
3GPP TSG RAN WG2 Meeting #10
Document
R2-000254

San Diego, US, Jan 17-21, 2000

e.g. for 3GPP use the format TP-00xxxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

25.921
CR
001r2
Current Version:
3.0.0

GSM (AA.BB) or 3G (AA.BBB) specification number (

(CR number as allocated by MCC support team

For submission to:
RAN #7
for approval
X

strategic

(for SMG

list expected approval meeting # here (
for information

non-strategic

use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM

ME
X
UTRAN / Radio
X
Core Network

(at least one should be marked with an X)

Source:
Ad-hoc group
Date:
2000-01-21

Subject:
Further clarifications on specialised encoding

Work item:

Category:
F
Correction

Release:
Phase 2

A
Corresponds to a correction in an earlier release

Release 96

(only one category
B
Addition of feature

Release 97

shall be marked
C
Functional modification of feature

Release 98

with an X)
D
Editorial modification
X

Release 99
X

Release 00

Reason for
change:

Alignment of specialised encoding on the ECN approach. Restructuration of clause. Addition of examples.

Clauses affected:
11.2 is replaced, revision marks are relative to revision 1 of the CR

Other specs
Other 3G core specifications

(List of CRs:

Affected:
Other GSM core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:

[image: image1.wmf]help.doc

 <--------- double-click here for help and instructions on how to create a CR.

11.2
Specialised encoding

11.2.1
General

Specialised encoding is an escape mechanism that allows the specification of exceptional encodings for parts of messages. Specialised encoding acts as an exception mechanism to the normally applied encoding rules (e.g. Unaligned PER).

The detailed encoding rules for specialised encodings are defined within an ECN module. A link module is used to associate an ECN module with an ASN.1 module. For example:

Example-ASN1-Module DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

John ::= SEQUENCE {

a BOOLEAN,

b INTEGER

}

END

Example-ECN-Module ENCODING-DEFINITIONS ::=

BEGIN

IMPORTS John FROM Example-ASN1-Module;

MyProc ::=

USER-FUNCTION-BEGIN

-- Description of special encoding goes here

USER-FUNCTION-END

John.b ENCODED BY MyProc

END

Example-Link-Module LINK-DEFINITIONS ::=

BEGIN

Example-ASN1-Module ENCODED BY perUnaligned WITH Example-ECN-Module

END

In the above example the link module Example-Link-Module specifies that the ASN.1 module Example-ASN1-Module has the PER unaligned encoding rules as a default with extra specialised encoding defined in the ECN module Example-ECN-Module.
11.2.2
Notation in ASN.1
The ASN.1 modules shall contain only the abstract definition of the messages.

11.2.3
Notation in ECN

If specialised encodings are to be used, all such encodings shall be specified in an ECN module.

Several approachs are possible for specialised encoding. One approach is to use the ECN notation which allows direct specification of encoding rules (see example 9). The other approaches are to specify using CSN.1 or to reference an encoding defined informally in an existing specification. These last two methods are explained in the following clauses.

11.2.3.1
Use of CSN.1

In this case, user functions are defined starting by “--<ECN.Encoding CSN1>--”, and containing each one or several CSN.1 types. Specialised encoding of an ASN.1 type is indicated by “ENCODED BY” clauses referring to a CSN.1 user function and followed by the identifier of the CSN.1 type to apply for the encoding.

A user-function based on CSN.1 is limited to a list of descriptions, each description respecting the syntax of CSN.1 V2.0, preceded by the starting text mentionned above and optionally by an IMPORTS clause. The header part of modules as defined in CSN.1 V2.0 is not used. The IMPORTS clause respects the ASN.1 syntax.

Note 1 : It is expected to move to CSN.1 V2.2 as soon as available.

The specialised encoding shall be such that all the values of a type can be represented with it, i.e. there shall be a mapping from each abstract value to an encoded value. Reciprocally, decoding of any received string shall be mapped either to an abstract value or to an error indication.

