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<<START OF MODIFICATION>>
A.26
Insertion loss: calibration antenna attenuator (if used)

If a calibration antenna attenuator is used, it only appears in Stage 2.  As a result, this uncertainty has to be taken into account.

This uncertainty will be calculated from the manufacturer's data in logs with a rectangular distribution (see clause 5.1.2 in [56]).

Table A.5. Example of uncertainty budget for TRP measurement. 

	Uncertainty Source
	Comment
	Uncertainty Value [dB]
	Prob Distr
	Div
	ci
	Standard Uncertainty [dB]

	STAGE 1 (DUT measurement)

	1) Mismatch of receiver chain 
	Гpower meter <0.05    Гprobe antenna connection <0.16
	0.05
	N
	1
	1
	0.05

	2) Insertion loss of receiver chain
	Systematic with Stage 2 (=> cancels)
	0
	R
	
[image: image1.wmf]2


	1
	0

	3) Influence of the probe antenna cable
	Systematic with Stage 2 (=> cancels)
	0
	R
	
[image: image2.wmf]3


	1
	0

	4) Absolute antenna gain of the probe antenna
	Systematic with Stage 2 (=> cancels)
	0
	R
	
[image: image3.wmf]3


	1
	0

	5) Measurement Receiver: uncertainty of the absolute level
	Power Meter
	0.06
	R
	
[image: image4.wmf]3


	1
	0.03

	6)Measurement distance

a) Offset of DUT phase center
	Δd=0.05m
	0.14
	R
	
[image: image5.wmf]3


	1
	0.08

	7) Quality of quiet zone
	Standard deviation of E-field in QZ measurement
	0.5
	N
	1
	1
	0.5

	8) DUT Tx-power drift
	Drift
	0.2
	R
	
[image: image6.wmf]3


	1
	0.12

	9) Uncertainty related to the use of SAM phantom: 
	Standard SAM head with standard tissue simulant
	0
	R
	
[image: image7.wmf]3


	1
	0

	10) Coarse sampling grid
	Negligible, used 
[image: image8.wmf]q
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[image: image9.wmf]j
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	0
	N
	1
	1
	0

	11) Repeatability
	Monoblock, clamshell and slide design used for testing  
	0.4
	R
	
[image: image10.wmf]3


	1
	0.23

	STAGE 2 (Calibration)

	12) Uncertainty of network analyzer
	Manufacturer's uncertainty calculator, covers whole NA setup
	0.5
	R
	
[image: image11.wmf]3


	1
	0.29

	13) Mismatch of receiver chain
	Taken in to account in NA  setup uncertainty 
	0
	U
	
[image: image12.wmf]2


	1
	0

	14) Insertion loss of receiver chain
	Systematic with Stage 1 (=> cancels)
	0
	R
	
[image: image13.wmf]3


	1
	0

	15) Mismatch in the connection of calibration antenna
	Taken in to account in NA setup uncertainty
	0
	U
	
[image: image14.wmf]2


	1
	0

	16) Influence of the feed cable of the calibration antenna
	Gain calibration with a dipole
	0.3
	R
	
[image: image15.wmf]3


	1
	0.17

	17) Influence of the probe antenna cable
	Systematic with Stage 1 (=> cancels)
	0
	R
	
[image: image16.wmf]3


	1
	0

	18) Uncertainty of the absolute gain of the probe antenna
	Systematic with Stage 1 (=> cancels)
	0
	R
	
[image: image17.wmf]3


	1
	0

	19) Uncertainty of the absolute gain of the calibration antenna
	Calibration certificate
	0.5
	R
	
[image: image18.wmf]3


	1
	0.29

	20)Measurement distance:

Calibration antenna's displacement and misalignment 
	d=3m, Δd=0.05m, θ=2°
	0.29
	R
	
[image: image19.wmf]3


	1
	0.17

	21) Quality of quiet zone
	Standard deviation of e-field in QZ measurement, Gain calibration
	0.5
	N
	1
	1
	0.5

	Combined standard uncertainty
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	0.89

	Expanded uncertainty (Confidence interval of 95 %)
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Table A.6. Example of uncertainty budget for TRS measurement. 

