D49A313CE4DFF020D0760E3153DC485603943
m _{PL58}	B6C966619ECB98191D719C187C07BD503425650CAA3A2D1F2DF5212B1441D7A0C1E 36A4C9C2550240AD17CA43BB3943DFFFBF1E283D81299CC
m _{PL59}	DB0E8C41F08A03D477C1AA548799274C4BF3EB68F2636166FDC8D4B1E7132539930 297E228BA232BB5C279FA5ECA3AC10E24361AF050A453B8
m _{PL60}	89BCE2DE2974EEBA833CF32F224C85A2891484478527DB48FA6ECEA84C5E288CC3 914CB54ADA0476278750187F68FBEA41017E1E58DF1A5A3D
m _{PL61}	70A457D1314A278625443EEB52520815EC92CEF17417B97440DCB531BC1CE83212F6 3270418D0FBDE71F6DB9E0EA88772E1E4535B6633E4425
m _{PL62}	C388460AD54B36C4452CF0433BD347100ACCC24C79C535AD3E1F23FE0425E93A044 C553BFA116E09AA4BB32F13CFA76FBA1BC17520F45EFD44
m _{PL63}	0BAFCADCDF9AA2846681782CD3B90CA036A863C78EE1507620BC394D0C6804B4C97A15BC9C0D7B79E6892EA1BFF1A0DD9573A9213AB140D0D2
m _{PL64}	833B0226789A62882FCD27A30885E67872B1A1C2FA484AD498011599DD57E8E2A07A 560B47167AA5F60EF47177DBB1632D5387A2896348640B
m _{PL65}	8F52820323ABA5E6C6B465821B621600B980E59F53A599DA5646BA103214336836CF7 7E3386CE4FB2BC5F25CCB30CF7F500546828EC8786B8E
m _{PL66}	E2E9A29C3C8207B9A4508FD2F667A159F068EEE8D00686F46EA904C3692C1D79DFF 1B32E5103720D47B4B58AC35384A26087027E141B3126A8
m _{PL67}	70E7C39FD2D3AE1DCE341699A544D801A8688A6EE47C5CB3630022147DDC06241F C5337A348A462B2472DEC5E104DD520ADA5114DB065D4B0D
m _{PL68}	9E3483CAB164BD053C4971D4D87494CC689033D589EF80E5453376E4A8DCC02183B 98C36B0FF7DDC0AD07FCE8B4D5164371BD03A2110AD1247
m _{PL69}	04DA1C649B0608938DAADD3FE920A4F681690C54505429DBDCDCF10067AB5714BC
m _{PL70}	DDFE1F28692710F794765781C1D233344E119BEE8A8416DC 7A18D6D30BDF44410714C3DCA27D8F9EA8A542D87122205640B98313C91AD9A0B99
m _{PL71}	3A5A7BC3E035F93B88BBE6D4204BC82A9FA8D4C1A7618CF EB9525E10265A48733C8E0E77E459310112A71DCA680F68AC044B64BC0A31D02EEA
m _{PL72}	0F7ACAAAB7F1E574E94FEA2D1301CB14B03263DA8122B76 E706C6ED2D6F89153835079BE0C6D45310845EF2F9F6C6AE91B7419810508BA501C0
	148BF09955BAD90D6391BA8EBA5CEFBD23221CC75143D7