In the case of a composite ASN.1 type (e.g., choice or sequence), labels are used in the CSN.1 construction for the association with the corresponding parts in the abstract description (see examples 5 and 6) . Case is significant. The order of alternatives in a choice construction, or of fields in a sequence, may differ between the abstract and the representation descriptions (see example 7). On the other hand, incompletness is a specification inconsistency.
In the CSN.1 module <ASN1.Identifier> is a reference to a construction defined in an ASN.1 module, as given by an IMPORTS clause at the beginning of the CSN.1 user function. This describes a construction as derived from the ASN.1 description (note that this might contain specialised encoding). This notation aims at distinguishing constructions defined in the CSN.1 module from those defined in an ASN.1 module. Such a reference could be replaced by a complete description in the CSN.1 module, however this would be redundant and cumbersome in the case of complex constructions. See example 3.

In some cases, an elementary ASN.1 type is replaced in the CSN.1 description by a sequence. In such a case, the field name ‘V’ is used as a label in the sequence to indicate the field that does encode the elementary type. See example 4.

11.2.3.2
Reference to informally specified encodings in other specifications

In this case, user functions are defined starting by “--<ECN.Reference>--”, and containing a textual description of the reference. See example 8.

11.2.4
Notation in Link Module

If specialised encodings are to be used, a link module shall be used to associate the ASN.1 module(s) with the corresponding ECN module(s). Note: All the specialised encodings for a given ASN.1 module shall be contained within a single ECN module. See example in 11.2.6.3.

11.2.5
Detailed and Commented Examples

The different examples below illustrate different possibilities, and provide some explanations. Examples of complete modules can be found in 11.2.6.

11.2.5.1
Example 1

An integer value set is not continuous but it is evenly distributed.

In the ASN.1 module :

SparseEvenlyDistributedValueSet ::= INTEGER (0|2|4|6|8|10|12|14)

In the CSN.1 user function of the ECN module :

<SparseEvenlyDistributedValueSet> ::=

bit(3);

-- Representation: This represents the integer equal to half the

-- binary encoding of the field

-- e.g., 010 encodes integer 4

11.2.5.2
Example 2

An integer value set is not continuous and evenly distributed.

In the ASN.1 module:

SparseValueSet ::= INTEGER (0|3|5|6|8|11)

In the CSN.1 user function of the ECN module :
<SparseValueSet> ::= bit(3) exclude {110 | 111};

-- Representation :

-- 0 => 000

-- 3 => 001

-- 5 => 010

-- 6 => 011

-- 8 => 100

-- 11 => 110

Explanations :

The exclusion part implies that the reception of 110 or 111 triggers an exception.

11.2.5.3
Example 3

A list type is encoded using the ‘more’ bit technique.

This allows to optimize the cases where there are few components relatively to the maximum numberof components.

In the ASN.1 module :

VariableLengthList ::= SEQUENCE (SIZE (0..10))

In the CSN.1 user function of the ECN module :

<VariableLengthList> ::=

<Length : 1** 0>

<V : <ASN1.Status>*(len(Length)-1);

Explanations :

<ASN1.Status> is a reference to a construction defined in the ASN.1 module.

The traditional ‘more’ bit technique looks like :

<Not recommended VariableLengthList> ::=

{ 1 <ASN1.Status> }(*)

0;

It can be checked that the recommended construction is exactly the same except for the bit order (all the tags are grouped on the start). The recommended construction is highly preferable since it makes it clear that the ‘more’ bits are just a variable length encoding of a length field. The more traditional technique may have some application when alignment is a concern.

11.2.4.4
Example 4

A variable length integer using the ‘more’ bit technique.

This can be used to obtain an encoding of integers where efficiency is sought for small values, but bigger values are still allowed.

In the ASN.1 module:

VariableLengthList ::= INTEGER

In the CSN.1 user function of the ECN module :

<VariableLengthInteger> ::=

 construct

<Length : 1** 0>

<V : bit*3*(len(Length)-1);

-- This represents the integer encoded in binary by the V field

Explanations :

This makes use of the same basic technique than in the previous example.

