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1 Introduction

The preamble part of the random access burst signal format proposed for UTRA/FDD has the length of 4096 code chips [1].
The preamble consists of a signature of length 16 complex symbols, which are spread by a common, 256 chip long Orthogonal
Gold sequence called preamble spreading code. In total there are 16 different signatures, obtained from the orthogonal set of
binary Orthogonal Gold sequences of length 16, by multiplying each binary code with the constant complex number C=

(1+j)/ 2 , where j= 1− .

The UE transmissions of the random access bursts can start at a number of well-defined time offsets (access slots), which are
synchronised to the frame sync of the primary CCPCH. The primary CCPCH frame sync is extracted after the cell search
procedure in the UE. Therefore the random access preambles are received at the base station at the beginning of each access
slot interval with the time uncertainty equal to the round-trip propagation delay.

The current random access preamble construction allows simplified realisation of the bank of correlators required in the base
station random access receiver if this time uncertainty is smaller than 255 chips. However, the aperiodic auto-correlation
sidelobes of such codes are rather high, which means that the RACH preamble might be detected at wrong time positions. In
other words, the preamble detection probability at correct time positions is deteriorated  for moderate to high signal-to-noise
ratios. Therefore it is desirable to find another random access preamble construction, which would also produce an orthogonal
set of preamble codes with much lower aperiodic auto-correlation sidelobes, facilitating an efficient matched filter
implementation.

2 Golay complementary sequences

The new RACH preambles are based on the application of binary sequences from the Golay complementary pairs. The major
property of the binary sequences from the Golay complementary pair is that the sum of their aperiodic auto-correlation
functions equals zero for all non-zero time shifts. The Golay sequences can be constructed for any length L=2N, where N is any
positive integer, and also for lengths 10 and 26, or for any combination of those three lengths. Besides the complementary
property, such sequences exhibit some additional properties which make them attractive as synchronisation codes: they have
low aperiodic auto-correlation sidelobes, and there is a large number of them for a given code length.

If the sequences are of length L=2N, there is a general method for the construction of polyphase complementary pairs of
sequences, where the Golay complementary sequences are just a special, binary case. That general construction is defined by
the following recursive relation [2].

a0(k) = δ(k)
b0(k) = δ(k)
an(k) = an-1(k) + Wn·bn-1(k-Dn)
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bn(k) = an-1(k) - Wn·bn-1(k-Dn) ,                                    (1)

k = 0, 1, 2, …, 2N-1,
n = 1, 2, …, N,

Dn = nP2 ,

where

an(k) and bn(k) are two complementary sequences of length 2N,
δ(k) is the Kronecker delta function,
k is an integer representing the time scale,
n is the iteration number,
Dn is a delay,
Pn , n = 1, 2, …, N, is any permutation of numbers {0, 1, 2, …, N-1},
Wn is an arbitrary complex number of unit magnitude.

If Wn has values +1 and –1, the binary (Golay) complementary sequences are obtained [3].

An efficient matched filter directly corresponding to the complementary sequences aN(k) and bN(k) defined by (1) is given in
Figure 1. This filter performs the correlation of input signal r(k) simultaneously with the two complementary sequences aN(k)
and bN(k). The two matched filter outputs produce the two corresponding aperiodic cross-correlation functions Rra(τ) and
Rrb(τ). Such a digital filter will be called the Efficient Golay Correlator (EGC), although it is actually the filter matched also to
any polyphase complementary pair defined by (1). The matched filter has complex conjugated coefficients Wn, denoted as Wn

*.

Figure 1: Efficient Golay Correlator (EGC).

The boxes in Figure 1 represent the corresponding delay lines with Dn memory elements. The number of multiplications in the
EGC is equal to log2(L), while in the straightforward matched filter implementation it would be L. The number of additions in
the EGC is 2·log2(L), while in the straightforward matched filter implementation it would be L-1. The number of memory
elements required for the EGC is L-1 (=D1+D2+…+DN), the same as for the straightforward implementation of a single
matched filter corresponding to one of the complementary sequences.

3 Efficient Golay correlator with reduced memory

In the case when the expected delays τ of input signal are limited to be |τ|<Tmax chips, it is possible to derive another Efficient
Golay correlator with reduced memory. The EGC with reduced memory is based on the representation of a Golay sequence of
length L=2N=J·Tmax in the so-called “factored” form, i.e. as a function of two shorter constituent complementary sequences
A(k) and B(k) of length Tmax. This relation is a simple consequence of the general recursive construction (1), which can actually
start from any complementary pair of sequences. Namely, if the initial vectors a0(k) and b0(k) are taken to be

a0(k) = Α(k),
b0(k) = Β(k),   k=0, 1, 2,…, Tmax–1,                                          (2)

where A(k) and B(k) are the two arbitrary complementary sequences of length Tmax, the resulting pair of complementary
sequences of length L=2N=J·Tmax is generated after J iterations. Note that all the delays Dn in (1) should be multiplied by the
length of constituent sequences (Tmax).
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For example, if the constituent sequences are of length Tmax=256, the permutation vector Pn and the weighting vectors Wn are
of length 16 if the resulting complementary pair should be of length 4096. The resulting Golay sequences consists of 8 times
repeated sequences A(k) and B(k), which are multiplexed according to some equivalent binary "interleaving" function I0(k)
depending on the permutation vector Pn. The orthogonal set of 16 Golay sequences of length 4096, having the common
constituent sequences A(k) and B(k) of length 256 (and a common interleaving function), can be obtained by choosing a single
permutation vector of length 16, along with 8 appropriately chosen weighting vectors.

