Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _GoBack]3GPP TSG-RAN WG2 Meeting #101 	R2-1803766
Athens, Greece, 26th February – 2nd March 2018
Agenda Item:	10.4.3.2
Source:	Ericsson
Title:	Extension of DL RRC messages
Document for:	Discussion, Decision
Introduction
In this document, we propose a size-efficient mechanism to extend (add new fields) to DL RRC messages
[bookmark: _Ref178064866]Discussion
So far in RRC, we have recommended use of the ASN.1 built-in extension marker “…” as the primary non-critical extension mechanism when new fields are introduced in (the middle of) exiting messages (TS 38.331, A4.3).
The main drawback with the extension marker “…” is that it introduces (typically) 3 bytes of overhead per extension. If such an extension is placed in an IE that is instantiated within a large list, the overhead due to the extension markers becomes significant.
In DL dedicated signalling, the network is typically aware of the (ASN.1) release supported by the UE, as well as feature-specific capabilities. We also assume in RAN2 that “the network should respect the UE capabilities”, and in DL not include fields that are not supported by the UE. Thus, it seems the full potential of the extension marker “…” is neither essentially needed nor fully utilized in DL dedicated signalling.
Instead, under the conditions discussed above, it would be sufficient to include an optional “empty SEQUENCE” at the end of an IE, as used in the non-critical extensions (NCE) mechanism. Here, however, it would be used more like a critical extension in the sense that the NW (transmitter) may only include it if the UE (receiver) is known to comprehend it.
The following ASN.1 example illustrates the mechanism. Initially, the empty sequence is added at the end of the ListElement:
RRCMessage-r15 ::= 		SEQUENCE {
	field1					INTEGER (0..16),
	list1					SEQUENCE (SIZE (2)) OF ListElement,
	noncriticalextension 	SEQUENCE {}		OPTIONAL
}

--	ListElement in Rel-15
ListElement ::= 		SEQUENCE {
	field2					INTEGER (0..3),
	extension 				SEQUENCE {} OPTIONAL
}

When the need arises to add more information to the ListElement, the optional sequence can either be created within the original ListElement IE (nested alternative):
-- ListElement in Rel-16
ListElement ::= 		SEQUENCE {
	field2					INTEGER (0..3),
 extension				SEQUENCE {
		newElement-r16 			INTEGER (4..7),
 extension 				SEQUENCE {} OPTIONAL
 } 	OPTIONAL
}

Alternatively, the new addition can be defined as separate IE (ListElementExtension-r16), i.e., non-nested:
-- ListElemet in Rel-16, non-nested alternative
ListElement ::= 		SEQUENCE {
	element1 	INTEGER (0..3),
	extension-r16			ListElementExtension-r16	OPTIONAL
}

ListElementExtension-r16 ::=	SEQUENCE {
	newElement-r16			INTEGER (4..7),
	extension 				SEQUENCE {} OPTIONAL
}

For reference we also show the use of an extension marker which, as mentioned above, is however not suitable in elements of large lists due to the significant overhead it causes.
-- ListElemet in Rel-16, extended using extension marker
ListElement ::= SEQUENCE {
	field2				INTEGER (0..3),
	...
	newElement-r16		INTEGER (4..7)}
}

Forward- and Backward compatibility:
A network that supports the newElement-r16, but sends the RRCMessage to rel-15 UE, does not include extension-r16. For the rel-15 UE, this means the extension is not present.
A Rel-16 UE will not receive the extension-r16 from an eNB not supporting newElement-r16.
As the network is expected to respect the release of the UE (and other feature-specific capability indicators provided or not provided by the UE), there are no interoperability issues.
We note that the extension marker “...” consumes approximately 3 bytes per extension (N x 3 bytes per extension in lists), whereas the mechanism discussed in this document consumes a single bit per extension (N x1 bit in lists).
We therefore propose that the mechanism discussed in this document is used in TS 38.331, in particular to prepare for future extensions (adding new fields) in large lists in cases where the transmitter knows reliably which extensions the receiver supports.

Extend elements of potentially large lists in UE specific downlink signalling by adding an optional empty sequence at the end of the list element:

extension SEQUENCE {} OPTIONAL
Conclusion
In this document, we have raised concern of the existing extension mechanism in RRC specification using the extension marker “...”. For large lists in RRC messages sent over the NR radio interface, the overhead of the existing mechanism should be avoided.
We ask RAN2 to discuss and agree on the following proposal:
[bookmark: _In-sequence_SDU_delivery]Extend elements of potentially large lists in UE specific downlink signalling by adding an optional empty sequence at the end of the list element:

extension SEQUENCE {} OPTIONAL
References
[bookmark: _Ref174151459][bookmark: _Ref189809556][1] 	TS 38.331
	1/2	