m _{PL73}	DF071A10AC4120CD1431590BEDCFF9483CA7047B19590D035D309240BDB4264E9A3 A2761402EC97FD8BC51B4AF32E37FBC47162A2357D18751
m _{PL74}	F0F952B2238139F46D8254D1A2C1C22A16BA71EC0C0C900ED1442452D7F44C798BC 65FF40671B88074BA0B74C6510996EEAC495C5B49C37DEB
m _{PL75}	1C86BD82EDA81FD65418D3837B5552A853791456D93B06C62C650D86CFBEC269AFF D772763064062C03751B9428C6DA2E60383025F9E404B70
m _{PL76}	B390978DD2552C88AABA7838489A6F5A8E9C41E95FFA2215819BF8A5BFE39C8A706 CC658E549E966611B843A1468406C41C09D1560BEDA4F1B
m _{PL77}	1A69EC9D053C7E84BAE7A48CCC71857D0C6B06D1065E3EA4633B133AA022B8104F 6EE7C69B6184B746C8822958B0A16686F27C8A0E3B4EFEAD
m _{PL78}	C95B2070816DC97C6D8DD2583263E73F9AAAFD13F0548D2EBD835824418F11E54111
m _{PL79}	005FB713AB234BE412347358281C7DE331EDD21B8BEA52 56D6408399F23C2ED85EE0F68111D69A91A3AD9A732AC57CA08F86CC28B3CF4E4B0
m _{PL80}	2EBBA0BCE5CAE5BACC4D52004070797C04093A84BB18DBA E662E7043867BE250764DA0596D34A582A619B408B505E6211DD6286E93A37F95B1E
m _{PL81}	A680C0C5F3E777E3F71E8D75495D59043217FC0E222E16 27D5E681C222297AD478A079EF12F1A98F744B66335303322EF8880B931FEBF8322F4
m _{PL82}	302944E80BED468A0A516D410B183D863795992DA7DDB 5100336C05F9E5BF35201906C1C588858E0DAF56130DF5554B9AB21CA15311A90290
m _{PL83}	624CD63E03F5EDA49DB7A0C32AB5F1CA427A2D5635FDA5 C696DC993BFAEA9A61B781B9C5C3F5CFAA4C8339D8B03A9B0387883D0482A41AC7
m _{PL84}	8D6522425959846E561D26A30FF79A205C801A85889736B2 D562297561AFF42D3168296C1153E4E39BE7B2EB0348BC704625AA08391235075EE0 DE0A79AB03222FEDB27218C56F96EAC2F91CC8FCE64B12
m _{PL85}	DD0B6768FC01CC0A551F8ACC36907129623E975AB8B3FF58037F1859E2FA8C62C2D 9D1E8506916029A2C3F8CAD9A26AE2CC652F48800859F5C
m _{PL86}	923920696EB3AB413786C41854822282BB83F6900D33A232D470BE198BBF086067B72 613300C593B74251E2F079857ADBBCD86583A9DCAA6DC
m _{PL87}	B8EF30C797D8D2C4EF11244F137D806E556A436626D0115A621C92C34D166A68BCE DFA0040DA8FD6F987B1CD5C2AA1C1B045E64475F0F8DABD
m _{PL88}	E1887001D414405ED6419E9EE1D1D346D924ED57ADF04B31B7948099976B2D1501A 60DFFB287AD44C8783DF0C1EA5AA5D273D1389C8EA22DCC
m _{PL89}	8C2E379A58AA96748141CA84C35987905F984A49D3AD9BFF7807AC244C16C1DF743 43C2E1F25514F5A0954CFBB3C92E25EF783136844998AC5
m _{PL90}	78F8A99E0A54E27F51C0726FE7A11EB26B1E29FE65F55AC8AC58011465900B958488 A90F6DF614A58431DC8B6C6B9A6F032EE0E0B1306EC4B4
m _{PL91}	88F7A31B7B20E0F05CA26E729B4F8A1933962D7BD7BE3E1EB130B28C794C0B4D01C ADE09006FF97E80117509733F3A9DC225413A0AE08CA662
m _{PL92}	BE4DFCEAC18905AC8D5DA27A794F88A4D3058D2EFA3B075A819DEAE688EAF8940A 653ED7104E7B403D490F0A9030264E1F12B8922C75775E61
m _{PL93}	5BA4B79FC4550234D8922963BF3537485E3C8745A5DB90D3E2E454B30FF61112F508 155B7C2B3C4C628AF846240C2021ACDE547E5A41F666B8
m _{PL94}	00556D35649F7610AB24A43C4F16D6AC0571FD126F11880C5CD72100D730E4E4D6B B73C33F837FAF1072743B249ADA2E09598B1EB23F1180A7
m _{PL95}	7A0CC9F21BD69CF3023E944545C2176EF0D4F450B765C28359FB8A32137D043D0E5 713E67B3F61320985D2C6106605081F87D2296321468A2F
m _{PL96}	DA669880995B0671201172BABFF141D5854A245E211879EF3038A7C84170DADBD368 455F24653161E7886E15B253F93E3A3C568EFB17CDEB1A
m _{PL97}	4E294E53D1661C1F6F748302A7723DA951C00FDB8BEBBF67A68710BA0F1A255DFB1 627059D41A23D3961726DE6FEB10E5D209CC4505B209812
m _{PL98}	73385DF701414E144768A67EF72924B1653479E962FB1554B7E54BC5284D9B3E41C0 C133F878972230721918AA425501B920B204FECE0C7F8A
m _{PL99}	F4492160805F258CE592DF4D1200566F81D173458D78EA3ABED79A14AF88170DB1D 4A9A5931D2B80C58C27FE17D806E3E6A66CDAAD09F118D4
m _{PL100}	44D562D9012D8B07B8F44596467C11A163982BB7EAEAC184078B6B8CE46B5D7E17C 39CEF576A025491183017FA09931D070B307B86524B03FF
m _{PL101}	FCAEEFCC49A13B4FFA12C0CC6A2B90CF4F57D78B1E98294B04675C2F0991661FDC 61A452A247F8C29E0284AA21026F368307375AA2C3F1E12C
m _{PL102}	C486DF0510DCAD5AB86E178A686D398E11A0ECFAC5A326C10129257E5456B22FB8E