The traditional ‘more’ bit technique looks like :

<Not recommended VariableLengthInteger> ::=

{ 1 bit(3) }(*)

0;

It can be checked that the recommended construction is exactly the same except for the bit order (all the tags are grouped on the start). The recommended construction is highly preferable since it makes it clear that the ‘more’ bits are just a variable length encoding of a length field. In addition, it allows to specify the encoding/decoding of the integer as a continuous string.

11.2.4.5
Example 5

Some alternatives of a choice type are used more frequently as others. Therefore the tags for the frequently used alternatives are specified to be shorter than others.

In the ASN.1 module :

VariantRecord ::= CHOICE {

flag

Flag,

-- The two first alternatives are mostly used

counter
Counter,

extEnum
ExtendedEnum,

status
Status,

list

VariableLengthList

}

In the CSN.1 user function of the ECN module:

<VariantRecord> ::=

{ 00 <flag : <ASN1.Flag>>

| 01 <counter : <ASN1.Counter>>

| 100 <extEnum : <ASN1.ExtendedEnum>>

| 101 <status> : <ASN1.Status>>

| 110 <List : <ASN1.VariableLengthList>>

};

Explanations :

The tag list can be adapted precisely to the expected statistics. Any tag list such that no member is the start of another member is acceptable.

11.2.4.6
Example 6

The size of a component (e.g., integer, bit string, character string, sequence-of) depends on the value of one or several other components. The example here is that of an integer whose range depends on the value of another integer.

In the ASN.1 module :

ConditionalSized ::= SEQUENCE

{

Modulo
INTEGER(1..2048),

Phase
INTEGER(0..2047)}

In the CSN.1 user function of the ECN module:

<ConditionalSized> ::=

<Modulo : bit(12)>

<Phase : bit*logval(Modulo)>;

-- where logval is the function to the smaller integer higher or equal

-- to the logarithm in base 2 of 1 plus the integer encoded in binary in the

-- argument

-- e.g., logval(0101) = 3

--

logval(00) = 0

--

logval(10) = 2

-- this can be also described as the position of the last ‘1’ in the argument,

-- starting from the end

11.2.4.7
Example 7

A specialised extension mechanism optimised for very short extensions.

In the ASN.1 module :

SpecialisedExtensionV1 ::= SEQUENCE
 {

c1
C1,

c2
C2,

extension SEQUENCE{} OPTIONAL

}

In the CSN.1 user function of the ECN module :

<Empty Extension> ::=

<Length : <Extension Length>>

<Extension : bit* lval(Length) > &

{<SpuriousExtension : bit(*) = null>;

<Extension Length> ::=

<L:0> |

-- lval = 0

1
<L : bit(3) – 111> |

-- lval = val(L) + 1

1111 <L : bit(4)>;

-- lval = 8*val(L)+8

In the ECN module :

SpecialisedExtensionExampleV1.extension ENCODED BY CSN1Proc.”Empty Extension”

Explanations :

The use of the intersection (&) is not needed in the empty extension place-holder. It is introduced here to prepare the description of the eventual extension, see further on.

The specialisation is on the encoding of the length field.

The ‘= null’ forbids that a sender compliant with this version sends anything else than an empty ‘extension’, while the ‘bit(*)’ allows a receiver to accept any string (the end is constrained by the length field).

In an ulterior version this can become :

In the ASN.1 module :

SpecializedExtensionV2 ::= SEQUENCE
 {

c1
C1,

c2
C2,

extension SEQUENCE

{c3
C3 OPTIONAL,

 c4
C4}

}

In the CSN.1 USER-FUNCTION of the ECN module

< Extension of SpecialExtensionV2 > ::=

<Length : <Extension Length>>

<Extension : bit* lval(Length) > &

{
<c4 : <ASN1.C4>>

{0 | 1 <c3 : <ASN1.C3>>}

<Spurious Extension : bit(*) = null>

}//;

;

In the ECN module :

SpecialisedExtensionExampleV1.extension ENCODED BY CSN1Proc.”Extension of SpecialExtensionV2”

Explanations :

The intersection (&) is used to put two constraints on ‘extension’, a) it must have a length as derived from the ‘Length’ field, b) it must respect the structure specified after the & (i.e., c4 followed by optional c3 followed by an extension place-holder).

