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	Reason for change:
	Following the changes made by TTCN CR R5s140286, a new default handler was introduced for handling XID requests generated by the UE immediately following an XID RESET procedure. The current implementation waits for a 5s timer to expire before responding to any XID packets received. The delay intoduced here can cause intermittent issues due to timer expiries at the UE side.

Also, following the sending of the XID response, there is a delay of 2s before continuing with the test case, to allow T3192 to epxire in the UE before setting up a 2nd consecutive downlink TBF. It has been seen that the an additional delay can be introduced by the SS sending the IMMEDIATE ASSIGMENT due the length of the AGCH frame cycle, so in some timing conditions this delay can be insufficient.


	
	

	Summary of change:
	The handling of the XID requests following XID RESET procedure has been modified by introducing an alt function to stop the 5s timer as soon as the additional XID packet is received. Also the 2s timer has been increased to 3.5 seconds

	
	

	Consequences if not approved:
	A conformant UE may fail these test cases

	
	

	Clauses affected:
	6.2.3.1, 6.2.3.1a, 9.2.3.4.1
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	Other comments:
	


Change 1

	Testcase name
	6.2.3.1,6.2.3.1a,9.2.3.4.1

	Reason for change
	  Following the changes made by CR R5s140286, a new default handler was introduced for handling XID requests generated by the UE immediately following an XID RESET procedure. The current implementation waits for a 5s timer to expire before responding to any XID packets received. The delay intoduced here can cause intermittent issues due to timer expiries at the UE side.

Also, following the sending of the XID response, there is a delay of 2s before continuing with the test case, to allow T3192 to epxire in the UE before setting up a 2nd consecutive downlink TBF. It has been seen that the an additional delay can be introduced by the SS sending the IMMEDIATE ASSIGMENT due the length of the AGCH frame cycle, so in some timing conditions this delay can be insufficient.



	Summary of change
	The handling of the XID requests following XID RESET procedure has been modified by introducing an alt function to stop the 5s timer as soon as the additional XID packet is received. Aslo the 2s timer has been increased to 3.5 seconds

	Source of change
	GERAN_CommonFunctions.ttcn

	MCC160 Comments
	Accepted in principle but implemented differently.  See below for implementation

	
	


Before change:

	  function f_GERAN_LLC_XIDReset(GERAN_CellId_Type p_CellId,

                                SAPI p_SAPI) runs on GERAN_PTC

  {

    var integer v_LLMEId := enum2int(p_CellId);

    var default v_MyDefaultVar := null;

    var G_LLC_XID_IND v_XID;

    timer t_Wait5S := 5.0;

    v_MyDefaultVar := activate(a_GERAN_ReceiveXID(p_CellId));  // @sic R5s140286 sic@

    t_Wait5S.start;

    G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), p_SAPI, '30841000000000'O, enum2int(p_CellId))); // @sic R5-135000 sic@

    f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Reset(f_GERAN_TLLI_Get(p_CellId), p_SAPI, v_LLMEId)); // @sic R5s120802 sic@

    f_GPRS_ReceiveUplinkMsg(p_CellId, car_G_LLC_XID_IndAny);

    t_Wait5S.timeout;

    deactivate(v_MyDefaultVar);

    if (f_GERAN_MsgInDefault_CheckXID()) { // If UE has sent another XID, then we need to reply to it @sic R5s140286 sic@

      v_XID := f_GERAN_MsgInDefault_GetXID();

      f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.sAPI, omit, enum2int(p_CellId)));

      f_Delay(2.0);
    }

  } //end of f_GERAN_LLC_XIDReset


After change :

	  function f_GERAN_LLC_XIDReset(GERAN_CellId_Type p_CellId,

                                SAPI p_SAPI) runs on GERAN_PTC

  {

    var integer v_LLMEId := enum2int(p_CellId);

    var default v_MyDefaultVar := null;

    var G_LLC_XID_IND v_XID;

    timer t_Wait5S := 5.0;

    v_MyDefaultVar := activate(a_GERAN_ReceiveXID(p_CellId));  // @sic R5s140286 sic@

    t_Wait5S.start;

    G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), p_SAPI, '30841000000000'O, enum2int(p_CellId))); // @sic R5-135000 sic@

    f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Reset(f_GERAN_TLLI_Get(p_CellId), p_SAPI, v_LLMEId)); // @sic R5s120802 sic@

    f_GPRS_ReceiveUplinkMsg(p_CellId, car_G_LLC_XID_IndAny);

   alt

    {

    []t_Wait5S.timeout

    {}

    [else]

       {

        if (f_GERAN_MsgInDefault_CheckXID()) { // If UE has sent another XID, then we need to reply to it @sic R5s140286 sic@

       t_Wait5S.stop;

        }

        else

        {

        f_Delay(0.5);

        repeat;

        }

       }

    }

            if (f_GERAN_MsgInDefault_CheckXID()) { // If UE has sent another XID, then we need to reply to it @sic R5s140286 sic@

                v_XID := f_GERAN_MsgInDefault_GetXID();

                deactivate(v_MyDefaultVar);

                f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.sAPI, omit, enum2int(p_CellId)));

                f_Delay(3.5);

                }  

  } //end of f_GERAN_LLC_XIDReset


MCC160 Implementation:
    G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), p_SAPI, '30841000000000'O, enum2int(p_CellId))); // @sic R5-135000 sic@

    f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Reset(f_GERAN_TLLI_Get(p_CellId), p_SAPI, v_LLMEId)); // @sic R5s120802 sic@

    f_GPRS_ReceiveUplinkMsg(p_CellId, car_G_LLC_XID_IndAny);

    deactivate(v_MyDefaultVar); // R5s140936 sic@

    if (f_GERAN_MsgInDefault_CheckXID() ) {// R5s140936 sic@

      t_Wait5S.stop;// if already received Msg, then can stop waiting

    } else {// R5s140936 sic@

      alt { 

       [] t_Wait5S.timeout {}

       [] G_LLC.receive(car_G_LLC_XID_IndAny) -> value v_LLCInd

         {

          v_XID := v_LLCInd.xid;

          t_Wait5S.stop;

          G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.sAPI, v_XID.xID_Info, enum2int(p_CellId)));

          f_GERAN_MsgInDefault_SetXID(v_XID);

         }

      }

    }
    if (f_GERAN_MsgInDefault_CheckXID()) { // If UE has sent another XID, then we need to reply to it @sic R5s140286 sic@

      v_XID := f_GERAN_MsgInDefault_GetXID();

      f_GPRS_SendDownlinkMsg(p_CellId, 1, cas_G_LLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.sAPI, omit, enum2int(p_CellId)));

      f_Delay(3.5); // R5s140936 sic@

    }

