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1 Introduction

Two contribution at the last RAN4 meeting analyzed the ergodicity of the geometrical SCME model with respect to the “initial phases”, i.e. the polarization phases 
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  with respect to a number of measures including PDP, temporal correlation, spatial correlation, condition number, and capacity [1][2].  This contribution, which is the first of two parts, attempts to reproduce these results for the capacity measure with a pseudo-link simulation.  It also attempts to answer the question of whether the average throughput over a long simulation time depends on the 
Initialization of these phases. Here “long simulation time” refers to a time sufficient for the capacity estimate to converge.
2 Simulation Assumptions and Procedure
Simulations were performed according to the parameters in Table 1. Other parameter are according to Sec. 7.1 of [3]. 
Table 1: Simulation Parameters

	Channel Type
	Urban Micro

	Carrier Frequency
	750 MHz

	Mobile Speed 
	30 km/h

	eNB Antennas
	±45° slant polarized

	UE Antennas
	Vertically polarized, omni directional

	UE Antenna Spacing
	/2 

	XPR
	Fixed at 9 dB

	Number of Subframes Simulated
	5,10,20,50,100 X 1e3

	Number of Seeds Simulated
	1000 for capacity simulations and 50 for spatial correlation simulations. 

	Link Error Prediction
	Mean Mutual Information / bit

	SNR (Es/No)
	25 dB

	Transmission Mode 
	TM 3 with fixed rank 2

	Receiver
	MMSE

	Time between Subframes Measurements
	1 ms (consecutive subframes)

	Direction of Travel
	45 degrees


The simulation generated channel matrices according to the following equation taken from Sec. 5.5.1 of [4]: 
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See [6] for the definition of the variables. The simulation consisted of the following steps:
for seed = 
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1. A set of 4MN (=480) phases 
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were randomly selected after setting the seed of a random number generator to
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,. Here M = 20 is the number of subpaths per path and N=6 is the number of paths.
2. Channel matrices 
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, u=1,2 and s=1,2 are generated according to the above equation, one for each subframe.

3. The mean mutual information per bit (MMIB) at the output of the  MMSE receiver assuming channel matrix 
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, n=1,2,…6  is calculated for t=0,1e-3,2e-3 …,100 s resulting in MMIB statistics MMIBcw(t) t=0,1e-3,2e-3 …,100 s. The index cw refers to the codeword 1 or 2.
4.  Block error estimates are made by comparing MMIB(t) with a threshold with a block error occuring when MMIB(t) is below a threshold and no block error occurring above a threshold. This results in the TB error sequence Tberrorcw(t) t=0,1e-3,2e-3 …,100.
5. The capacity as a function of simulation time is calculated according to 
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where s takes on values spaced 1e-3 s apart and Cmax is the subframe information bit rate equal to transport block size times 10e6.
6. The capacity is summed over the two codewords and stored as the capacities for seed over simulation times of between 0 and 100 s:
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end   /* seed */

The result is a two dimensional array of capacities 
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In order to establish a reference capacity to enable reporting the results as a percentage instead of a raw capacity, the actual capacity is 
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 is calculated by 
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That is 
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 is the capacity at the end of the simulation time averaged over all of the seeds. It may be argued that this may not be the “true” capacity. However this is only used as a reference to get an idea of relative magnitude of the error.  Another reference could be the maximum capacity 
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3 Simulation Results

The above procedure was used to obtain capacity estimates as a function of seed number for several configurations.  The results for each configuration are described in the sections below.
3.1 Wideband with UE Orientation Averaging

The first set of results corresponds to transmission over the entire band (50 RBs, 600 subcarriers) with the throughput averaged over 12 UE azimuth orientations.  
 Figure 1 illustrates the complementary empirical cumulative distribution function of the set of capacities corresponding to the set of 1000 seeds for a particular simulation length. For example the red line of the graph is the 1 – CDF of the set of points 
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As expected the spread of the estimated capacities decreases with the number of subframes since for each seed, some period of time is needed for the estimated capacity to converge. If the capacity really was ergodic, then in the limit as t  goes to infinity 
[image: image28.wmf](

)

,

Cseedt

 should be independent of seed, i.e.,



[image: image29.wmf](

)

0

lim,,

t

CseedtCseed

®¥

="