	147E9190D9929A5DFFE44715FA47D62F04CFC9B1C201414
m _{PL103}	C10AF383DC708E257E15A8AB337BCE684A2F4AC7A22DC2C25C277F8E8D0858E793
	17CDDD9AA2EA6CBE604D24AC0945026103E7B4126FD361A4
m _{PL104}	A5C60A181148D9A931B2DDDB9D169648BA54F366B4EFAE88F6861909EE0F07C037E E349D0EC59A823286E366CA3943589EEA7F828C3728085F
m _{PL105}	96136AEBD5E28462B0421DF292BA899FFA660D80EA01620D2C7490E5347127884AA3 C3D1FF44BCEEF6C29EC589CDEF200C5742C5964F8B2B52
m	40F63C04ACAD986255D1E16B769A6D4C11A1D075E804BDC0AC61923E9A67F5D7417
m _{PL106}	756328072455F6E22B1C64E06F367D1B0808295C2D90E22
m _{PL107}	F4B82D413578C4888C5F002CF6D0E03778134A860436551FD57537E4CED334B3C9C
IIIPL107	EBACE615238271717AA762448B86FA53D2074BCE35658A7
m _{PL108}	BCCC92D72C920E685530591FC351743D1E23DE044BF81D32650406113E23ECC757F
IIIPL108	DE4E386B6E2E7195EE4969717A7BD0812AC312B33A54308
m	6ED59DE0D44370A861CE2B42CF5E578E764A682AB5777905EE027D7160490EDC6C2
m _{PL109}	8989B23805AA697FCD215CB401BC5E4D430624C01B16192
m	DE80C0E273B92CC3C5034F7A20DB3914643C430B425C8B9249EAF73ACE8C3BCF17
m _{PL110}	957242CF534D87A67D4DC0252275262E737F4095450CFA14
m _{PL111}	9505C4FEF2A397D5059F4729D013292A8321FFFA929ACB0A210D0A13E13061227C44
···PL111	A68FBD8CE6B66CE3D783363CD039AB35EE52603E09B758
m _{PL112}	E8BE90D7F954B14D8002A4CAC20765ABEED80634498C836D79B0F9338DBC17B28F0
IIIPL112	5CF4E79136779E1C55AA30B6215F890882887B3B53C23E2
m	9F4B622C1358AE5468DC31E4B2CA320E5E20458C1DE5405BF4F9AD7D45A5BCAA39
m _{PL113}	EC0626FFFC698C16A009CCCB7A18A64E85E70BA71731BA24
m	B91B2624843CF48299AFC2B1442570B41F28F578530D1E322E0B54282372131C71AC
m _{PL114}	B924E70768A243EEC3200E7A5EBFA77111D9FB07FEA8AE
m _{PL115}	965F42DDA3A4650FE2F5103932B68F166FA424B9F0F7045311D962C2A9F66B9BC6C6
TTPL115	6FB480F9800354E0C54A72251071422CF1DFC44F94C00C
m _{PL116}	08ADCE48699FC30FA0788073BDAADB9177BBB4C1CED41F93085218364B8BAD8488
	561EF0FE1B0DDAA403C602494CB35697D62AA0A2B93A64CF
m _{PL117}	9A313BED80B1220D77C8ADA4B2E0B3D284A5120A94B741380923C78D3AD32BC3E7
	1EC6EEA520E9D447D8727697598BB987F17506F482003ABD
m _{PL118}	24C9AD4C14EFEC002A3473FCAB04E492F2E269161A2960BA8AF09FD710B444A40C4
THE LITTO	E8B138418E62301E91FBA97AFDC58759A76D00F676736C7
m _{PL119}	6514C7733711CE4942CD2123AB37186EB7FECB7E78ABB28744864942FCF4C0F81005
1 1113	4AF55B1042EB53064F0857C61D85B2CF0D2DC5826AF22F
m _{PL120}	B2C80CDC83E48C36BC6FDAB8661208EAD392F3A0571BE41DFAD765E744932ADEA5
1 2120	0061E66C05498A5381B2A1F1B446587089DC4E4A2DF03D82
m _{PL121}	639368BA75CC709A3D9F28EDA237E32C2017A9BF1E382045B9426AEE0A4049DCB4E
	1D7EBE4647B855212824557497CFA039885A3BA42F98F63
m _{PL122}	6A70DDC17D0C8024B1C853F0C1948561EF32510151BE0C63BCA9171F20217891D10
	21EE72586CAFF557F8973336913A94A2A699B8740B054B8
m _{PL123}	2E32E3A35CCD001172CE310B63B4E406126045A0FA3795BE3E3D9B56F72405FC94F
	D89946818BAECD24A61BABBBE2D23052AB01EF73CA0CF4A
m _{PL124}	829395C35205A480AC1351C25E234BF52D384A3DE1C5138A650A6F82F739757D812D
···PL124	9C38231AB9FD81AA0648B11F6F6113F9312C57624FC746
m _{PL125}	D98FFE19C0AAAAB0571A9075ECDFD3E7373F5255DC669116A8C6913F0123E598F93
PL125	0934C5F6A601C37C529C371A0C391B59AC5A9E286D04011
m _{PL126}	C1A108192BCE96C2430A63C189BB33856BE6B8B524703FCB205DAEF37EF544CD43
111PL126	CA09B6181B417398083F72F781BA4AE89A5CA291DB928D71
Mp: .c=	42568DF9F61849BF9E7DEE750604BE2E0BC16CC464B1CDE15015E01D6498E9F3E6
m _{PL127}	
	D6950E5824651F212BA0057CE9529B9CCAB88D8136B8545E