	Uncertainty Source
	Comment
	Uncertainty Value [dB]
	Prob Distr
	Div
	ci
	Standard Uncertainty [dB]

	STAGE 1 (DUT measurement)

	1) Mismatch of transmitter chain
	ГBSS <0.13   Г antenna connection <0.03
	0.02
	N
	1
	1
	0.02

	2) Insertion loss of transmitter chain
	Systematic with Stage 1 (=> cancels)
	0
	R
	
[image: image22.wmf]3


	1
	0

	3) Influence of the probe antenna cable
	Systematic with Stage 2 (=> cancels)
	0
	R
	
[image: image23.wmf]3


	1
	0

	4) Absolute antenna gain of the probe antenna
	Systematic with Stage 2 (=> cancels)
	0
	R
	
[image: image24.wmf]3


	1
	0

	5) Base station simulator: uncertainty of the absolute level
	
	1
	R
	
[image: image25.wmf]3


	1
	0.58

	6)BER measurement: output level step resolution
	Step  0.1dB
	0.05
	R
	
[image: image26.wmf]3


	1
	0.03

	7) Statistical uncertainty of the BER measurement
	BER target 10%±2% , 20000 tested bits , N=60
	0.12
	N
	1
	1
	0.12

	8)TRS data rate normalization
	4 reference points measured
	0.12
	N
	1
	1
	0.12

	9)Measurement distance

a) Offset of DUT phase center
	Δd=0.05m
	0.14
	R
	
[image: image27.wmf]3


	1
	0.08

	10) Quality of quiet zone
	Standard deviation of E-field in QZ measurement
	0.5
	N
	1
	1
	0.5

	11) DUT sensitivity drift
	Drift measurement
	0.2
	R
	
[image: image28.wmf]3


	1
	0.12

	12) Uncertainty related to the use of SAM phantom: 
	Standard SAM with standard tissue simulant
	0
	R
	
[image: image29.wmf]3


	1
	0

	13) Coarse sampling grid
	 
[image: image30.wmf]q

D

= 30( and
[image: image31.wmf]j
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	0.15
	N
	N
	1
	0.15

	14) Repeatability
	Monoblock, clamshell and slide design used for testing  
	0.5
	R
	
[image: image32.wmf]3


	1
	0.29

	STAGE 2 (Calibration)

	15) Uncertainty of network analyzer
	Manufacturer's uncertainty calculator, covers NA setup
	0.5
	R
	
[image: image33.wmf]3


	1
	0.29

	16) Mismatch of  transmitter chain
	Taken in to account in NA  setup uncertainty 
	0
	U
	
[image: image34.wmf]2


	1
	0

	17) Insertion loss of transmitter chain
	Systematic with Stage 1 (=> cancels)
	0
	R
	
[image: image35.wmf]3


	1
	0

	18) Mismatch in the connection of calibration antenna
	Taken in to account in NA setup uncertainty
	0
	R
	
[image: image36.wmf]3


	1
	0

	19) Influence of the feed cable of the calibration antenna
	Gain calibration with dipole
	0.3
	R
	
[image: image37.wmf]3


	1
	0.17

	20) Influence of the probe antenna cable
	Systematic with Stage 1 (=> cancels)
	0
	R
	
[image: image38.wmf]3


	1
	0

	21) Uncertainty of the absolute gain of the probe antenna
	Systematic with Stage 1 (=> cancels)
	0
	R
	
[image: image39.wmf]3


	1
	0

	22) Uncertainty of the absolute gain of the calibration antenna
	Calibration certificate
	0.5
	R
	
[image: image40.wmf]3


	1
	0.29

	23)Measurement distance:

Calibration antenna's displacement and misalignment 
	d=3m, Δd=0.05m, θ=2°
	0.29
	R
	
[image: image41.wmf]3


	1
	0.17

	24) Quality of quiet zone
	Standard deviation of E-field in QZ measurement
	0.5
	N
	1
	1
	0.5

	Combined standard uncertainty
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=

×

=

m

i

i

i

c

u

c

u

1

2

2


	
	
	
	
