Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG RAN WG2 #81-BIS
R2-130988
Chicago, USA, 15th April ~ 19th April 2013
Agenda item:
10.1.3
Source:
QUALCOMM Incorporated

Title:
On Uplink Data Compression
Document for:
Discussion

1
Introduction

In RAN#58, a new SI was begun to study further EUL enhancements [1] with the objective of identifying technical solutions for increasing uplink capacity, coverage and end user performance. One of the identified solutions is to perform UL data compression between the UE and the RAN. In this paper, we discuss the motivation for and benefits of doing so. We also provide compression results for a specific algorithm that may serve as a starting point for compression design.
2
Motivation
HTTP [2] is the protocol used for retrieving webpages. A visit to a webpage typically consists of the web browser sending multiple, tens of HTTP GET/POST requests. Each GET request is made to obtain an object such as HTML document, image, video, javascript or CSS files. These objects constitute various aspects of the website, and are processed by the browser to display the final webpage.

The following is a GET request made during a visit to www.amazon.com :
GET / HTTP/1.1

Host: www.amazon.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:17.0) Gecko/20100101 Firefox/17.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Cookie: x-wl-uid=1nm5D3WRA2mfidzfIEB+fgNN3svOpy/jEBIHq+h8CEk1kt1Cc2DgpNSAnsFxLQwL5hgfY+3MipSY=; session-id-time=2082787201l; session-id=184-2472291-4052047; csm-hit=535.90|; ubid-main=183-3799177-9039917; session-token=N9MiwGi+ROWIfFDs0xTrsA51G5cgeauxP0guon1LbsyU6THBQWb7XrrnNAR9wH6whoEYhZHJq5wRt8CTvuMl+eyIEVmpA3heAV8ijMKMW2mn7S29jSZhknM9/iOsuq0AH1FO63UFXvvbDEf9n6z1taIQ9lNHwpkbaKwWmwTx20hF68aX7ac/qYxHVzWfbMloQx0S1lfHKqVpIqAdZX6eX5MsbEp8haGEfK+FI5p6EczKicv1iYtf9PRTcLdDd4QO8ZWmzp+sudM=
Cache-Control: max-age=0

This GET is requesting the main HTML document for www.amazon.com . The request consists of various HTTP headers such as Host, User-Agent, Accept, Accept-Language, Cookie and others. Some of these HTTP headers, such as User-Agent, Accept-Language and Accept-Encoding would not change over time; and hence carry the same value in subsequent GET requests. The Cookie header, which is often the longest header, is used by servers to identify the user over time and hence it is not uncommon for it to appear with the same value across several GET requests. The Host header identifies the location from which an object is requested, and this may also stay the same across GET requests for sites that host all or a majority of objects in one place.

In conclusion, it is expected that when comparing the stream of GET requests made in the course of downloading a webpage, there is significant redundancy across the GET packets. There are several other HTTP request methods, such as PUT and HEAD which also exhibit a similar behaviour since they follow the same format for HTTP headers.

Proposal 1: We propose to explore compression techniques to take advantage of redundancy across packets in order to compress HTTP requests.

Proposal 2: Further, we propose to explore compression of all data in the uplink in order to identify other compression opportunities.
Since the compression techniques will take advantage of redundancy across packets, it will be important that the communication layer below them guarantee in-order delivery of packets and minimize packet loss. This will ease the design of the compression algorithm.
Proposal 3: We propose that the compression techniques operate only on top of RLC AM

So far, the paper discusses compression as applied to the TCP/IP payload of the corresponding TCP/IP packet. Since we propose to run algorithms to compress the payload, we should also enable IP header compression (IPHC) in order to compress the TCP/IP header so that the resulting overall packet size is as small as possible. Often, there is significantly more data on the DL than the UL. This means that TCP ACKs constitute a significant part of the net amount of data sent in the UL. This happens even though each ACK is small, because there is a large number of them.