The additional 16 orthogonal Golay sequences of length 4096 having the same constituent sequences A(k) and B(k), but
interleaved according to another interleaving function I1(k), can be obtained by taking

a0(k) = Β(k),
b0(k) = Α(k),   k=0, 1, 2,…, Tmax–1,                                     (3)

and using the same permutation and weighting vectors as for the first set of 16 sequences. Therefore in total there are 32
orthogonal Golay sequences of length 4096 having the common constituent sequences of length 256. In principle it is possible
to generate 2J such orthogonal Golay sequences, where J=L/Tmax.

The set of 16 orthogonal Golay sequences of length 4096 which is obtained according to the above algorithm and which can be
used in UTRA/FDD is given in Table 1, as a function of two shorter, constituent complementary sequences A(k) and B(k) of
length 256. The additional set of 16 orthogonal Golay sequences of length 4096 can be obtained by replacing A(k) with B(k)
and B(k) with A(k) in Table 1. As A(k) and B(k) are orthogonal, the additional set is orthogonal to the first one.

Table 1: First 16 orthogonal Golay sequences of length 4096.

k 0...255…
…4095

S(0,k) A A B B A -A -B B A -A B -B A A -B -B
S(1,k) A A B B A -A -B B -A A -B B -A -A B B
S(2,k) A -A B -B A A -B -B A A B B A -A -B B
S(3,k) A -A B -B A A -B -B -A -A -B -B -A A B -B
S(4,k) A A B B -A A B -B A -A B -B -A -A B B
S(5,k) A A B B -A A B -B -A A -B B A A -B -B
S(6,k) A -A B -B -A -A B B A A B B -A A B -B
S(7,k) A -A B -B -A -A B B -A -A -B -B A -A -B B
S(8,k) A A -B -B A -A B -B A -A -B B A A B B
S(9,k) A A -B -B A -A B -B -A A B -B -A -A -B -B
S(10,k) A -A -B B A A B B A A -B -B A -A B -B
S(11,k) A -A -B B A A B B -A -A B B -A A -B B
S(12,k) A A -B -B -A A -B B A -A -B B -A -A -B -B
S(13,k) A A -B -B -A A -B B -A A B -B A A B B
S(14,k) A -A -B B -A -A -B -B A A -B -B -A A -B B
S(15,k) A -A -B B -A -A -B -B -A -A B B A -A B -B

The RACH preamble correlator with reduced memory, corresponding to the above set of 32 orthogonal preambles is shown in
Figure 2. The number of memory elements per received signature in this scheme is the same as for the RACH preamble
correlator described in UMTS XX.07. However, the total number of adders and multipliers is significantly reduced due to the
use of EGC instead of preamble spreading code matched filter.
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Figure 2: The bank of RACH preamble correlators with reduced memory, matched to
32 orthogonal Golay sequences of length 4096.

The interleaving function I0(k) is common for the 16 orthogonal preambles, while the interleaving function I1(k) is common for
the other 16 orthogonal preambles. From Table 1 it can easily be seen that

I0(k) = {0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, }, and    I1(k) = {1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0}.

Each preamble has a unique "signature" sequence, which can also be easily derived from Table 1. For example,

Signature_0 = Signature_16 = {1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1}.

The set of 256 cell-specific pairs of constituent Golay sequences A(k) and B(k) (corresponding to the set of 256 cell specific
preamble spreading codes) is defined by (1), where the permutation vector Pn is common for all pairs and is given by

Pn = {0, 2, 1, 5, 6, 4, 7, 3},                                                          (4)

while the corresponding 256 weighting vectors W(v,n), v = 0, 1, …, 255, are defined as the 8-bit binary representations of
integers {0, 1, 2, …, 255}, i.e.

W(v,n) = ( ) )(1 vBn− ,     v = 0, 1, …, 255,   n = 1, 2, 3, …, 8,             (5a)

where Bn(x) is the n-th bit in the 8-bits long binary representation of some positive integer x, i.e.

x = 1
8

1

2)( −

=

⋅∑ n

n
n xB .                                                               (5b)

Note that all 256 constituent pairs can be detected by using the same correlator shown in Figure 1, by adapting only the
weighting coefficients Wn

*.
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4 Implementation complexity

The implementation complexity of the bank of RACH preamble correlators is significantly reduced due to the use of EGC
instead of preamble spreading code matched filter. Assuming that the number of new orthogonal preambles based on Golay
complementary sequences (GCS) used is the same (16) as in the case of the current preambles based on concatenated
orthogonal Gold sequences (OGS), the implementation complexity of the corresponding banks of correlators can be compared
in the following way:

a) The number of adders is 32 (=16+16) for the GCS, compared to 271 (=255+16) adders for the OGS.
b) The number of multipliers is 24 (=8+16) for the GCS, compared to 272 (=256+16) multipliers for the OGS.
c) There is a multiplexer (switch) for GCS while there is no multiplexer for OGS.
d) The lengths of delay lines are the same in both cases.