	1.1

	Expanded uncertainty (Confidence interval of 95 %)
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<<END OF MODIFICATION>>
<<START OF MODIFICATION>>
Annex G (informative):
Test tolerance for average TRP and TRS
This Annex shows how the test tolerance for the average TRP and TRS is derived. The principle “never fail a good UE” is assumed.
G.1
The distribution of the error
The antenna performance is specified in terms of two types minimum requirements: a requirement on the minimum value measured (six: three channels on each side of the dummy head), and another on the average of these. The test tolerance is smaller for the latter since the measurement error (standard uncertainty) will be somewhat “smoothed” in the averaging process. Obtaining the test tolerance (expanded uncertainty at a 95% confidence level) for the minimum value is straightforward, but more difficult for the average that is a non-linear quantity.
The standard deviation of the error is needed to compute the test tolerance. For a simple linear average one finds that the standard deviation of the estimate of the average is inversely proportional to the square root of the number of terms of the average if the errors of these terms are independent. The non-linear quantity (log of linear average of values returned in dB) is more involved, and the measurement errors may also be correlated.  
To estimate the test tolerance for the average TRP/TRS we must deal with a non-linear quantity. For the provisional analysis of the measurement error in Annex A assumes that the error is Gaussian in dB, whereas the average is taken of values linear scale and the result then given in dBm. Assume first that each measurement value is denoted
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 the “true” value and the measurement error of channel j in logarithmic scale. 
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Our problem is to find the distribution of the measurement error in logarithmic scale
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on order to construct a (95%) confidence interval and thus obtain the test tolerance. 

To this end we introduce the variable 
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so the measurement error can be written 
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If 
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 is sufficiently small then we can approximate this non-linear function with its Taylor’s expansion. The average is 
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Note that 
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 has a log-normal distribution. Assuming first that the errors 
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 are independent, the variance is obtained as
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Notice that the expected value of the error is not dependent on n (the number of channels averaged), whereas the variance decreases with n. The variance also depends on the unknown values 
[image: image61.wmf]j

x

(we shall consider this later). Hence if 
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 is small and n is sufficiently large, then
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 is small enough so that we can write
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 is of the form (note that 
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that is, a weighted sum of log-normal variables. There is no close expression for this distribution; it is not certain that the Gaussian approximation holds particularly if there is dependence between the terms. For independent terms the Gaussian approximation holds under relatively weak conditions. For n large enough we still hope that it tends to a Gaussian distribution even if there is some dependence between the errors. We thus assume that this approximation holds for the ‘average’ error and we can use the following standard formula for calculating the confidence interval (test tolerance) when the variance is “known”: 
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where 
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 is the error of the average, 
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 the standard deviation and Q the standard Normal cumulative density function. We will use this to devise a confidence interval for the error and thus obtain the test tolerance, but we shall look at the variance first.

G.2   The variance of the error

G.2.1    Independent errors
For simplicity we start by assuming independence whence it follows from the above that 
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and we have an upper bound, but it is also obvious that the variance will decrease with the number of samples in the average n. To this end, we note that the values
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can be regarded as observations of a stochastic variable
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. We may thus view the distribution of the error 
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 derived above as conditional on the values of
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. But rather than considering the variance conditioned on a (stochastic) quotient with correlation between its variables we shall use a simplified approach. 

The quotient in the expression of the variance may be interpreted as the quotient of the estimates of the second moment and the expectation of 
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where the superscript of then expectation symbol denotes estimate. If n is large enough we may contend that
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where the last term is the estimate of the variance, and hence  
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The last factor can be estimated by making assumptions on the distribution of 
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. Furthermore, we have already implicitly assumed that the measurements errors are small, 
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 to make sure 
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 is small, so any assumption can be checked against the measured quantity
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G.2.2    Dependent errors

The dependence between measured values (three channels on each side of the dummy head) has an impact on the variance of the error and hence the confidence interval. Recall that the error is approximately  
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with
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and 
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 the “true” value and the measurement error of channel j in logarithmic scale. To account for dependence we first note that the relation between the covariance of the linear values 
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where 
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 is the variance of  (the Gaussian variables)
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. Next we assume that the covariance between any pair of measurements is constant, and since 
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we can write 
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This means that there exists e.g. a systematic part of the error that is the same for all measurements. The variance of the error is then 
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This can be simplified to
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where the second factor accounts for the variability of the (true) measurement values. Notice that for a single measurement, 
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G.3    Estimation of the test tolerance

The one-sided 95% (5%) percentile of the estimated error 
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 at the lower (upper) end for TRP (TRS) can be obtained from
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expressed in dB. The positive sign applies for TRS and the negative for TRP. The term 
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represent a static error due to the log-linear conversion (errors and measured values are returned in dB scale). 
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Next note that we must have 
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If 
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[image: image118.wmf]35

.

0

/

<

=

C

dB

s

s

 we obtain the interval


[image: image119.wmf](

)

r

r

x

s

s

e

+

-

÷

÷

ø

ö

ç

ç

è

æ

+

±

=

1

)

(exp

V

1

1

64

.

