3GPP TSG-RAN WG2 Ad Hoc
R2-1707251
Hangzhou, China, 27 - 29 June 2017
Agenda item:
10.3.3.3
Source:
Huawei, HiSilicon

Title:
PDCP window management
Document for:
Discussion and decision
1 Introduction
In the previous meeting, it is decided that the following email discussion will handle the issues related to PDPC receive operation.
· [NR/UP] – PDCP receive operation – LG

-
Discuss different receive window operation aspects discussed in contributions (e.g. PUSH/pull or different ones for AM/UM)

-
Finalize whether it is possible to have unified approach

-
TP capturing agreements

-
One week before the meeting

Based on the summary of the email discussion [1], it is generally agreed that PDCP will use a common reception algorithm for different types of bearers in NR. Also, the mechanism when t-reordering timer expires also reached consensus. In this contribution，following up the above the email discussion, we analyse the un-resolved issues related to the window management of the PDCP layer.
2 Discussions
2.1 Imbalance between two legs for the reception of split bearers
In LTE, there are 3 types of bearers for PDCP layer, which are AM bearer and split bearer and UM bearer. In NR, there will be 6 types of bearers for PDCP layer, which are normal bearer, split bearer and duplicated bearers mapped on AM and UM, respectively. For various types of bearers, one important issue is that, for the same PDCP PDU, the transmitted and the receiver side keep different HFNs for the packets, thus causing issues for (de-)ciphering and integrity protection/verification. This issue is called HFN desynch.
Actually, in LTE, there is already mechanism defined for UL split bearer that can avoid the HFN desynch. For the data transmission of the UL split bearer, parameter ul-DataSplitThreshold can avoid the issue of DC skew in case of low buffer size. Furthermore, the UE or eNB can always avoid HFN desynch with a good implementation and this is addressed in the specification as implementation issue in 5.1.1 [2]. For the implementation of UE and eNB, analysis on the avoidance of PDCP skew has been given in [3]. Possible approaches to avoid HFN desynch can be:
· To send the similar amount of PDCP PDUs on the two legs;
· To monitor the transmit window in the RLC layer for deriving the reception status in the receiver side.

In NR, split bearer mapped on UM is introduced. For split bearer mapped on RLC UM, monitoring the status of the transmit window does not apply anymore. However, there still can be other approaches for implementation. One such approach is to utilize the ACK/NACK information for scheduling. Hence, we make the following proposal based on the above discussions
Proposal 1: The issue of HFN desynch can still be up to the implementation in NR.

2.2 PDCP reception window: to pull or to push
For the reception window operation, it is generally agreed that a unified reception algorithm can be defined for all types of bearers, while still unclear which type of window should be used: PULL-based or PUSH-based. The main difference between these two types of windows have been summarized in [5] as follows:

· PUSH:
· The lower window edge is pushed up by the highest delivered PDU (in order).
· Data outside the window is considered old – and thus discarded
· PULL:
· The upper window edge is pulled up by the highest received PDU (out of order)
· Data outside the window is considered new – thus pulls up
Based on our observation in the first section, if the implementation is good enough, there will be little imbalance between the two legs for the split bearers and no more than half of the SN space will be in flight. Hence, there will not be a large difference between the SNs of consecutively received PDCP PDUs. However, the motivation to use the PULL-based window is to expedite the reception by pulling the window when there are packets received far in front of the currently received packets.
Observation 1: If the implementation is good enough, there will not be large difference in the SNs between the consecutively received PDCP PDUs. Hence, the motivation to use PULL-based window does not hold anymore.
For PDCP mapped on UM, while still using the PUSH-based window, one may argue that the PUSH-based window is too time consuming for urgent data transmissions with UM. However, one difference between the PUSH-based window in PDCP and RLC AM is that, for RLC AM PUSH-based window, it only moves forward when the packets at the lower edge are received. While for PDCP PUSH-based window, the window also moves when the t-reordering timer expires. Hence, for bearers mapped on UM, the time consumed by waiting for t-reordering can be reduced by setting the timer to a lower value. Moreover, similar approach is also used for RLC UM without major issues.
Observation 2: For PDCP entity mapped on UM, the reception operation can be reduced by setting a t-reordering timer with shorter duration.

Based on the above discussion, we make the following proposal:
Proposal 2: PDCP window operation based on PUSH should be supported.
In the email discussion, it is also questioned whether the behavior of the reception window when the lower edge of the reordering window becomes higher than RX_DELIV. Based on the above analysis, we argue that if the implementation is good enough for avoiding the imbalance, this scenario will not happen. Hence, there is no need to define the reception behavior in this case.
Proposal 3: It is not necessary to define the receiving side behaviour when the lower edge of the reordering window becomes higher than RX_DELIV for PULL-based window.
2.3 Integrity verification, deciphering and header decompression for duplicated and out-dated packets

One remaining issue for discussion is:
Whether to perform ciphering/integrity verification/header decompression for the PDCP PDU that is outdated (i.e. RCVD_COUNT <= RX_DELIV) or duplicated (i.e. the PDCP PDU with COUNT = RCVD_COUNT has been received before).
In LTE, the duplicate detection in the PDCP layer is mainly due to the repeated received packets of not acknowledged data during handover. In NR, duplicate bearers for both AM and UM have been introduced. Hence, the scenario for duplicate detection become more common in the PDCP layer and we make the following observation before continuing the discussion.
Observation 3: The introduction of duplicate bearers in NR provides another scenario for duplicate detection.
For PULL- and PUSH-based window, the regions for the outdated/duplicated packets are illustrated in the figure below, respectively.

