3GPP TSG RAN2 Meeting #100

R2-1712713
Reno, Nevada, USA, 27th November – 1st December 2017
Agenda Item:

9.16 UL data compression in LTE
Source:

Huawei, HiSilicon
Title:

Discussion on checksum options for UDC
Document for:

Discussion and decision
1
Introduction
At RAN2#99bis, according to the Chair Note [1], it was agreed:
1
4 checksum bits are involved in UDC header. The exact number of the bit can be revisited if any serious issue identified.

After RAN2#99bis, there was an email discussion “[99bis#06][LTE/UDC] Running 36.323 CR for introducing UDC (CATT)”. As the outcome of the email discussion, CR [2] has the following FFS.
Editor note: how to generate checksum is FFS.
This paper is to provide our analysis on checksum options.
2
Discussion
In our understanding, a checksum is a small-sized data derived from a block of data for the purpose of detecting error. For UDC, the checksum is generated based on two factors:

· (a) input: the content of current compression buffer before the current packet is put into buffer (from UE point of view), or part of the content of current compression buffer
· (b) calculation: checksum calculation procedure
So far, we see that there are at least four options.
2.1
Option 1: CRC like solution
In TS 36.212, CRC calculation is defined and it is shown in figure 1. For different CRC lengths, different polynomials are specified.
[image: image1.png]=5.1.1 - CRC-calculation.

Denote the input bits to-the CRC computation'by ay. ;.5 . as @ 4_; »and the parity bits by py. py. Py p3sws Py A
is the size of the input sequence and L is the number of parity bits. The parity bits are generated by one of the following
cyclic generator polynomials:

-+ gercaa(D) = [DE-+ DB+ DI +-DIT +-Dié 4 DI+ DO +-DT DS +DS +Dé+Ds+D+1]-ands
- - gcrcan(D) = [D2+ D+ Db+ D5+D+1]fora CRC length Z =24 and;.
- - gcre16(D) = [Di6+ D12 +D5+1] fora CRC length L = 16.
- - gcres(D) = [DS+D7+D*+D3+D+1] fora CRC length of L= 8.
The encoding is performed in a systematic form, which means that in GF(2), the polynomial:
a DB +aD* 2 ¢ +a, D¥+ pyDP +pDP + .+ ppD' + pyy v

yields a remainder equal to-0-when divided by the corresponding length-24 CRC-generator polynomial, gcrcaa(D) or
gcrcasa(D). the polynomial:.

a DB +a D4 4 va, D' + pyDP +p D™ 4.+ p D 4 pyse

yields a remainder equal to 0 -when divided by gerc1(D), and the polynomial: -

DT +a DS+ _+a, D%+ poD” +p DS + ..+ pgD' + pro

Yields a remainder equal to 0 when divided by gcacs(D).

The bits after CRC attachment are-denoted by by, by by , by ... b5_ , where B = A+ L. The relation between g and Dy s:-

by=ap—~ » - fork=0,1,2....,4-1-
k= Ak

b =piy ~ fork=dA At1 At2,

Figure 1: CRC calculation in TS 36.212
If option 1 is applied, it may have very good reliability but this option may bring much complexity as it needs to define lots of things in specifications.
2.2
Option 2: IPv4 heade checksum like solution
The following text is from “https://en.wikipedia.org/wiki/IPv4_header_checksum”, and it is for IPv4 header checksum calculation. The detailed calculation can be found in [3].
[image: image2.png]Example: calculating an IPv4 header checksum [edit]

Take the following truncated excerpt of an IPv4 packet. The header is shown in bold and the checksum is underlined.
4500 0073 0000 4000 4011 b861 cOa8 0001
c0a8 00c7 0035 e97c 005f 279f ledb 8180

To calculate the checksum, we can first calculate the sum of each 16 bit value within the header, skipping only the checksum field itself. Note
that the values are in hexadecimal notation.

4500 + 0073 = 0000 + 4000 + 4011 + c0a8 + 0001 + c0a8 + 00c7 = 2479C (equivalent to 149,404 in decimal)

Next, we convert the value 2479C to binary:

0010 0100 0111 1001 1100

The first 4 bits are the carry and will be added to the rest of the value:

0010 + 0100 0111 1001 1100 = 0100 0111 1001 1110

In this example the addition of the carry didn't itself generate a carry. If it had it would have been necessary to add that new carry back in as
well.

