3GPP TSG RAN2 Meeting #100






R2-1712713
Reno, Nevada, USA, 27th November – 1st December 2017
Agenda Item:

9.16 UL data compression in LTE
Source:


Huawei, HiSilicon
Title:



Discussion on checksum options for UDC
Document for:

Discussion and decision
1
Introduction
At RAN2#99bis, according to the Chair Note [1], it was agreed:
1
4 checksum bits are involved in UDC header. The exact number of the bit can be revisited if any serious issue identified.

After RAN2#99bis, there was an email discussion “[99bis#06][LTE/UDC] Running 36.323 CR for introducing UDC (CATT)”. As the outcome of the email discussion, CR [2] has the following FFS.
Editor note: how to generate checksum is FFS.
This paper is to provide our analysis on checksum options.
2
Discussion
In our understanding, a checksum is a small-sized data derived from a block of data for the purpose of detecting error. For UDC, the checksum is generated based on two factors:

· (a) input: the content of current compression buffer before the current packet is put into buffer (from UE point of view), or part of the content of current compression buffer
· (b) calculation: checksum calculation procedure
So far, we see that there are at least four options.
2.1
Option 1: CRC like solution
In TS 36.212, CRC calculation is defined and it is shown in figure 1. For different CRC lengths, different polynomials are specified.
[image: image1.png]
Figure 1: CRC calculation in TS 36.212
If option 1 is applied, it may have very good reliability but this option may bring much complexity as it needs to define lots of things in specifications.
2.2
Option 2: IPv4 heade checksum like solution
The following text is from “https://en.wikipedia.org/wiki/IPv4_header_checksum”, and it is for IPv4 header checksum calculation. The detailed calculation can be found in [3].
[image: image2.png]
Figure 2: IPv4 header checksum like solution
In general, this calculation is: the checksum field is the XX bit one's complement of the one's complement sum of all XX bit words in the header.
If option 2 is applied, the input is the whole compression buffer and the calculation follows [3].
2.3
Option 3: Simplified version of option 2
For option 2, the input is the whole compression buffer, so the computational complexity is relatively large. If both the input and the calculation can be simplified, the cost may be reduced.
For option 3, the input can be part of the compression buffer, e.g. the tail X byte, and the calculation procedure is provided as below:

1. decide the input, e.g. the tail X byte of the compression byte
2. X is truncated by 4 bits

3. calculate the sum of each 4 bit value

4. get the 4 rightmost (least significant) bits

5. flip every bit in the value generated in step 4, and then obtain the 4-bit checksum value
An example is also shown as below (repeat 12 times of “01 23 45 67 89 ab cd ef” plus “01 23 45 67”):
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef
01 23 45 67 89 ab cd ef 01 23 45 67 89 ab cd ef 01 23 45 67
The sum is 1468 and the corresponding binary is 10110111100. The 4 rightmost bits are 1100 and the checksum value is 0011 after flipping of each bit.
2.4
Option 4: Direct selection solution
The principle of this option is shown in figure 3 and it is to directly select 4 bits from the compression buffer, e.g. from head, from tail, or from head + an offset.
[image: image3.png]
Figure 3: Direct selection solution
This option is simple, but the reliability is questionable because the input is limited. We think that a good checksum option should be able to output a significantly different value, even for small changes made to the input. With this option, if there are consecutive data packets but the checksum value is fixed, the receiver side does not know whether it is indeed from the actual checksum calculation or some problem happens.
2.5
Comparison
We use the two factors for comparison:
- the computational complexity (high, medium, low): the amount of resources required for running a checksum option
- reliability (high, medium, low): in theory, reliability increases as the inputs increase and calculation procedure becomes more complex
Table 1 shows our analysis on above four options. If there are more options, it should be also put into this table for further comparison.
Table 1: Comparison of checksum options

	

	The computational complexity
	Reliability

	Option 1: CRC like solution
	High
	High

	Option 2: IPv4 header checksum like solution
	High
	High

	Option 3: Simplified version of option 2
	Medium
	Medium

	Option 4: Direct selection solution
	Low
	Low


Based on table 1, we think that option 3 can have a good trade-off between the computational complexity and reliability, so it is preferred.
3
Conclusion
In this paper, we discuss four checksum options. After comparing the computational complexity and reliability, we prefer option 3, so it is proposed:
Proposal 1: The following checksum option is proposed:
1. decide the input from the compression buffer or the decompression buffer, i.e. X bytes
2. X is truncated by 4 bits

3. calculate the sum of each 4 bit value

4. get the 4 rightmost (least significant) bits

5. flip every bit in the value generated in step 4, and then obtain the 4-bit checksum value
Proposal 2: For proposal 1, it is proposed RAN2 to discuss how to get X and the value, e.g. the tail 100 bytes of the compression buffer or the decompression buffer.

Proposal 3: If both proposal 1 and proposal 2 are agreeable, it is proposed to capture them into LTE PDCP specification (i.e. TS 36.323). In addition, it is proposed RAN2 to also capture an example into LTE PDCP specification in order for a better understanding on how it works (Annex section may be a good place).

For proposal 3, a CR is provided in [4].

4
Reference
[1]
RAN2-99bis-Prague-chair-notes-2017-10-13-1730
[2]
36323_CRxxxx_(Rel-15)_R2-1712070
[3]
RFC 1071, Computing the Internet Checksum, https://tools.ietf.org/html/rfc1071
[4]
R2-1712714, CR on checksum option for UDC, Huawei, HiSilicon
5 / 6