The ‘spurious extension’ is required to allow further extension within the container.

The truncation (//) ensures that the receiver will accept the extension as encoded by an older sender (i.e., with length set to 0, and the extension empty).

The interversion of C3 and C4 is not strictly needed. However, it allows not to include the presence bit of C3 when set to 0 and if it ends the sequence, and avoids to allow the sender to skip C4.

11.2.5.8
Example 8

This example is importing the definition of the Mobile Station Classmark 2 IE from GSM 04.08

In the ASN.1 module :

GSMClassMark ::= OCTET STRING

In the the ECN module :

GSMClassmarkProc ::=

USER-FUNCTION-BEGIN

--<ECN.Reference>--

GSM 04.08, version 7.0.0, Figure 10.7 “GSM 04.08 Mobile Station Classmark 2 information element”, octets 2 to 5

USER-FUNCTION-END

GSMClassMark ENCODED BY GSMClassmarkProc

11.2.5.9
Example 9

Example of encoding definition directly specified using ECN notation. This example defines a specialised encoding for small integer fields using the auxiliary ASN.1 type Int16Encoding.

In the ASN.1 module :

SpecialInt ::= INTEGER (0..15)

Int16Encoding {Dummy} ::= SEQUENCE {

length

INTEGER (0..MAX),

value

Dummy}
In the the ECN module :

-- Example encoding definition using native ECN

Int16Encoding.length ::= ENCODING

 {SPACE {variable-self-delim},

 -- Represents values 1,2,3,4 etc

 -- 0 => 1, 10 => 2, 110 => 3, 1110 =>4

 VALUE {bit-count-simple-0},

 LENGTH-DETERMINANT-FOR Int16Encoding.value }

Int16Encoding.value ::= ENCODING

 {SPACE {variable-min UNITS bits(2)},

 VALUE {offset-suppress-zero}

 -- Will encode the offset for lb

 -- into the minimum number

 -- of 2-bits (the number is determined

 -- by length - see later, with zero

 -- encoding into zero bits. -- }

-- Association of ECN native definitions with ASN.1 type

SpecialInt ENCODED BY Int16Encoding

The encoding of each component is described by fields. The SPACE field specifies the size of the component. The VALUE field specifies the bit pattern that is used to encode the value. The LENGTH-DETERMINANT-FOR field specifies that this component (Int16Encoding.length) is used to calculate the SPACE field of another component (Int16Encoding.value
11.2.6
Complete Modules

The complete modules summarising the examples above, in conformance with the rules, can be found below.

11.2.6.1
ASN.1 module

Sample-ASN1-Module DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

GSMClassMark ::= OCTET STRING

B ::= BOOLEAN

SparseEvenlyDistributedValueSet ::= INTEGER (0|2|4|6|8|10|12|14)

SparseValueSet ::= INTEGER (0|3|5|6|8|11)

VariableLengthList ::= SEQUENCE (SIZE (0..10)) OF Status

VariableLengthInteger ::= INTEGER

VariantRecord ::= CHOICE {

flag

Flag,
-- The two first alternatives are mostly used

counter
Counter,

extEnum
ExtendedEnum,

status

Status,

list

VariableLengthList

}

ConditionalSized ::= SEQUENCE {

modulo
INTEGER(1..2048),

phase

INTEGER(0..2047)