A.2 Basic Midamble Codes for Burst Type 2

In the case of burst type 2 (see section 5.2.2) the midamble has a length of Lm=256, which is corresponding to:

Depending on the possible delay spread cells are configured to use midambles which are generated from the Basic Midamble Codes (see Table A-2)

- for all k=1,2,...,K; K=2K' or
- for k=1,2,...,K', only.

The cell configuration is broadcast on BCH.

The mapping of these Basic Midamble Codes to Cell Parameters is shown in TS25.223.

Table A-2: Basic Midamble Codes $\,m_{_{\rm P}}\,$ according to equation (5) from section 6.2.3 for case of burst type 2

Code ID	Basic Midamble Codes m _{PS} of length <i>P</i> =192
m _{PS0}	5D253744435A24EF0ECC21F43AA5B8144FBDB348C746080C
m _{PS1}	9D7174187201B5CE0136B7A6D85D39A9DD8D4B00E23835E4
m _{PS2}	AE90B477C294E55D28467476C6011029CDE29B7325DF0683
m _{PS3}	BC8A44125F823E51E568641EC12A6C68EAFDFA2350E3233C
m _{PS4}	898B7317B830D207C9BC7B521D5715680824DC08347B2943
m _{PS5}	466C7482C8827655BC13F479C7C1417290679A9841297C4A
m _{PS6}	AC0734C27C7DC1B818A8492744290DFE866B0EBA62B0B56E
m _{PS7}	0A92106325B15A8C15FC3764724CE67A5056D50A77F9360E
m _{PS8}	AE69F62E23035083E6094B89493D33E06FDB6532D473A280
m _{PS9}	B485D4E3614C9C373EA1365FA6FA890E9844084EBA90EB0C
m _{PS10}	66182885E2D28360D2FEAB842C65304FFC956CE8DC8A90C7
m _{PS11}	CC30A9B0A742FCC1E9A408415368391F1299AEA3CB6509FE
m _{PS12}	673928915886947F464FDDAAD29A07D182328EBC5839089A
m _{PS13}	4418861C14D62B46EE6D70D4BF05A3ED801A01BD6CDC5235
m _{PS14}	DAD62DC88F52F2D140062C2330BE6540E6F86192322AFB04
m _{PS15}	A2122BAF24529CEA9855FB43CE40923E7CA7B30D92E40702
m _{PS16}	6C44AB41E11F54B0929DF65673BD231F92A380132D9F1712
m _{PS17}	1DC2742E756CDA6421340D0087DD087A615E4B8688CB2F75
m _{PS18}	2E0105328B56E9E07D9B5A62F38B08AF8D8C2817B54F3302
m _{PS19}	88315EC30A94CA4EDB2C77079D9BD810A2E280B50DABB213
m _{PS20}	440E0093D28CB2B2B0A95D18CEB4AB934C33FA45C1CFC7B0
m _{PS21}	CC9BF85D41A96A6EC314F9611D5E1C0672556C8850801BB4
m _{PS22}	1ABEA04C99BC26972715F01957C0B6B959CC71CD88120817
m _{PS23}	EC5A33DA0BA4470442C5CB324A8E47B0A9F7968FC8108EE8
m _{PS24}	F82086290271DB446B5B1DC15D9BE96414B19B3D5E0F540C
m _{PS25}	11A1A790D6958FD3A9157DF1E05D1378248CA201EBCC7592
m _{PS26}	AA8564882231907BCE78092DC6C9DD4F5A0E4A34AFCFB809
m _{PS27}	912EE2238212F87BC7CDA7F30441ED184A6AA954EC4D20C8
m _{PS28}	2D200D8B8891B804673E380A1AF5AB875986E29D37D3FDC9
m _{PS29}	75E086B6C818423491BF9D6365C52FD1C5E42A576E268170
m _{PS30}	50ADBF27DA2A3701470186B699118E16DDB0D10F705607B1
m _{PS31}	656C0692B4E22023590A906D2A74DFD471C883A7B1E0B3A2
m _{PS32}	C21FDACD09A3CDCE74C4794010A3E45769B142505C56A0E6
