[bookmark: _Ref452454252][bookmark: _GoBack]3GPP TSG-RAN WG2 NR Adhoc #2	R2-1706593
Qingdao, China, 27 - 29 June 2017	Revision of R2-1705219

Agenda item:	10.3.2.2
Source:	Nokia, Alcatel-Lucent Shanghai Bell
Title:	Segmentation implications to RLC status reporting
WID/SID:	NR_newRAT-Core - Release 15
Document for:	Discussion and Decision
1	Introduction
In the RAN2#97bis meeting, the following was agreed pertaining to RLC segmentation [1]:
	Agreements RLC segmenation:
-	As a baseline, segmentation is always enabled for RLC-AM and RLC-UM. FFS if there are cases in which it is beneficial to disable segmentation
-	An RLC SDU for UM and AM can be associated with only one RLC SN, i.e., the byte segments from an RLC SDU can be associated with the same RLC SN.
-	Segmentation and re-segmentation is based on RLC SDU, i.e., SO field indicates byte position of the RLC SDU
-	RLC header is to be designed in following principles:
- RLC header indicates if RLC PDU carries a complete RLC SDU or RLC SDU segments.
- RLC header does not include SO field if RLC PDU carries a complete RLC SDU.
- RLC header does not include SO field when the beginning of the RLC SDU is segmented.
- RLC header includes SO field when the middle or end of the RLC SDU is segmented.
- RLC header indicates whether the RLC PDU contains the end part of RLC SDU segment or not when the middle or end of the RLC SDU is segmented.

In the previous RAN2#98 meeting the contribution in [1] was discussed which discussed an issue having SO-based segmentation only when applying LTE RLC procedural text directly for NR RLC.
2	Issue with SO-based segmentation from [1]
RLC segmentation in LTE and NR works differently as illustrated in the following figure 1. In LTE, every RLC SDU segment has its own sequence number as no two segments of a single SDU will be placed into a single AMD PDU. In NR, however, each segment of a single SDU will use the same SN and the SO field is used to tell the byte position of the segment in the original RLC SDU.