5 Aperiodic autocorrelation properties

Besides the improved implementation efficiency, the new preambles based on Golay sequences offer much better
performances in term of the maximum absolute aperiodic autocorrelation sidelobes (MAS), when compared with the current
preamble codes based on concatenated orthogonal Gold sequences.

As a first example, the aperiodic auto-correlation function for one of the concatenated orthogonal Gold preambles generated
with the old scheme for preamble spreading code n=1 is shown in Figure 3 in the annex. This should be compared with the
new construction using Golay sequences with constituent sequences A and B defined by (1), (4) and, as an example, Wn={1, -1,
1, -1, 1, -1, -1, 1}. The aperiodic auto-correlation function of this new code is shown in Figure 4 in the annex. As can be seen
the Golay sequences have much better auto-correlation properties.

The MAS for all the preambles based on the above preamble spreading code are listed in Table 2. The benefits of the Golay
sequences in terms of reduced MAS is clear.

Table 2: MAS for preambles corresponding to one particular preamble spreading code.

Golay sequences Concatenated Orthogonal Gold
sequences

Number of
occurrences

MAS Number of
occurrences

MAS

4 161 1 1024
4 181 4 1280
8 183 7 1536
- - 2 1792
- - 2 2048

The random access preambles are not completely asynchronous to the base station receiver because the UE has the basic
information about base station timing, but with an uncertainty introduced by the round-trip propagation delay between the base
station and UE. The current assumption in UTRA/FDD is that the round-trip delay is at most 255 chips to be able to use the
proposed simplified receiver structure, so the aperiodic auto-correlation function of random access preambles is actually of
most interest only in the region +/- 255 chips around the main lobe. The maximum absolute values of aperiodic auto-
correlation sidelobes in the region +/- 255 chips around the main lobe are shown in Table 3 for the previously described Golay
and concatenated Orthogonal Gold sequences of length 4096.
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Table 3: MAS in the +/- 255 chips region for preambles corresponding to one particular preamble spreading code.

Golay sequences Concatenated Orthogonal Gold
sequences

Number of
occurrences

MAS Number of
occurrences

MAS

16 31 1 731
- - 2 737
- - 3 743
- - 3 755
- - 6 761
- - 1 767

From Table 3 it can be noticed that Golay sequences have about 25 times lower auto-correlation sidelobes than the
concatenated Orthogonal Gold sequences, in the region +/- 255 chips around the main lobe.

It is clear that for the particular codes evaluate above, the Golay sequences are superior. Finally, the maximum absolute values
of aperiodic auto-correlation sidelobes in the region +/- 255 chips around the main lobe are evaluated for all preambles. Both
the Golay based 256 pairs of constituent sequences A and B defined by (4) and (5) for all 32 orthogonal preambles of length
4096 corresponding to each such pair of constituent sequences, and the current preambles based on concatenated Orthogonal
Gold sequences have been investigated. The results are shown in Table 4.

Table 4: MAS in the +/- 255 chips region for all preambles.

Golay sequences Concatenated Orthogonal Gold
sequences

Number of
occurrences

MAS MAS

64 27 MAS values are plotted in
Figure 5 in the annex.

Average MAS is 669, largest
MAS is 1080, smallest MAS is
286.

95% of MAS values are above
500.

128 29
1280 31
1024 33
1600 35
1280 37
832 39
512 41
576 43
256 45
320 47
192 49
64 51

Table 4 shows that all 8192 possible Golay preambles of length 4096, have extremely low maximum auto-correlation
sidelobes. The average MAS is 37, and 65% of the MAS values are between 27 and 37. A simple, but rather fair, comparison
between the two different preamble designs can be done by comparing the average MAS. The old concatenated orthogonal
Gold preambles have an average MAS 18 times (669/37) higher than the Golay based preambles.
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6 Conclusion

A new set of RACH preambles is proposed for inclusion in UTRA/FDD. The benefits of the preambles codes, based on Golay
complementary sequences, are:

♦ The new preambles offer significantly more efficient preamble detector hardware implementation, measured in terms on
the number of multipliers and adders required.

♦ The number of available preambles is doubled, to 8192.
♦ All 8192 of the new preambles have good auto-correlation properties, while the span for the old preambles is quite large

and many of those codes exhibit very bad correlation properties.
♦ The new preambles have about 18 times lower aperiodic auto-correlation sidelobes than the present RACH preambles,

offering potentially better Eb/No performance.
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Figure 3: Aperiodic auto-correlation function for one of the present RACH preambles
(signature + preamble spreading code).
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Figure 4: Aperiodic auto-correlation function for one of the new RACH preambles
(Golay complementary sequence from Table 1)
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Figure 5: Distribution of MAS values for the old orthogonal Gold based preambles.