Proposal 4: We propose to enable TCP/IP header compression (IPHC) when data compression is enabled.
Robust Header Compression (RoHC) [3] is known to provide better TCP/IP header compression than IPHC. RoHC with TCP/IP compression is already supported by LTE. Hence, we should introduce it in UMTS as well.
Proposal 5: We propose to introduce support for RoHC TCP/IP profile in UMTS.

3
Benefits
By performing compression, we reduce the number of bits needed to be sent over the air in order to convey the same amount of information. This results in a more efficient use of cellular resources.
For instance, by reducing the number of bits needed to be transmitted, the UE uses smaller EDCH grants. When a significant number of UEs do this, this results in a reduced Rise-over-Thermal for the system. This allows other UEs such as those doing video upload, to be allotted higher grants and hence increased throughput.
Another advantage of compression is that it enables more of the packets to be transmitted in the Cell FACH state, since the traffic volume threshold for transition to Cell DCH will be exceeded less often. The system benefits of this are reduced time holding dedicated resources in Cell DCH state and reduced signalling load due to fewer RRC state transitions. User benefit of this is increased battery lifetime due to less time in power demanding DCH state.
In addition, when limited throughput is available on the uplink for a UE, each packet will now be transmitted faster, since it is compressed, resulting in latency improvement.

4
Analysis

One algorithm that is well suited to take advantage of the repetitive occurrence of strings in a series of HTTP requests, is the DEFLATE algorithm [4] used in GZIP [5]. DEFLATE locates a repetitive string of bytes in data and replaces the repeat occurrences with pointers to the original. Doing so results in compression since the number of bits needed to represent the pointer is, typically, much less than that needed to represent the original string of bytes.

To enable the algorithm to identify and take advantage of repetitive strings across several data packets, the compressor and decompressor maintain a fixed amount of memory, which serves the function of remembering data from past packets. Allowing DEFLATE to refer to locations in this memory, in addition to locations within the packet, enables the cross-packet-type compression we seek.

We ran the DEFLATE-with-memory algorithm on tcpdump logs collected for mobile devices within our corporate network during lunch time. We ensured that only traffic going to and coming from the internet was collected. The logs consist of 30 mins of TCP/IP packets collected from 813 devices. On average, the DEFLATE-with-memory algorithm discussed here compresses the TCP/IP payload, for the uplink, by 85%. i.e. the average payload size after compression is 15% of the average uncompressed payload size. Note that, by design, the compression of TCP/IP headers is left to IPHC / RoHC.
Here are some further statistics for logs collected by visiting individual websites:

	Scenario
	Percentage compression of TCP/IP payload on uplink
(1 – (Avg_compressed_payload_size / Avg_uncompressed_payload_size))

	Browsing to NYTimes.com
	83 %

	Browsing to PBS.org
	85 %

	Browsing to Whitehouse.gov
	79 %

	Browsing to Akamai.com
	82 %

	Browsing to Amazon.com
	76 %

5
Conclusions
In this contribution, we have discussed the motivation and benefits of data compression for uplink, and also provided statistics on performance of a specific algorithm that may serve as a starting point for compression design.
The proposals can be summarized as follows:

Proposal 1: We propose to explore compression techniques to take advantage of redundancy across packets in order to compress HTTP requests.
Proposal 2: Further, we propose to explore compression of all data in the uplink in order to identify other compression opportunities.

Proposal 3: We propose that the compression techniques operate only on top of RLC AM

Proposal 4: We propose to enable TCP/IP header compression (IPHC) when data compression is enabled.
Proposal 5: We propose to introduce support for RoHC TCP/IP profile in UMTS.

6
References
[1] RP-122019 - Study on Further EUL Enhancements
[2] Hypertext Transfer Protocol (http://tools.ietf.org/html/rfc2616)
[3] RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP) (http://tools.ietf.org/html/rfc4996)
[4] DEFLATE Compressed Data Format Specification version 1.3 (http://tools.ietf.org/html/rfc1951)
[5] GZIP file format specification version 4.3 (http://tools.ietf.org/html/rfc1952)