Figure 1: Illustration of LTE vs. NR segmentation at RLC
As a result, in LTE the ACK_SN in a status report consists always a completely missing AMD PDU unless previously issued re-transmission of an RLC data PDU has been re-segmented and a part (AMD PDU segment) has been received (The ACK_SN field indicates the SN of the next not received RLC Data PDU which is not reported as missing in the STATUS PDU.) – this holds also for VR(MS) (Maximum STATUS transmit state variable). Thus, the principle of not reporting the possibly already received AMD PDU segment(s) of an ACK_SN as “successfully received” worked well. However, for NR design we foresee some implications with such principle for which we give an example below.
An example using the figure 1 to explain how LTE works with FI-based segmentation:
At T1: SN1 is received, VR(H) = 2 which is the SN following the highest received SN among received RLC data PDUs, VR(R) = 2 which is the SN following the last in sequence completely received AMD PDU, VR(MS) =2 which is the possible SN for ACK_SN when a status report is to be constructed;
At T2: SN3 is received, but not SN2, VR (H) = 4, VR(R) =2, VR(MS) =2, T-reordering is started and VR(X)=4 which is the SN following the SN that triggered the T-reordering;
At T3: at T-reordering expiry, status report is constructed which indicates ACK_SN = 4 and NACK_SN =2.
Applying the procedure similarly to NR:
At T1: SN1 is received but segmentation information indicates it does not contain a full SDU, VR(H) = 2 which is the SN following the highest received SN among received RLC data PDUs, VR(R) = 1 which is the SN following the last in sequence received AMD PDU, VR(MS) =1 which is the possible SN for ACK_SN when a status report is to be constructed;
At T2: SN2 is received but segmentation information indicates it does not contain a full SDU, the second segment of SN1 is missing, VR(H) = 3, VR(R) = 1, VR(MS) = 1, T-reordering is started and VR(X) = 3 which is the SN following the SN that triggered the T-reordering;
At T3: at T-reordering expiry, VR(MS) is updated to VR(X) = 3 and status report indicates ACK_SN = 3, NACK_SN =1 and SO = X (second segment of SN1 missing, X deduced from reception of the first segment of SN1), NACK_SN = 2 and SO = Y (second segment of SN2 missing, Y deduced from reception of the first segment of SN2).
ACK_SN 3 is reported and the missing of the second segment of SN2 is reported. However, there could be a case that second segment of SN2 has actually not even been sent by the transmitter side yet when the T-reordering was started and expired by the first segment of SN2. Or the second segment has just been sent but the Rx did not take that HARQ process anymore into account in the status reporting. This may lead to a situation the Tx RLC entity mistakenly seeks to re-transmit the second segment of SDU with SN2.
Observation 1: Applying exactly the LTE procedure for RLC status reporting in NR may lead to inaccurate reporting of segments that have not been / have just been sent.
3	Discussion
Since NR RLC does not support concatenation, usually the last RLC PDU from a single logical channel multiplexed into the MAC PDU could be a first segment of an RLC SDU. Hence, every time such a MAC PDU is received and demultiplexed, such a RLC PDU (when VR(H) gets updated) will trigger the T-reordering as discussed above which does not happen with the LTE segmentation for in-sequence received PDUs. It is expected that this may lead to the defined error scenario quite frequently, e.g., when there were re-transmissions of earlier transmitted data in the meanwhile. We think that such early reporting should be avoided in the system.
Proposal 1: Too early reporting of not transmitted yet or still ongoing segment should be avoided.
To mimic the behaviour in LTE, simple extension on top of the LTE baseline would be to keep track of the highest SO along with the highest SN among the received RLC data PDUs. With this approach, T-reordering should be started when gap is really created by either a further segment or a full PDU.
Proposal 2: Receiving RLC entity keeps track of the highest SO along with the highest SN among the received RLC data PDUs.
Proposal 3: T-reordering is started when a gap is created by either a further segment or a full PDU considering the highest recorded SO.
ACK_SN field in the status report could optionally follow an SO field which indicates the byte offset of the next not received segment which is not reported as missing in the status report. This way the delaying the reporting of already in-sequence received segments could also be avoided.
Proposal 4: ACK_SN follows an optional SO field in the RLC STATUS PDU to indicate the byte offset of the next not received segment which is not reported as missing in the status report.
4	Conclusions
Segmentation implications to RLC status reporting are discussed in this contribution with following proposals proposed:
Proposal 1: Too early reporting of not transmitted yet or still ongoing segment should be avoided.
Proposal 2: Receiving RLC entity keeps track of the highest SO along with the highest SN among the received RLC data PDUs.
Proposal 3: T-reordering is started when a gap is created by either a further segment or a full PDU considering the highest recorded SO.
Proposal 4: ACK_SN follows an optional SO field in the RLC STATUS PDU to indicate the byte offset of the next not received segment which is not reported as missing in the status report.
References
[1] R2-1705219, Segmentation implications to RLC status reporting, Nokia, Alcatel-Lucent Shanghai Bell
Annex 36.322 for information:
[bookmark: _Toc398111732]5.1.3.2.3	Actions when a RLC data PDU is placed in the reception buffer
When a RLC data PDU with SN = x is placed in the reception buffer, the receiving side of an AM RLC entity shall:
-	if x >= VR(H)
-	update VR(H) to x+ 1;
-	if all byte segments of the AMD PDU with SN = VR(MS) are received:
-	update VR(MS) to the SN of the first AMD PDU with SN > current VR(MS) for which not all byte segments have been received;
-	if x = VR(R):
-	if all byte segments of the AMD PDU with SN = VR(R) are received:
-	update VR(R) to the SN of the first AMD PDU with SN > current VR(R) for which not all byte segments have been received;
-	update VR(MR) to the updated VR(R) + AM_Window_Size;
-	reassemble RLC SDUs from any byte segments of AMD PDUs with SN that falls outside of the receiving window and in-sequence byte segments of the AMD PDU with SN = VR(R), remove RLC headers when doing so and deliver the reassembled RLC SDUs to upper layer in sequence if not delivered before;
-	if t-Reordering is running:
-	if VR(X) = VR(R); or
-	if VR(X) falls outside of the receiving window and VR(X) is not equal to VR(MR):
-	stop and reset t-Reordering;
-	if t-Reordering is not running (includes the case t-Reordering is stopped due to actions above):
-	if VR (H) > VR(R):
-	start t-Reordering;
-	set VR(X) to VR(H).
[bookmark: _Toc398111733]5.1.3.2.4	Actions when t-Reordering expires
When t-Reordering expires, the receiving side of an AM RLC entity shall:
-	update VR(MS) to the SN of the first AMD PDU with SN >= VR(X) for which not all byte segments have been received;
-	if VR(H) > VR(MS):
-	start t-Reordering;
-	set VR(X) to VR(H).

image1.emf
RLC Data

segment

SN1

RLC SDU1

RLC Data

segment

SN2

RLC Data

segment

SN3

RLC SDU2

RLC Data

segment

SN4

LTE

RLC Data

segment

SN1/

SO(omit)

RLC SDU1

RLC Data

segment

SN1/SO

RLC Data

segment

SN2/

SO(omit)

RLC SDU2

RLC Data

segment

SN2/SO

NR

oleObject1.bin
RLC Data segment

SN1

RLC SDU1

RLC Data segment

SN2

RLC Data segment

SN3

RLC SDU2

RLC Data segment

SN4

LTE

RLC Data segment

SN1/SO(omit)

RLC SDU1

RLC Data segment

SN1/SO

RLC Data segment

SN2/SO(omit)

RLC SDU2

RLC Data segment

SN2/SO

NR