[image: image1.emf]1

RX_NEXT RX_DELIV RX_NEXT - RX_WIN

2 3 4

Reordering Window

RX_DELIV+RX_WIN RX_NEXT RX_DELIV

1 2 3 4

Reordering Window

PULL-based PUSH-based

Outdated Duplicated Not possible

In the following, we discuss the RoHC and integrity protection for user/control plane (UP/CP) PDCP PDUs, respectively.
· RoHC for user plane PDCP PDU
In the PUSH-based PDCP window in LTE, the outdated DRBs mapped on AM are first deciphered and then performed header decompression [4], as highlighted in the following. While for DRB mapped on UM and SRB, the behaviour for outdated data is undefined.
The reason for doing this procedure is to ensure the continuity for the RoHC context. If there is change in the context for the UP PDCP PDU, which is also outdated, the receiver needs to process this outdated packet and acknowledge the change in context. This applies for all the cases regardless of the RLC modes. Hence, we argue ciphering and decompression should also be performed for outdated UP PDCP PDUs.

Proposal 4: As in LTE for the outdated DRB mapped on AM, if the outdated UP PDCP PDUs are configured with header compression, they should be deciphered and header decompressed first before they are discarded.
For duplicate DRBs, since the related RoHC context information has already been received, there is no need to decompress it anymore. Similar operation has been done in LTE as in 5.1.2.1.4 [2].

Proposal 5: There is no need to decipher and decompress the duplicate DRBs.
· Integrity Protection for control plane PDCP PDU
Integrity protection can protect messages from being modified. It also can prevent the impersonation attacks. Furthermore, for the CP PDCP PDUs that are ciphered and integrity-protected on the transmitter side, the same rationale follows as that for UP PDCP PDUs: even if they are outdated or duplicated, they are still valuable in terms of verifying the integrity of the data and identifying the potential impersonation/modification attacks. Hence, they should be deciphered and integrity-verified before they are discarded.
Proposal 6: For both the outdated and duplicated control plane PDCP PDUs that are integrity-protected on the transmitter side, they should be deciphered and integrity-verified before they are discarded at the receiver side.
Proposal 7: As a summary, for user/control plane PDCP PDUs that are either outdated or duplicated, the following operation should be done before they are discarded.
	
	Outdated
	Duplicated

	User plane PDCP PDU
	Deciphered and decompressed
	Nothing

	Control plane PDCU PDU
	Deciphered and integrity-verified
	Deciphered and integrity-verified

3 Conclusion
In this contribution, based on the result of the email discussion, we analyse the window management of the PDCP layer in NR. The following observations have been made:
Observation 1: If the implementation is good enough, there will not be large difference in the SNs between the consecutively received PDCP PDUs. Hence, the motivation to use PULL-based window does not hold anymore.
Observation 2: For PDCP entity mapped on UM, the reception operation can be reduced by setting a t-reordering timer with shorter duration.

Observation 3: The introduction of duplicate bearers in NR provides another scenario for duplicate detection.
Based on the above observations, we make the following proposals:
Proposal 1: The issue of HFN desynch can still be up to the implementation in NR.

Proposal 2: The unified PDCP window operation should be based on PUSH.
Proposal 3: It is not necessary to define the receiving side behaviour when the lower edge of the reordering window becomes higher than RX_DELIV for PULL-based window.
Proposal 4: As in LTE for the outdated DRB mapped on AM, if the outdated DRBs are configured with header compression, they should be deciphered and header decompressed first before they are discarded.

Proposal 5: There is no need to decipher and decompress the duplicate DRBs.
Proposal 6: For both the outdated and duplicated control plane PDCP PDUs that are integrity-protected on the transmitter side, they should be deciphered and integrity-verified before they are discarded at the receiver side.
Proposal 7: As a summary, for user/control plane PDCP PDUs that are either outdated or duplicated, the following operation should be done before they are discarded.

	
	Outdated
	duplicated

	User plane PDCP PDU
	Deciphered and decompressed
	Nothing

	Control plane PDCU PDU
	Deciphered and integrity-verified
	Deciphered and integrity-verified

4 Reference

[1] R2-170xxxx, E-mail discussion summary of PDCP receive operation, LG electronics.
[2] 36323, Packet Data Convergence Protocol (PDCP) specification, 3GPP.

[3] R2-1702751, PDCP skew measurement and reporting, Ericsson.
[4] RAN2#98 Chairman notes, 3GPP.
[5] R2-1704373, PDCP reception algorithm, Ericsson.

-	if received PDCP SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or 0 <= Last_Submitted_PDCP_RX_SN – received PDCP SN < Reordering_Window:

(Note: data outside the window, considered as outdated for PUSH-based window management)

-	if received PDCP SN > Next_PDCP_RX_SN:

-	decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN - 1 and the received PDCP SN;

-	else:

-	decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN and the received PDCP SN;

-	perform header decompression (if configured) as specified in the subclause 5.5.5;

-	discard this PDCP SDU;

3GPP

1

RX_NEXT
RX_DELIV
RX_NEXT - RX_WIN
2
3
4

Reordering Window
RX_DELIV+RX_WIN
RX_NEXT
RX_DELIV
1
2
3
4

Reordering Window
PULL-based
PUSH-based

Outdated

Duplicated

Not possible