m _{PS33}	CD9392A87C2D4D7CE5801CDDA8A76339B6F900F008B290E2

m _{PS34}	956426FEFD8B8D52073E87984E10C4D255064E1372C04A24
m _{PS35}	C4F4D6DF1B754AD6063FD10C331C1428ABB27B0700134B94
m _{PS36}	B65548082B34E9FAF43F33C4070F79099758CFD41B491A11
m _{PS37}	C8317EA111A82B04E78B88B864B1EF5D711BBEB4A0527036
m _{PS38}	8FB7AD1188E8D1A5219845013672560FD38904E70537403B
m _{PS39}	B41A324E0D80AA0598A8D391C1D7FFC82B4A075218E98EC3
m _{PS40}	49A6350A62E208B011E86528B9A481A0E76D723F6675FF82
m _{PS41}	C344C8C23C42A7B7442E6022E95AE4B08A4BFA786F35F911
m _{PS42}	28F430CF67D69C9DF60E25656413BC5F932A022DB1406C44
m _{PS43}	2FA5D70CF0FED4213F32116051450391C2A627D9B670C428
m _{PS44}	959537D988FDD4F1360B4E84701AE5409229C30EDF8BC404
m _{PS45}	CDD2E0450F9EC12F81391AD4633CB29F315B4A0A890A9A22
m _{PS46}	158776A20B4B82C563EC08F086830EA66DBD2DCCB4DF6026
m _{PS47}	431FCACBE48208975950342709D11F19AD5FB047F3B440C9
m _{PS48}	86B141AC571BA6B42653B12FF04D4F0E6C81F3EB608660A2
m _{PS49}	86D297ABD34E8510F6CDB0EA617F1F1051C8799117B02211
m _{PS50}	80B2D9530B34E781311D95CFA3857F277CC07014D324AF5A
m _{PS51}	2B607B93FD8B45601C1E574E14CFC6912C22AEC1045ADC49
m _{PS52}	D234C5C45E105A837E6DD74BC4E534523A20317BA0625A29
m _{PS53}	768CCDB3E2A7A2B863128382590946B25472BE2BFFC40641
m _{PS54}	3DA38212E0A987EE1F665D4E13C2AA4446E00A76C948A073
m _{PS55}	09173135E4A2CFC8F2678750AB5257110906F013587BDE82
m _{PS56}	522E070B266F35E99C1F3C42D2017F8E415550492B72F086
m _{PS57}	D63E4BD805262A3DEF05C7D86C422E5048921E5531784132
m _{PS58}	564AF806E28131611E5F884229265D446A50E1E488EAFBBA
m _{PS59}	A2603E009D3D30147727B750C35C62299AF754D3E4A54E1C
m _{PS60}	938504B02599D33E28246E4271C375AE81A3BBE8D3F8A920
m _{PS61}	461516B2CAC6FC42A4B707CC6073BBE573C014892C811776
m _{PS62}	29186DE4CCAAB2CD0100BB19EA595879D63F0F0CFA881AA5
m _{PS63}	A064B449CB784A91B803369CDC5EF61A670AAAC044BA3E68
m _{PS64}	8719C454D88FF5149DB943CB6CADA01D0B9664B357A18203
m _{PS65}	A27EC68720F00A714AA2C45A7EF232286984D7B193F5C916
m _{PS66}	AC8361676AB424E48F0789082B0CD2EFB8D2E627D041DD66
m _{PS67}	ABA1BEB0064733A0620906BF2B29C95883F069D7E4C35D39
m _{PS68}	9E22EEDED47D92CA1D0B7530EC6062287BD83A04874AE00C
m _{PS69}	0BADEF288B20F5686C5DE3A71219AC2172054326BE831696
m _{PS70}	953801EB2AF58C2F80E49A6CC46085CB554243E3B3BBEC8C
m _{PS71}	333A504C51C8FAC5025994565C3F600F154F64FAEF4EA484
m _{PS72}	A6583E19647662005474153A6F8DD88A473853E94B720CE7
m _{PS73}	90ACAF707D18AF34F5848C58166830AF620ACDC1B2DFDDA8
m _{PS74}	39C5C598A374EA82F3F83378258248DAD3808812DD0E74BB
m _{PS75}	F79525DE694629346D73F6256CC0F140F82603197AAA1844
m _{PS76}	B8C2A8F139097699A693022E78588D4058DB0A65FF52F813
m _{PS77}	449B50C2A52996FA5A828A907F30F9F460EE3D99930DF890
	I .

