Page 1

3GPP TSG-RAN WG5 Testing
R5s140936
01 Jan – 31 Dec 2014
	CR-Form-v11

	CHANGE REQUEST

	

	
	36.523-3
	CR
	CRNum
	rev
	-
	Current version:
	11.5.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Correction to the function f_GERAN_LLC_XIDReset()

	
	

	Source to WG:
	Anite

	Source to TSG:
	R5

	
	

	Work item code:
	TEI8_Test
	
	Date:
	2014-10-09

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-11

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)

	
	

	Reason for change:
	Following the changes made by TTCN CR R5s140286, a new default handler was introduced for handling XID requests generated by the UE immediately following an XID RESET procedure. The current implementation waits for a 5s timer to expire before responding to any XID packets received. The delay intoduced here can cause intermittent issues due to timer expiries at the UE side.

Also, following the sending of the XID response, there is a delay of 2s before continuing with the test case, to allow T3192 to epxire in the UE before setting up a 2nd consecutive downlink TBF. It has been seen that the an additional delay can be introduced by the SS sending the IMMEDIATE ASSIGMENT due the length of the AGCH frame cycle, so in some timing conditions this delay can be insufficient.

	
	

	Summary of change:
	The handling of the XID requests following XID RESET procedure has been modified by introducing an alt function to stop the 5s timer as soon as the additional XID packet is received. Also the 2s timer has been increased to 3.5 seconds

	
	

	Consequences if not approved:
	A conformant UE may fail these test cases

	
	

	Clauses affected:
	6.2.3.1, 6.2.3.1a, 9.2.3.4.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR … CR …

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

Change 1

	Testcase name
	6.2.3.1,6.2.3.1a,9.2.3.4.1

	Reason for change
	 Following the changes made by CR R5s140286, a new default handler was introduced for handling XID requests generated by the UE immediately following an XID RESET procedure. The current implementation waits for a 5s timer to expire before responding to any XID packets received. The delay intoduced here can cause intermittent issues due to timer expiries at the UE side.

Also, following the sending of the XID response, there is a delay of 2s before continuing with the test case, to allow T3192 to epxire in the UE before setting up a 2nd consecutive downlink TBF. It has been seen that the an additional delay can be introduced by the SS sending the IMMEDIATE ASSIGMENT due the length of the AGCH frame cycle, so in some timing conditions this delay can be insufficient.

	Summary of change
	The handling of the XID requests following XID RESET procedure has been modified by introducing an alt function to stop the 5s timer as soon as the additional XID packet is received. Aslo the 2s timer has been increased to 3.5 seconds

	Source of change
	GERAN_CommonFunctions.ttcn

	MCC160 Comments
	Accepted in principle but implemented differently. See below for implementation

	
	

Before change:

	 function f_GERAN_LLC_XIDReset(GERAN_CellId_Type p_CellId,

 SAPI p_SAPI) runs on GERAN_PTC

 {

 var integer v_LLMEId := enum2int(p_CellId);

 var default v_MyDefaultVar := null;

 var G_LLC_XID_IND v_XID;

 timer t_Wait5S := 5.0;

 v_MyDefaultVar := activate(a_GERAN_ReceiveXID(p_CellId)); // @sic R5s140286 sic@

 t_Wait5S.start;

 G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), p_SAPI, '30841000000000'O, enum2int(p_CellId))); // @sic R5-135000 sic@

 f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Reset(f_GERAN_TLLI_Get(p_CellId), p_SAPI, v_LLMEId)); // @sic R5s120802 sic@

 f_GPRS_ReceiveUplinkMsg(p_CellId, car_G_LLC_XID_IndAny);

 t_Wait5S.timeout;

 deactivate(v_MyDefaultVar);

 if (f_GERAN_MsgInDefault_CheckXID()) { // If UE has sent another XID, then we need to reply to it @sic R5s140286 sic@

 v_XID := f_GERAN_MsgInDefault_GetXID();

 f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.sAPI, omit, enum2int(p_CellId)));

 f_Delay(2.0);
 }

 } //end of f_GERAN_LLC_XIDReset

After change :

	 function f_GERAN_LLC_XIDReset(GERAN_CellId_Type p_CellId,

 SAPI p_SAPI) runs on GERAN_PTC

 {

 var integer v_LLMEId := enum2int(p_CellId);

 var default v_MyDefaultVar := null;

 var G_LLC_XID_IND v_XID;

 timer t_Wait5S := 5.0;

 v_MyDefaultVar := activate(a_GERAN_ReceiveXID(p_CellId)); // @sic R5s140286 sic@

 t_Wait5S.start;

 G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), p_SAPI, '30841000000000'O, enum2int(p_CellId))); // @sic R5-135000 sic@

 f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Reset(f_GERAN_TLLI_Get(p_CellId), p_SAPI, v_LLMEId)); // @sic R5s120802 sic@

 f_GPRS_ReceiveUplinkMsg(p_CellId, car_G_LLC_XID_IndAny);

 alt

 {

 []t_Wait5S.timeout

 {}

 [else]

 {

 if (f_GERAN_MsgInDefault_CheckXID()) { // If UE has sent another XID, then we need to reply to it @sic R5s140286 sic@

 t_Wait5S.stop;

 }

 else

 {

 f_Delay(0.5);

 repeat;

 }

 }

 }

 if (f_GERAN_MsgInDefault_CheckXID()) { // If UE has sent another XID, then we need to reply to it @sic R5s140286 sic@

 v_XID := f_GERAN_MsgInDefault_GetXID();

 deactivate(v_MyDefaultVar);

 f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.sAPI, omit, enum2int(p_CellId)));

 f_Delay(3.5);

 }

 } //end of f_GERAN_LLC_XIDReset

MCC160 Implementation:
 G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), p_SAPI, '30841000000000'O, enum2int(p_CellId))); // @sic R5-135000 sic@

 f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Reset(f_GERAN_TLLI_Get(p_CellId), p_SAPI, v_LLMEId)); // @sic R5s120802 sic@

 f_GPRS_ReceiveUplinkMsg(p_CellId, car_G_LLC_XID_IndAny);

 deactivate(v_MyDefaultVar); // R5s140936 sic@

 if (f_GERAN_MsgInDefault_CheckXID()) {// R5s140936 sic@

 t_Wait5S.stop;// if already received Msg, then can stop waiting

 } else {// R5s140936 sic@

 alt {

 [] t_Wait5S.timeout {}

 [] G_LLC.receive(car_G_LLC_XID_IndAny) -> value v_LLCInd

 {

 v_XID := v_LLCInd.xid;

 t_Wait5S.stop;

 G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.sAPI, v_XID.xID_Info, enum2int(p_CellId)));

 f_GERAN_MsgInDefault_SetXID(v_XID);

 }

 }

 }
 if (f_GERAN_MsgInDefault_CheckXID()) { // If UE has sent another XID, then we need to reply to it @sic R5s140286 sic@

 v_XID := f_GERAN_MsgInDefault_GetXID();

 f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.sAPI, omit, enum2int(p_CellId)));

 f_Delay(3.5); // R5s140936 sic@

 }