It is not entirely clear from Figure 1 whether this is the case here, that is, if increasing t past 100 s. would reduce the spread of capacities or whether the spread would floor at some value.
In order to answer this question, two particular values of seed were chosen, 
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 were plotted vs. t as seen in Figure 1.  As can be seen for both seeds, convergence seems to have occurred after only 20,000 subframes and the curves are approaching different capacities separated by 0.22 or 8.1% for 
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.   Another view of the convergence can be seen by plotting the standard deviation of the capacities, each corresponding to a different seed, as a function of time as shown in Figure 4. A log-log plot is used because a reduction in standard deviation by a factor of one over the square root of the  simulation time will correspond to a line with a slope of -1/2.  This is indeed the case in Figure 3 where we see no flattening of the curve for large simulation times.  The fact that the standard deviation of the capacities decreases with time indicates that convergence has not occurred.  In other words, the differences between the capacities is time dependent and not constant.  If the process is ergodic in capacity, then the standard deviation should continue to decrease with increasing simulation time. On the other hand if it floors at some value, then it is non-ergodic.  The lines in Figure 2 therefore cannot be assumed to have converged even though it appears that they have.
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Figure 1: Complementary distribution function of the absolute relative errors under different initial phases  for simulation times between 5,000 and 100,000.
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Figure 2: Convergence properties for two seed values. Convergence appears to have taken place implying that different seeds do lead to different capacities contrary to the assumption ergodicity with respect to the phases 
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Figure 3: Standard deviation of the capacities, each corresponding to a different seed, expressed as a percentage.  The linear drop in standard deviation in this log log plot corresponds to reduction by a 1/sqrt(simulation time).  .
Whether the curves in  Figure 2  would converge for a large enough t, we can’t say and therefore the question of whether the capacity is ergodic in the sets of phases can’t be answered by computer alone.  However we can say that from a practical view, capacities obtained by different seeds can differ by as much as 8% in an extreme case even after a very long simulation time of 100 seconds. 
These results confirm those in [1] and [2] which show a small dependence of capacity on the initial phases. The choice of the initial phases is therefore an important design criterion for channel emulator manufacturers. This will be discussed in the Conclusion.
4 Without UE Orientation Averaging
In order to eliminate the effects of averaging over different UE orientations ,a single UE orientation of 0 degrees was simulated. Figure 4 through Figure 6 show plots of the measured spatial correlation for 50 different seed values for 5,000, 10,000, and 30,000 subframes. The distribution of spatial correlations is somewhat smaller than in Fig. 12 of [1] ranging from .08 to .12 for 30,000 subframes.

Figure 7 is a plot of the standard deviation of the capacities, each capacity corresponding to a seed, as a function of simulation time.    The y axis is Figure 7 is expressed in terms of percentage, that is Sseed Cap (seed, time)/Cmean  where 
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 is defined in Sec. 2.  Comparing Figure 7 with Figure 3 we see similar standard deviations with or without UE averaging.  Also as in Figure 3, the RMS error also is seen to decrease with the square root of the simulation time.
The distribution of capacity errors as measured relative to the mean capacity 
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 is shown in Figure 8.  The distribution is seen to be similar to the case of UE orientation averaging as seen in Figure 1.
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Figure 4:  Spatial correlation after 3000 subframes
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Figure 5: Spatial correlation measured after 5,000 subframes.
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Figure 6: Spatial correlation measured after 10,000 subframes.
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Figure 7: Standard deviation of capacity expressed as percentage of mean capacity.
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Figure 8: Distribution of capacity errors relative to mean capacity.  Note the x axis is in percentage.
5 Conclusion [image: image49]
This contribution analyzed the variation in capacity estimates with the multi-cluster anechoic chamber method over both simulation time and polarization phase states.  By simulating over a very long simulation time, differences in estimated capacities are obtained with different initial polarization The results do not show that the process is non-ergodic since the differences between the capacities corresponding to different seeds is seen to still decrease with time.  Over normal measurement times of 20 to 100 seconds the choice of polarization phases does affect the capacity.  This is an issue both for the anechoic and two-stage methods. . It is therefore important that channel emulator manufacturers choose these initial phases intelligently.
The variation in correlation and capacity with seed affect the throughput measured. However the effect on the SNR required to obtain the target throughput of 70% is ultimately what is important. This should be studied further but for the simulations conditions presented here, a change of 6% in throughput requires approximately a one dB increase in SNR at 70% throughput 25 dB for the case simulated in this contribution. This corresponds to an RMS variation in required SNR of about .7 dB. 
An additional consideration is that at least for the anechoic chamber approach, Equation (1) is not used directly. Instead  a number of probes are used to give a spatial correlation that is similar to what is generated by Equation (1).  It is not clear that the  quantitative results obtained above would also apply to such a configuration. In particular there would typically be fewer polarization phases than with Equation (1).
Finally, the variations in capacities generated by different polarization states re relevant only if these states are chosen randomly. As seen in the spatial correlation plots, some seeds correspond to faster convergence than other.  Judicious choice of phases is used in fading simulators give random waveforms whose autocorrelation rapidly converges. In a similar manner polarization phases can be chosen speed convergence of the spatial correlation function.
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