Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN2 #101-bis
 R2-1806354
Sanya, China, 16th – 20th April 2018

Agenda Item:
7.2 WI: Narrowband IOT
Source:
NTT DOCOMO Inc.
Title:
Clarification on counting units for NB-IoT
Document for:
Discussion

1 Introduction

In TS 36.321 [1], the specification is unclear about the counting units for ra-ResponseWindowSize and mac-ContentionResolutionTimer for NB-IoT UE.
In clarifying this issue, we also seek to find out from other companies what the correct interpretation should be from a technical standpoint.
2 Discussion
2.1 Observations
The parameter ra-ResponseWindowSize is used for calculating when an NB-IoT UE should check for a random access response from the network. Meanwhile, mac-ContentionResolutionTimer is used for contention resolution.

TS 36.331 [2] as excerpted below from RACH-ConfigCommon-NB gives the units for both of the above as pp, or PDCCH periods.
RACH-ConfigCommon-NB-r13 ::=

SEQUENCE {

preambleTransMax-CE-r13

PreambleTransMax,

powerRampingParameters-r13

PowerRampingParameters,

rach-InfoList-r13

RACH-InfoList-NB-r13,

connEstFailOffset-r13

INTEGER (0..15)

OPTIONAL,
-- Need OP

...,

[[
powerRampingParameters-v1450
PowerRampingParameters-NB-v1450
OPTIONAL
-- Need OR

]]

}

RACH-InfoList-NB-r13 ::=
SEQUENCE (SIZE (1.. maxNPRACH-Resources-NB-r13)) OF RACH-Info-NB-r13

RACH-Info-NB-r13
::=

SEQUENCE {

ra-ResponseWindowSize-r13

ENUMERATED {

pp2, pp3, pp4, pp5, pp6, pp7, pp8, pp10},

mac-ContentionResolutionTimer-r13
ENUMERATED {

pp1, pp2, pp3, pp4, pp8, pp16, pp32, pp64}

}

PowerRampingParameters-NB-v1450 ::=

SEQUENCE {

preambleInitialReceivedTargetPower-v1450

ENUMERATED {

dBm-130, dBm-128, dBm-126, dBm-124, dBm-122,

dBm-88, dBm-86, dBm-84,dBm-82, dBm-80}

OPTIONAL,
-- Need OR

powerRampingParametersCE1-r14

SEQUENCE {

powerRampingStepCE1-r14

ENUMERATED {dB0, dB2, dB4, dB6},

preambleInitialReceivedTargetPowerCE1-r14
ENUMERATED {

dBm-130, dBm-128, dBm-126, dBm-124, dBm-122,

dBm-120, dBm-118, dBm-116, dBm-114, dBm-112,

dBm-110, dBm-108, dBm-106, dBm-104, dBm-102,

dBm-100, dBm-98, dBm-96, dBm-94, dBm-92,

dBm-90, dBm-88, dBm-86, dBm-84,
dBm-82, dBm-80}

} OPTIONAL
-- Need OR

}

Because the transmission occasions of PDCCH are periodic, the time between each of these transmissions is referred to simply as a PDCCH period. For NB-IoT, the main issue stems from the fact that in the definitions section of TS 36.321 [1] where PDCCH periods are defined, it appears that they can be calculated in either PDCCH-subframes or subframes, as seen below. Both are given as valid units for PDCCH periods, making it unclear which to use for the parameters in question when developing both UE and eNBs.
PDCCH period (pp): Refers to the interval between the start of two consecutive PDCCH occasions and depends on the currently used PDCCH search space [2]. A PDCCH occasion is the start of a search space and is defined by subframe k0 as specified in section 16.6 of [2]. The calculation of number of PDCCH-subframes for the timer configured in units of a PDCCH period is done by multiplying the number of PDCCH periods with npdcch-NumRepetitions-RA when the UE uses the common search space or by npdcch-NumRepetitions when the UE uses the UE specific search space. The calculation of number of subframes for the timer configured in units of a PDCCH period is done by multiplying the number of PDCCH periods with duration between two consecutive PDCCH occasions.
While trying to clarify this on our end, it became evident that differing interpretations between UE and network vendors could cause a serious IOT issue.
Observation 1:
The specification is unclear about whether to use PDCCH-subframes or subframes for NB-IoT parameters that are defined in PDCCH periods.
At first glance, it may seem that counting by either unit results in all PDCCH candidates being successfully monitored, as shown below.
[image: image1.png]
If you count by PDCCH subframes, you count all 12 candidates, and finish at the last PDCCH subframe in the third PDCCH period. If you count by subframes, you count all 24 subframes, and again, monitor all 12 candidates.