1

2

2

*

2

ˆ

x

n

C

I

dB

dB

,

assuming constant covariance between any pair of measurements. Using these confidence intervals, the probability that a ‘good’ mobile is failed is 5%.
Estimating the correlation and the distribution of the received power levels applicable to any terminal
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is not trivial. However, measured values of TRP and TRS suggest that th “variability factor” is only slightly larger than unity (see G.2.1), and one may assume that it is smaller than 1.2.  

The correlation is harder to estimate: there are certainly systematic parts in Table A.5, but many of the bigger error sources have a large degree of randomness. Furthermore, the assumption that the covariance is the same for each pair of measurements is probably not likely in practice, but may still represent a situation where there are systematic (constant) errors in the measurements. 

If we assume the provisional 
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 dB from Table A.5, we get the results in Table G.1 for two different correlations:

	Test tolerance in dB

	
	 = 0.2
	 = 0.3

	TRP
	0.78
	0.87

	TRS
	1.22
	1.33


Table G.1 Test tolerance for two values of the correlation. 
G.4
Simulations
The effect of the non-linear error in the averaging process is easily simulated using random number generators and generating Gaussian distributed errors to the individual TRP/TRS values. Assuming all six measurements to be equal, independent errors and 
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 as compared to the theoretical
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. The difference however can be considered to be negligible. 

To account for dependence, we have to go through all error sources in Table A.5 and decide that if they independent for position (left/right) or/and frequency. This table is repeated below with the dependency of every error source indicated. 
	Uncertainty Source
	Comment
	Frequency independent
	Position independent
	Standard Uncertainty [dB]

	1) Mismatch of receiver chain 
	Гpower meter <0.05    Гprobe antenna connection <0.16
	No
	No
	0.05

	2) Insertion loss of receiver chain
	Systematic with Stage 2 (=> cancels)
	-
	-
	0

	3) Influence of the probe antenna cable
	Systematic with Stage 2 (=> cancels)
	-
	-
	0

	4) Absolute antenna gain of the probe antenna
	Systematic with Stage 2 (=> cancels)
	-
	-
	0

	5) Measurement Receiver: uncertainty of the absolute level
	Power Meter
	No
	No
	0.03

	6)Measurement distance

a) Offset of DUT phase center
	Δd=0.05m
	No
	Yes
	0.08

	7) Quality of quiet zone
	Standard deviation of E-field in QZ measurement
	Yes
	Yes
	0.5

	8) DUT Tx-power drift
	Drift
	No
	No
	0.12

	9) Uncertainty related to the use of SAM phantom: 
	Standard SAM head with standard tissue simulant
	-
	-
	0

	10) Coarse sampling grid
	Negligible, used 
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	-
	-
	0

	11) Repeatability
	Monoblock, clamshell and slide design used for testing  
	Yes
	Yes
	0.23

	12) Uncertainty of network analyzer
	Manufacturer’s uncertainty calculator, covers whole NA setup
	No
	No
	0.29

	13) Mismatch of receiver chain
	Taken in to account in NA  setup uncertainty 
	-
	-
	0

	14) Insertion loss of receiver chain
	Systematic with Stage 1 (=> cancels)
	-
	-
	0

	15) Mismatch in the connection of calibration antenna
	Taken in to account in NA setup uncertainty
	-
	-
	0

	16) Influence of the feed cable of the calibration antenna
	Gain calibration with a dipole
	No
	No
	0.17

	17) Influence of the probe antenna cable
	Systematic with Stage 1 (=> cancels)
	-
	-
	0

	18) Uncertainty of the absolute gain of the probe antenna
	Systematic with Stage 1 (=> cancels)
	-
	-
	0

	19) Uncertainty of the absolute gain of the calibration antenna
	Calibration certificate
	No
	No
	0.29

	20)Measurement distance:

Calibration antenna’s displacement and misalignment 
	d=3m, Δd=0.05m, θ=2°
	No
	No
	0.17

	21) Quality of quiet zone
	Standard deviation of e-field in QZ measurement, Gain calibration
	Yes
	No
	0.5


Table G.2 Error sources and dependence on frequency and position
Making the simulation with the error independency specified in the table below it follows that the average TRP error is diminished about
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, which corresponds to a correlation of about 0.3 with the assumptions above. Note that this value also includes the non-linear error in the averaging process. Comparing with Table G.1 these simulations indicate that a test tolerance for 1.0 dB for TRP and 1.3 dB for TRS appear to be reasonable for the average requirements. 
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