}

SpecialisedExtensionV1 ::= SEQUENCE
 {

c1
C1,

c2
C2,

extension SEQUENCE {} OPTIONAL

}

SpecialisedExtensionV2 ::= SEQUENCE
 {

c1
C1,

c2
C2,

extension SEQUENCE {

c3
C3 OPTIONAL,

c4
C4

} OPTIONAL

}

Counter ::= INTEGER (0..255)

ExtendedEnum ::= ENUMERATED { a, b, c, d, spare4, spare5, spare6, spare7}

Status ::= INTEGER { idle(0), veryBusy(3) } (0..3)

Flag ::= BOOLEAN

C1 ::= OCTET STRING

C2 ::= BOOLEAN

C3 ::= INTEGER (0..65535)

C4 ::= SEQUENCE {

c1
C1,

c3
C3

}

SpecialInt ::= INTEGER (0..15)

Int16Encoding {Dummy} ::= SEQUENCE {

length

INTEGER (0..MAX),

value

Dummy

 }
END
11.2.6.2
ECN module

Sample-ECN-Module ENCODING-DEFINITIONS ::=

BEGIN

IMPORTS GSMClassMark, B, SparseEvenlyDistributedValueSet, SparseValueSet,

VariableLengthList, VariableLengthInteger, VariantRecord,

ConditionalSized, SpecialisedExtensionV1, SpecialisedExtensionV2,

SpecialInt, Int16Encoding

FROM Sample-ASN1-Module;

-- Example encoding definition using GSM Mobile Station Classmark 2

GSMClassmarkProc ::=

USER-FUNCTION-BEGIN

--<ECN.Reference>--

GSM 04.08, version 7.0.0, Figure 10.7 “GSM 04.08 Mobile Station Classmark 2 information element”, octets 2 to 5

USER-FUNCTION-END

-- Example encoding definition using CSN.1

CSN1Proc ::=

USER-FUNCTION-BEGIN

--<ECN.Encoding CSN1>--

IMPORTS

Flag, Counter, ExtendedNum, Status, VariableLengthList,

C4, C3

FROM Sample-ASN1-Module;

<SpecialBoolean> ::= 0 | 1;

<SparseEvenlyDistributedValueSet> ::= bit(3);

-- Representation: This represents the integer equal to

-- half the binary encoding of the field

-- e.g., 010 encodes integer 4

<SparseValueSet> ::= bit(3) exclude {110 | 111};

-- Representation :

-- 0 => 000

-- 3 => 001

-- 5 => 010

-- 6 => 011

-- 8 => 100

-- 11 => 110

<VariableLengthList> ::=

<Length : 1** 0>

<V : <ASN1.Status>*(len(Length)-1);

<VariableLengthInteger> ::=

<Length : 1** 0>

<V : bit*3*(len(Length)-1);

-- This represents the integer encoded in binary by the V field

<VariantRecord> ::=

{ 00 <flag : <ASN1.Flag>>

| 01 <counter : <ASN1.Counter>>

| 100 <extEnum : <ASN1.ExtendedEnum>>

| 101 <status> : <ASN1.Status>>

| 110 <List : <ASN1.VariableLengthList>>

};

<ConditionalSized> ::=

<Modulo : bit(12)>

<Phase : bit*logval(Modulo)>;

-- where logval is the function to the smaller integer higher or

-- equal to the logarithm in base 2 of 1 plus the integer

-- encoded in binary in the argument

-- e.g., logval(0101) = 3

--

logval(00) = 0

--

logval(10) = 2

-- this can be also described as the position of the last ‘1’ in

-- the argument, starting from the end

<Empty Extension> ::=

<Length : <Extension Length>>

<Extension : bit* lval(Length) > &

{<SpuriousExtension : bit(*) = null>;

<Extension Length> ::=

<L:0> |

-- lval = 0

1
<L : bit(3) – 111> |
-- lval = val(L) + 1

1111 <L : bit(4)>;

-- lval = 8*val(L)+8
< Extension of SpecialExtensionV2 > ::=

<Length : <Extension Length>>

<Extension : bit* lval(Length) > &

{
<c4 : <ASN1.C4>>

{0 | 1 <c3 : <ASN1.C3>>}

<Spurious Extension : bit(*) = null>

}//;

