
0

TSG-RAN Working Group 1 meeting #7 TSGR1#7(99)B87
Hanover , Germany
August 30-September 3, 1999

Agenda Item: Ad Hoc 10

Source: Siemens

Title: A modified generator for Multiple-Scrambling Codes

Document for: decision

1 Introduction

In a previous Tdoc [1] the proponents pointed out the desirability of generating multiple downlink
scrambling codes simultaneously using a single basic Gold code generator plus some additional
"masking" or linear algebra circuitry. The motivation for this would seem to be that under certain
circumstances generation of both primary and secondary downlink scrambling codes would be
necessary. This Tdoc cites [2] in which the generation of primary and secondary scrambling codes is
defined purely by initialisation value which leads, co-incidentally, to limits on concurrent generators.

The current working assumption, which was introduced in [3] and further described in [4] as an
example, is an Gold code generator which can be extended by an algebraic function (or other
implementation) to produce a "Q "sequence which is a shift of the "I" sequence by a constant number
of chips. This work was optimised by the proponent to minimise complexity of the reference
implementation when used as standalone generators. The current text represents a compromise
between hardware complexity and initialisation (DSP) complexity. In selecting a scrambling code
generation scheme the following points are normally considered:

• hardware (gate) complexity

• estimated power consumption, power saving options

• DSP complexity

• Flexibility

• Re-use or multiple use (e.g. common elements)

• Code quality (does this meet minimum standards? E.g. no bad overlap)

Changing the current scheme at this stage in the standardisation process should only be contemplated
with great care and any new proposals should seek to minimise impact on the current schemes.

With this in mind the following method of multiple scrambling code generation is offered as a
compromise.

2 A multiple code generator for offset I/Q scrambling sequences.

Consider the figure below which represents the current scheme.

- 2 -

I

Q

1

1 0

02

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

17

17

16

16

15

15

14

14

13

13

12

12

11

11

10

10

Figure 1 - current downlink scrambling code generator

This is a Gold code generator with conventional output arrangements for I and output logic for Q
which represents the shifted versions of the constituent m-sequences for Q. The shifted versions are
obtained so that the hardware complexity of the logic to implement the linear algebra is minimised
taking the shift as a free parameter.

In order to obtain multiple scrambling codes the proponents of [1] outlined several options and a
reference diagram reproduced below. Ideally the "masking function" at the top is as simple as
possible.

17 7 010 5

MSB LSBshift register 1 (18bits)

shift register 2 (18bits)

Masking funtion (m17 x a17) + ... + (m0 x a0)

17 7 0

Primary
Scrambling code

Secondary
Scrambling code

Figure 2 - structure of multiple scrambling code generator (from [1])

In the summary of [1] the proponent presented their preferred option and wrote that a rule was
required to co-ordinate any such multiple generation. Also they proposed the use of 4 secondary
scrambling codes for each primary code. The proponents of [2] defined 511 secondary codes for each
primary. More recent e-mail discussion in Ad Hoc 10 has mentioned approximately 16 secondary
codes for each primary. Note that there is no problem with higher layers if layer 1 over provides
secondary scrambling codes in the generator. The number of secondary scrambling codes used may
be limited by rule.

Now consider the desirable properties of a modified generator as noted:

• minimum impact to current scheme

- 3 -

• should provide approximately 16 secondary codes per primary

• should be neutral between multiple and single generator implementations

• should minimise hardware and DSP complexity

Starting from the current scheme is one way to minimise impact. The core generator can be left
alone. Secondary Gold codes may be implemented for the "I" sequences by taking successive taps
from the upper LFSR as shown below by example for the first secondary code. The equivalent
generation of shifted versions of the (offset) "Q" sequences may be obtained in similar fashion by
using a masking function on the lower LFSR (marked B) together with shifted versions of the
sequence produced by the upper LFSR (marked A).

Minimising hardware complexity is done by choosing the I/Q shift as a free parameter so as to
minimise total complexity in the "masking function" blocks.

msb 0

msb 0

....

........

shift register A

shift register B

masking function
for shifted sequence B

masking function
for shifted sequences A

unshifted
sequence1

unshifted
sequence2

shifted
sequence1

shifted
sequence2

Figure 3 - multiple offset I/Q scrambling code generator (shows only 1 secondary)

3 Initialisation of the generator for (primary) scrambling codes

It has been pointed out that care should be taken in initialising the scrambling code generator. The
problem seems to be as follows.

There are 2^18 possible initialisation values.

There are 2^9 = 512 primary scrambling sequences required.

Many assignments of initialisation values for the 512 required primary sequences may lead to
sequences which are not sufficiently distinct. This may occur for random values, linear initialisation
values or sequential use of 0..511 as initialisation values. Indeed only by examining the Galois field
formed by the states of the (equivalent) linear feedback shift register (LFSR) can one be sure of the
nature of the sequences.

- 4 -

This process may be done offline and fixed.

Given that ω is the root of the generator polynomial for the LFSR which is a primitive element of the
field the initialisation values could be pre-computed as:

1 = ω0, ω1xN, ω2xN,...ωnxN,... ω511xN , where N is sufficiently large to make the sequences distinct in
the multi-path radio environment.

This would ensure that the sequences were adequately separated along the m-sequence of the LFSR.

4 References

[1] Tdoc 915, "Multiple-Scrambling Code"

[2] Tdoc 724, " Multiple-Scrambling Codes"

[3] Tdoc 588, " Text proposal for downlink scrambling code phase shift parameter "

[4] Tdoc 806, " Text proposal for the figure of a downlink scrambling code generator "