 m_{PS78} 62CEC9574D30184BCB4F94EECF0CC23D2D2A8D0003F0AA33 B56D258889703F76A0738EE3A7D355994159A4851833E198 m_{PS79} 65894AA54C0F6C9A206521C9FC379A8AAF6E621C03CF849C m_{PS80} 2D47F3414E30CC02C6835D95C9BA204488F0FFCB4852677D m_{PS81} m_{PS82} 12BE4DD8B906B584010F8A330AB67B278E8642FA33D51B68 BC928A90A4B10906CAEE638BF768E08542F48F1676006DF0 m_{PS83} 30C544E437C8ADA143566CD1BC4E9E7BA84139A08505C2F4 m_{PS84} 84FD5B05506192B753FBA2C719B584E0EDA01814999867D2 $m_{\text{PS}85}$ 191F14DD00034E03AB5BB4342F1138B2CD33784E60CFD75A m_{PS86} B8ACE7990B6A98A80A61162C4D2D5F88F24E8F7DE4207590 m_{PS87} EC1DBE72E8EED0C61054FC2695422AC0AD2D888265B21AB0 m_{PS88} 9A1B4CA467AB7E082AF4278E44D177EA78424508C23E8B08 m_{PS89} 999EE541C608164AC975214F3A37A677FC2CA03E2C2A4B20 m_{PS90} 1BDCC20265031432917A2EB828FB356A22DF9CB609C0F8F3 m_{PS91} EB4A81859C93338B8A1B87C02C815AE09D765F6F2249B958 m_{PS92} E6A5D1629F4CF09A1F280DE0C480D4C73B26ADE321A50AEE m_{PS93} BAAB7286DD24C80B15A7958039B904F1CA83C310C8C7AFF2 m_{PS94} 12220F72619E983717C68FFE1C4148F2354B7B1955B65620 $m_{\text{PS}95}$ m_{PS96} A198706E24FAA08BD09EE392414816038E667BB34307D6B2 30B3493B4C035881A7A722E4546527AAE787FA2C0893AC46 m_{PS97} 5A7318126522843DCB7F00A2D9F9BA8F88963E4152BC923C m_{PS98} 844844B0CACAB702C332CE2692B4166F4B0C63E62BF151BF m_{PS99} B8297389526410313692F861DC60DA86A23607F7DDE24755 m_{PS100} 6C1144CF8BC01538D655D29ED62DE6E74A3180EC905BF1E0 m_{PS101} E9DB3221FACFC5C88691A7013EF09672A130D52C3413AAE2 m_{PS102} 2FD0508615EC4CD4BF18ADD46D777078869130C8921A4F0E m_{PS103} 40911B4E0525AC874228F6EF642E59154730CB187C7E417A m_{PS104} 2034C6A027D4D850F5184AA64C3153231F4651B616BBFCF9 m_{PS105} 57833235451525A1DFA213FCE0B419B6494BC7B99F488410 m_{PS106} 6DC3D57F2E39158D036825F8804810D77CA1ECA610ECD894 m_{PS107} F5C50DE43AA7B731CAB7683524021701F97650499A7070E4 m_{PS108} F2184D2699785442E09FA22CC2D60A5A13FFF22AE660A470 m_{PS109} EF0029DE0D79207205458CF4D7328E81A93518D93C9A74BD m_{PS110} 9D6D8992482FB885AA5E878C3BA2045538B09886C23CDC2D m_{PS111} C0A5AB67D1CEA126F6476C75443F0A11CBE749412EF03104 m_{PS112} 1853A5C20CDF968C5A180D8EB5E72BF15517D06680D98412 m_{PS113} 8CEA1223227ADF37D0DAAB320906E1C79029F480D25181A7 m_{PS114} 5561038E96A658EF3EC665612FF92B064065D1ACC1F54812 $m_{\text{PS}115}$ C55A6263F08D664A1E53584560DFF5E611640D8281D9A843 m_{PS116} 4386A8EA59124D043F29056A4598735A4FC7BC11119B90C1 **m**_{PS117} D6571B20668BED50BD7C80388C162632BCB069AA67C7FC22 m_{PS118} 4F9F09ABBC1391EC2CCA5359FB52250E533BF04324154106 m_{PS119} 662659F42188C9453F6E6DF00C579627045DA1461A3A0EA5 m_{PS120} 8DCC9274C0C2A9BA6096BF27FACA542CD01CA8653D60A80F m_{PS121}