Next, we flip every bit in that value, to obtain the checksum:

0100 0111 1001 1110 becomes:

1011 1000 0110 0001

This is equal to B861 in hexadecimal, as shown underlined in the original IP packet header.

Example: verifying an IPv4 header checksum [edit]

When verifying a checksum, the same procedure is used as above, except that the original header checksum is not omitted.

4500 + 0073 + 0000 + 4000 + 4011 + b861 + c0a8 + 0001 + c0a8 + 00c7 = 2fffd

Add the carry bits:

fffd + 2 = ffff

Taking the ones’ complement (flipping every bit) yields 0000, which indicates that no error is detected. IP header checksum does not check for
the correct order of 16 bit values within the header.

Figure 2: IPv4 header checksum like solution
In general, this calculation is: the checksum field is the XX bit one's complement of the one's complement sum of all XX bit words in the header.
If option 2 is applied, the input is the whole compression buffer and the calculation follows [3].
2.3
Option 3: Simplified version of option 2
For option 2, the input is the whole compression buffer, so the computational complexity is relatively large. If both the input and the calculation can be simplified, the cost may be reduced.
For option 3, the input can be part of the compression buffer, e.g. the tail X byte, and the calculation procedure is provided as below:

1. decide the input, e.g. the tail X byte of the compression byte
2. X is truncated by 4 bits

3. calculate the sum of each 4 bit value

4. get the 4 rightmost (least significant) bits

5. flip every bit in the value generated in step 4, and then obtain the 4-bit checksum value
An example is also shown as below (repeat 12 times of “01 23 45 67 89 ab cd ef” plus “01 23 45 67”):
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67
The sum is 1468 and the corresponding binary is 10110111100. The 4 rightmost bits are 1100 and the checksum value is 0011 after flipping of each bit.
2.4
Option 4: Direct selection solution
The principle of this option is shown in figure 3 and it is to directly select 4 bits from the compression buffer, e.g. from head, from tail, or from head + an offset.
[image: image3.png]UDC buffer

Head Tail

| 4 bit | Start from tail
l 4 bit | Start from head +
an offset

4 bit

|——| Start from head

Figure 3: Direct selection solution
This option is simple, but the reliability is questionable because the input is limited. We think that a good checksum option should be able to output a significantly different value, even for small changes made to the input. With this option, if there are consecutive data packets but the checksum value is fixed, the receiver side does not know whether it is indeed from the actual checksum calculation or some problem happens.
2.5
Comparison
We use the two factors for comparison:
- the computational complexity (high, medium, low): the amount of resources required for running a checksum option
- reliability (high, medium, low): in theory, reliability increases as the inputs increase and calculation procedure becomes more complex
Table 1 shows our analysis on above four options. If there are more options, it should be also put into this table for further comparison.
Table 1: Comparison of checksum options

	

	The computational complexity
	Reliability

	Option 1: CRC like solution
	High
	High

	Option 2: IPv4 header checksum like solution
	High
	High

	Option 3: Simplified version of option 2
	Medium
	Medium

	Option 4: Direct selection solution
	Low
	Low

Based on table 1, we think that option 3 can have a good trade-off between the computational complexity and reliability, so it is preferred.
3
Conclusion
In this paper, we discuss four checksum options. After comparing the computational complexity and reliability, we prefer option 3, so it is proposed:
Proposal 1: The following checksum option is proposed:
1. decide the input from the compression buffer or the decompression buffer, i.e. X bytes
2. X is truncated by 4 bits

3. calculate the sum of each 4 bit value

4. get the 4 rightmost (least significant) bits

5. flip every bit in the value generated in step 4, and then obtain the 4-bit checksum value
Proposal 2: For proposal 1, it is proposed RAN2 to discuss how to get X and the value, e.g. the tail 100 bytes of the compression buffer or the decompression buffer.

Proposal 3: If both proposal 1 and proposal 2 are agreeable, it is proposed to capture them into LTE PDCP specification (i.e. TS 36.323). In addition, it is proposed RAN2 to also capture an example into LTE PDCP specification in order for a better understanding on how it works (Annex section may be a good place).

For proposal 3, a CR is provided in [4].

4
Reference
[1]
RAN2-99bis-Prague-chair-notes-2017-10-13-1730
[2]
36323_CRxxxx_(Rel-15)_R2-1712070
[3]
RFC 1071, Computing the Internet Checksum, https://tools.ietf.org/html/rfc1071
[4]
R2-1712714, CR on checksum option for UDC, Huawei, HiSilicon
5 / 6