However, in the event that a candidate must be postponed (due to an invalid subframe, an SI message, etc.), we believe that there is a clear difference that emerges between the two counting schemes.
If a candidate must be postponed but remains within the original PDCCH period, then the current spec allows that to be handled below.
[image: image2.png]
Because there are still 4 buffer spaces within each PDCCH period, the candidate that got pushed out by the invalid subframe gets made up for later within the same period.
But what if a candidate is postponed beyond its original PDCCH period? According to 36.213 [3] subclause 16.6, depending on whether or not twoHARQ-ProcessesConf is configured, if a PDCCH candidate from one PDCCH period overlaps with the neighboring PDCCH period, that candidate or the entire previous PDCCH period do not need to monitored by the UE.
In terms of counting, if a candidate is postponed such that it now falls into the following PDCCH period, then there are two ways to handle this. We will look at each method and evaluate how the candidates are counted based on the subframe counting scheme.
1. Discard the postponed candidate, and do not count it as a valid subframe.
Counting by PDCCH Subframes:
In this case, the postponed candidate would not get pushed into the next PDCCH period. Instead, in order to make sure that we still count R_max * G candidates, the UE would count for an extra PDCCH period and try to make up for the discarded candidate there. The end result would be that the window or timer would be extended. Although this would allow of the candidates to be evaluated, we feel that the actual implementation of this would be difficult on both the UE and eNB ends.
[image: image3.png]
Counting by Subframes:

If we count by subframes, then we would treat the window size or timer length as immutable, and stop it at the prescribed time even though we have not counted R_max * G candidates.
[image: image4.png]
2. Discard the postponed candidate, but do count it anyways.
One could rationalize this schema by saying that we must always count up to R_max repetitions, even if we did not actually evaluate that amount, in order to keep each PDCCH period equal and give every candidate space a fair chance. Compared to the first schema, no “overflow” PDCCH period would be created nor need to be considered.
Counting by PDCCH subframes:
Even though a candidate has been discarded, we counted up to R_max as prescribed, and so in this context all candidate spaces have been evaluated.

[image: image5.png]
Counting by subframes:
Similar to the first schema, the end of a PDCCH period functions as a hard stop on monitoring, and so again, all PDCCH candidates have been evaluated fairly.

[image: image6.png]
In our offline discussions, we believe that companies who responded to us saying that counting by either PDCCH subframes or subframes didn’t matter were not taking into account cases where the PDCCH candidates were being postponed. Further, we feel that it is apparent that under the first scheme for dealing with postponed candidates, depending on whether PDCCH subframes or subframes are counted for the parameter lengths, that the number of PDCCH candidates that are actually evaluated differs in a significant way.
Because counting by subframes results in predictable behaviour in either approach (the ending subframe for the window or timer is in the same place in either situation), we feel that it should be clarified that both mac-ContentionResolutionTimer and ra-ResponseWindow are counted in subframes.
As a comparison, the same parameters for eMTC UE are defined in TS 36.331 [2], which is more explicit in specifying the units of measurement as sf, or subframes.
RACH-ConfigCommon ::=

SEQUENCE {

preambleInfo

SEQUENCE {

numberOfRA-Preambles

ENUMERATED {

n4, n8, n12, n16, n20, n24, n28,

n32, n36, n40, n44, n48, n52, n56,

n60, n64},

preamblesGroupAConfig

SEQUENCE {

sizeOfRA-PreamblesGroupA

ENUMERATED {

n4, n8, n12, n16, n20, n24, n28,

n32, n36, n40, n44, n48, n52, n56,

n60},

messageSizeGroupA

ENUMERATED {b56, b144, b208, b256},

messagePowerOffsetGroupB

ENUMERATED {

minusinfinity, dB0, dB5, dB8, dB10, dB12,

dB15, dB18},

...