Physical channels... (TDD)

m _{PS122}	5C1210A1E50E505F6B73C90156C9D9F19AE2310BBD820DF0
m _{PS123}	B1E0A7CE26202E223D4FC06D5C9BBA4E5F6D98204D2D5286
m _{PS124}	DB506776958E34552F7E60E4B400D836153218F918E22FA6
m _{PS125}	ECAA60300439B2360B2AC3C43FB6241ACDE5055B295FA71C
m _{PS126}	BF1E6D9AA9CA4AC092BE60500C77D0DC7A6A236520F86722
m _{PS127}	051C5FA122845A30B4EC306B38016B45667C7754F92F13A0

Page 34 of 36

Text proposal for TS25.221 V2.0.01

Annex B (Informative)

B.1 CCPCH Multiframe Structure

In the following figures B.1 to B.3 some examples for Multiframe Structures on CCPCH are given. The figures show the placement of Common Transport Channels on the Common Control Physical Channel. Especially those CCPCH containing the BCH are depicted. Additional CCPCH capacity can be allocated on other codes and timeslots of course, e.g. FACH capacity is related to overall cell capacity and can be configured according to the actual needs. Channel capacities in the annex are derived using bursts with short midambles (Burst format 2). Every TrCH-box in the figures is assumed to be valid for two frames (see row 'Frame #'), i.e. the transport channels in CCPCH have an interleaving time of 20msec.

The figures B.1 to B.3 as given below are considered for case 2) of Physical Synchronisation Channel (PSCH), cf. section <u>5.47.4</u>. In this case CCPCH is to be transmitted in timeslots k and k+8. The BCH is split on those timeslots k and k+8 in a redundant way, thus a UE can collect the BCH information even if one of both slots is interfered.

The actual CCPCH Multiframe Scheme used in the cell is described and broadcast on Primary BCH. Thus the system information structure has its roots in this particular transport channel and allocations of other Common Channels can be handled this way, i.e. by pointing from primary BCH.

Frame #	0	2	4 5	6 7	8 9	10 11	12 13	14 15	16 17	18 19	20 21	22 23	24 25	26 27	28 29	30 31	32 33	34 35	36 37	38 39	40 41	42 43	44 45	46 47	48 49	50 41	52 53	54 55	56 57	58 59	60 61	62 63	64 65	66 67	68 69	70 71
CCPCH in TS k, Code 0																																				
CCPCH in TS k+8, Co 0																																				
Primary BCH 3,07 kbp	os			Se	con	dar	y BO	CH 3	3,07	' kb	ps			PCH	H 18	3,4k	bps	3				F	AC	H 3	0,71	kbp	S									

Figure B.1: Example for a multiframe structure for DL-CCPCH.