;

USER-FUNCTION-END

-- Example encoding definition using native ECN

Int16Encoding.length ::= ENCODING

 {SPACE {variable-self-delim},

 -- Represents values 1,2,3,4 etc

 -- 0 => 1, 10 => 2, 110 => 3, 1110 =>4

 VALUE {bit-count-simple-0},

 LENGTH-DETERMINANT-FOR Int16Encoding.value }

Int16Encoding.value ::= ENCODING

 {SPACE {variable-min UNITS bits(2)},

 VALUE {offset-suppress-zero}

 -- Will encode the offset for lb

 -- into the minimum number

 -- of 2-bits (the number is determined

 -- by length - see later, with zero

 -- encoding into zero bits. -- }

-- Association of CSN.1 encoding definitions with ASN.1 types

GSMClassMark ENCODED BY GSMClassmarkProc

B ENCODED BY CSN1Proc."SpecialBoolean"

SparseEvenlyDistributedValueSet ENCODED BY

CSN1Proc."SparseEvenlyDistributedValueSet"

SparseValueSet ENCODED BY CSN1Proc."SparseValueSet"

VariableLengthList ENCODED BY CSN1Proc."VariableLengthList"

VariableLengthInteger ENCODED BY CSN1Proc."VariableLengthInteger"

VariantRecord ENCODED BY CSN1Proc."VariantRecord"

ConditionalSized ENCODED BY CSN1Proc."ConditionalSized"

SpecialisedExtensionV1.extension ENCODED BY CSN1Proc."Empty Extension"

SpecialisedExtensionV2.extension ENCODED BY CSN1Proc." Extension of SpecialExtensionV2"

-- Association of ECN native definitions with ASN.1 type

SpecialInt ENCODED BY Int16Encoding

END

11.2.6.3
Link Module

Sample-Link-Module LINK-DEFINITIONS ::=

BEGIN

Sample-ASN1-Module ENCODED BY perUnaligned WITH Sample-ECN-Module

END

_997805625.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 2/09/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:

ftp://ftp.3gpp.org/information/3gCRF-??.DOC

2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail.

3)
Open the specification to which you wish to make a change. It is very IMPORTANT to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:

for the 3GPP: ftp://ftp.3gpp.org/specifications/ for SMG: http://docbox.etsi.org/tech-org/document/smg/specs

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:

ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.

6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.

7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)

8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.

9)
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.

10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".

Examples of expressions of prevision in 3GPP specifications

To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:

SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"

SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".

CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".

A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:

ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A
The CR cover sheet

This annex provides further information on how to fill out the cover sheet of a CR.

The header:

a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.

The title box:

b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG. For GSM specifications, it is prefixed with an "A"

c)
The 3G or GSM specification number (e.g. 21.111 for 3G or 12.05 for GSM).

d)
The TSG or SMG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting.

e)
for approval/for information: one box only shall be marked with an "X"

Proposed change affects:

f)
At least one box shall be marked with an "X"

Source:

g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name (and Tdoc number) should be used instead.

Subject:

h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"

good examples:
"Clarification to FETCH command"

"Alignment of operation and parameter names"

recently used

bad examples:
"correction"

"editorial correction"

"correction to TS xxx.yy"

"various improvements"

Work item:

h)
The name of the 3G work item for which the CR is relevant.

Category and release:

i)
Choose one category only

Reason:

j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.

Clauses Affected:

m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".

Other specs affected:

n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.

MS test specifications: to be used if a change is needed to the MS test specifications.

BSS test specifications: to be used if a change is needed to the base station test specifications.

O&M specifications: to be used if a change is needed to O&M specifications.

When listing other CRs in part n) use, for example, the form "21.111-CR001" or "12.05-A123"

How to create a CR for 3G or SMG specifications.

File location: http://ftp.3gpp.org/information/3gCRF-??.doc