}

OPTIONAL

-- Need OP

},

powerRampingParameters

PowerRampingParameters,

ra-SupervisionInfo

SEQUENCE {

preambleTransMax

PreambleTransMax,

ra-ResponseWindowSize

ENUMERATED {

sf2, sf3, sf4, sf5, sf6, sf7,

sf8, sf10},

mac-ContentionResolutionTimer

ENUMERATED {

sf8, sf16, sf24, sf32, sf40, sf48,

sf56, sf64}

},

maxHARQ-Msg3Tx

INTEGER (1..8),

...,

[[
preambleTransMax-CE-r13

PreambleTransMax

OPTIONAL,
-- Need OR

rach-CE-LevelInfoList-r13

RACH-CE-LevelInfoList-r13

OPTIONAL
-- Need OR

]]

}

RACH-ConfigCommon-v1250 ::=

SEQUENCE {

txFailParams-r12

SEQUENCE {

connEstFailCount-r12

ENUMERATED {n1, n2, n3, n4},

connEstFailOffsetValidity-r12

ENUMERATED {s30, s60, s120, s240,

s300, s420, s600, s900},

connEstFailOffset-r12

INTEGER (0..15)

OPTIONAL
-- Need OP

}

}

RACH-ConfigCommonSCell-r11 ::=

SEQUENCE {

powerRampingParameters-r11

PowerRampingParameters,

ra-SupervisionInfo-r11

SEQUENCE {

preambleTransMax-r11

PreambleTransMax

},

...

}

RACH-CE-LevelInfoList-r13 ::=
SEQUENCE (SIZE (1..maxCE-Level-r13)) OF RACH-CE-LevelInfo-r13

RACH-CE-LevelInfo-r13 ::=

SEQUENCE {

preambleMappingInfo-r13

SEQUENCE {

firstPreamble-r13

INTEGER(0..63),

lastPreamble-r13

INTEGER(0..63)

},

ra-ResponseWindowSize-r13

ENUMERATED {sf20, sf50, sf80, sf120, sf180,

sf240, sf320, sf400},

mac-ContentionResolutionTimer-r13
ENUMERATED {sf80, sf100, sf120,

sf160, sf200, sf240, sf480, sf960},

rar-HoppingConfig-r13

ENUMERATED {on,off},

...

}

PowerRampingParameters ::=

SEQUENCE {

powerRampingStep

ENUMERATED {dB0, dB2,dB4, dB6},

preambleInitialReceivedTargetPower
ENUMERATED {

dBm-120, dBm-118, dBm-116, dBm-114, dBm-112,

dBm-110, dBm-108, dBm-106, dBm-104, dBm-102,

dBm-100, dBm-98, dBm-96, dBm-94,

dBm-92, dBm-90}

}

PreambleTransMax ::=

ENUMERATED {

n3, n4, n5, n6, n7,
n8, n10, n20, n50,

n100, n200}

Note that because the RRC specification is explicit about using subframes and not a unit of periodicity for the two parameters, it is unambiguous as to which units are used to count them.
2.2 Moving forward
We believe that if the understanding differs between UE and network vendors regarding the above for NB-IoT UE, then this ambiguity in the specification may cause issues with IOT. We would also like to know what other companies’ stance is on the matter, and come to a common understanding on which should be the standard unit for counting these parameters.
Therefore, we propose the following:
Proposal 1:
RAN2 to discuss which is the appropriate interpretation for the specification.
Once a consensus is reached, we will draft an appropriate CR to clarify the specification.
3 Conclusion

Based on the discussion above we note the following:
Observation 1:
The specification is unclear about whether to use PDCCH-subframes or subframes for NB-IoT parameters that are defined in PDCCH periods.
Proposal 1:
RAN2 to discuss which is the appropriate interpretation for the specification.
4 Reference
[1] 3GPP TS 36.321 v.15.1.0 Medium Access Control (MAC); Protocol specification
[2] 3GPP TS 36.331 v.15.1.0 Radio Resource Control (RRC); Protocol specification
[3] 3GPP TS 36.213 v.15.1.0 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

1/6