Frame #	0	2	4 5	6 7	8	10 11		14 15	16 17	18 19	20 21	22 23	24 25	26 27	28 29	30 31	32 33	34 35	36 37	38 39	40 41	42 43	44 45	46 47	48 49	50 41	52 53	54 55	56 57	58 59	60 61		68 69	
CCPCH in TS k, Code 0																																		
CCPCH in TS k, Code n																																		
CCPCH in TS k+8, Co 0																																		
																												-						
Primary BCH 3,07 kbr	ps			S	ecor	ndar	у В	CH:	3,07	7 kb	ps			PCŀ	H 18	3,4k	bps	3				F	AC	H 5	8,3	kbp	S							

Figure B.2: Example for a multiframe structure for DL-CCPCH. n=1...7

Frame #	0	2	4 5	6 7	8 9	10 11	12 13	14 15		18 19	20 21	22 23	24 25	26 27	28 29	30 31	32 33	34 35	36 37	38 39	40 41	42 43	44 45	46 47	48 49	50 41	52 53	54 55	56 57	58 59	60 61	62 63		68 69	70 71
CCPCH in TS k, Code 0																																			
CCPCH in TS k+8, Co 0																																			
Primary BCH 3,07 kbr	วร			Se	cor	ndar	y Bo	CH	1,53	kb	ps			PCI	1 18	3,4k	bps	;		<u> </u>		F	AC	H 3	2,2	kbp	os	<u> </u>							

Figure B.3: Example for a multiframe structure for DL-CCPCH.

History

		Document history
v0.0.1	1999-01-29	Document created based on the documents UMTS (xx.09) V 1.2.0 and ARIB Volume 3 Ver.1.0
v0.0.2 (v0.1.0)	1999-02-23	Document updated based on the TRGR1 #2(99) 115 which was agreed in the TSG RAN WG1#2 meeting, Yokohama, Feb.23,1999. The usage of ODMA is still under study.
v0.1.1	1999-02-26	Small changes (Modification of the editorial errors)
v0.1.2	1999-03-11	Small changes (Modification of the editorial errors)
v1.1.0	1999-04-6	Small changes (Modification of the editorial errors)
v1.2.0	1999-04-19	Document updated based on the TRGR1 #4(99)357 which was agreed in the TSG RAN WG1#4 meeting, Yokohama, April 19,1999. Number of Chapters are changed ("Scope" starts from section 1.)
v2.0.0	1999-04-20	Document updated based on the TSG RAN WG1#4 meeting, Yokohama, April 19,1999.
V1.0.0	1999-04-22	Noted by TSG-RAN as TS 25.221 V1.0.0
V1.0.1	1999-06-4	Document updated based on the TSG RAN WG1#3 meeting, Nynäshamn, March 22-26 1999. Small changes (Changed from 'S1.2x' to 'TS25.22x', 'MS' to 'UE', 'Reverse link' to 'Down link', 'Forward link' to 'Up link'.)
V1.1.0	1999-06-4	Document updated based on the TSG RAN WG1#5 meeting, Cheju, June 4,1999.
V1.1.1	1999-07-6	TS25.221 V1.0.1 was not updated completely based on TSG RAN WG1#3 meeting, Nynäshamn, March 22-26 1999. So update the document again.
V1.2.0	1999-07-13	Document updated based on the TSG RAN WG1#6 meeting, Espoo, July 13,1999.
V1.2.1	1999-07-15	Proposal for update according to decisions at WG1#6 meeting in Espoo
V1.3.0	1999-08-30	Proposal for update (V1.2.1) approved at WG1#7 meeting in Hanover
V1.3.1	1999-09-02	Proposal for update according to decisions at WG1#7 meeting in Hanover
V2.0.0	1999-09-03	Approved at WG1#7 meeting in Hanover
R1-99e65	1999-09-21	Proposal for editorial corrections

Editor for TS 25.221 Physical Layer Procedures, TDD Parts, is:

Katsuhiko Hiramatsu

Matsushita Communication Ind. Co., Ltd. (Panasonic)

Tel: +81-468-40-5161 Fax: +81-468-40-5183

Email: Katsuhiko.Hiramatsu@yrp.mci.mei.co.jp

This document is written in Microsoft Word 97.