Seoul, Korea April 10th - 14th, 2000

Agenda Item:

Source: Nokia

Title: 25.215-049, 25.211-048 : Propagation delay for PCPCH

Document for: Decision

1 Introduction

In its last meeting, RAN WG3 included Propagation delay measurement also for PCPCH. Since RAN WG3 uses the same data frame structure for RACH /CPCH, it is proposed that in TS25.215, there is also only one measurement defined for PRACH and PCPCH. The idea to define the propagation delay measurement for PCPCH, is that PCPCH can also be used for DPCH setup. The attached CR contains the proposed definition of Propagation delay measurement for PCPCH.

2 PCPCH propagation delay definition

Proposed definition to TS 25.215 is given below. It is aligned with the PRACH propagation delay definition as much as possible. However, the measurement definition for PCPCH is now defined so generically, that several measurements are possible, since each Iub frame contains the field for Propagation delay.

PCPCH:

Propagation delay = $(T_{RX} - T_{TX} - 2560)/2$, where

 T_{TX} = The transmission time of AICH access slot (n-2- T_{cpch}), where $0 \le (n-2-T_{cpch}) \le 14$ and T_{cpch} can have values 0 or 1. T_{RX} = The time of reception of the first chip (the first significant path) of the PCPCH message from the UE at PCPCH access slot n, where $0 \le n \le 14$.

Note: The definition of "first significant path" needs further elaboration.

3 Changes needed in other specs

This means that TS25.211 has to contain following sentence in section "7.4 PCPCH/AICH timing relation", in the similar way that section "7.3 PRACH/AICH timing relation" now defines the timing relationship of the uplink access slot number n and downlink access slot n. Otherwise the PCPCH propagation delay definition is not clear. The CR for that is attached here also.

Uplink access slot number n is transmitted from the UE τ_{p-a1} chips prior to the reception of downlink access slot number n, n =0, 1, ...,14.

3GPP/TSG RAN WG1 Meeting #12 Seoul, Korea, April 10th-14th 2000

Document R1-00-0490

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.								
		25.215	CR	049	(Current Version	on: 3.2.0	
GSM (AA.BB) or 3G (AA.BBB) specification number ↑								
						strate non-strate	gic use or	nly)
Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc Proposed change affects: (at least one should be marked with an X) The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc WE UTRAN / Radio X Core Network								
Source:	Nokia					Date:	2000-04-05	
Subject:	Propagation	n delay for PCPC	4					
Work item:	UTRAN							
(only one category E shall be marked (with an X)	A Correspond A Addition of C Functional D Editorial mo	modification of fea odification	ature		X	Release:	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
Reason for change:		has included Prop ns are added to W			asureme	nt also for PC	PCH. The nee	ded
Clauses affecte	<u>d:</u> 5.2.10	Propagation dela	у					
Other specs affected:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				CRs: CRs: CRs:			
Other comments:								
help.doc								

<----- double-click here for help and instructions on how to create a CR.

5.2.10 PRACH/PCPCH Propagation delay

B 6 70	Description delegated of the description of the delegated					
Definition	Propagation delay is defined as one-way propagation delay as measured during either PRACH					
	or PCPCH access:					
	PRACH:					
	Propagation delay = $(T_{RX} - T_{TX} - 2560)/2$, where					
	T_{TX} = The <u>transmission</u> time of AICH access slot (n-2-AICH transmission timing), where $0 \le (n-2-1)$					
	AICH Transmission Timing)≤14 and AICH_Transmission_Timing can have values 0 or 1.					
	T_{RX} = The time of reception of the beginning (the first significant path) of the PRACH message					
	from the UE at PRACH access slot n.					
	Note: The definition of "first significant path" needs further elaboration.					
	PCPCH:					
	<u>Propagation delay = $(T_{RX} - T_{TX} - 2560)/2$, where</u>					
	T_{TX} = The transmission time of AICH access slot (n-2- T_{cpch}), where $0 \le (n-2-T_{cpch}) \le 14$ and T_{cpch} can have values 0 or 1.					
	T _{RX} = The time of reception of the first chip (the first significant path) of the PCPCH message					
	from the UE at PCPCH access slot n, where 0≤n≤14.					
	Note: The definition of "first significant path" needs further elaboration.					
Range/mapping	The Propagation delay is given with the resolution of 3 chips with the range [0,, 765] chips.					
	The Propagation delay shall be reported in the unit PROP_DELAY where:					
	_					
	PROP_DELAY_000: 0 chip ≤ Propagation delay < 3 chip					
	PROP_DELAY_001: 3 chip ≤ Propagation delay < 6 chip					
	PROP_DELAY_002: 6 chip ≤ Propagation delay < 9 chip					
	PROP_DELAY_252: 756 chip ≤ Propagation delay < 759 chip					
	PROP_DELAY_253: 759 chip ≤ Propagation delay < 762 chip					
	PROP_DELAY_255: 755 chip ≤ Propagation delay < 765 chip					
	PROP_DELAY_255: 765 chip ≤ Propagation delay					
	NOT_DELAT_255. 765 GIIP \(\) FTOPAYALION delay					

6 Measurements for UTRA FDD

6.1 UE measurements

6.1.1 Compressed mode

6.1.1.1 Use of compressed mode/dual receiver for monitoring

A UE shall, on higher layers commands, monitor cells on other frequencies (FDD, TDD, GSM). To allow the UE to perform measurements, higher layers shall command that the UE enters in compressed mode, depending on the UE capabilities.

In case of compressed mode decision, UTRAN shall communicate to the UE the parameters of the compressed mode.

A UE with a single receiver shall support downlink compressed mode.

Every UE shall support uplink compressed mode, when monitoring frequencies which are close to the uplink transmission frequency (i.e. frequencies in the TDD or GSM 1800/1900 bands).

All fixed-duplex UE shall support both downlink and uplink compressed mode to allow inter-frequency handover within FDD and inter-mode handover from FDD to TDD.

Monitoring frequencies outside TDD and GSM 1800/1900 bands without uplink compressed mode is a UE capability.

UE with dual receivers can perform independent measurements, with the use of a "monitoring branch" receiver, that can operate independently from the UTRA FDD receiver branch. Such UE do not need to support downlink compressed mode.

The UE shall support one single measurement purpose within one compressed mode transmission gap. The measurement purpose of the gap is signalled by higher layers.

The following section provides rules to parametrise the compressed mode.

6.1.1.2 Parameterisation of the compressed mode

In response to a request from higher layers, the UTRAN shall signal to the UE the compressed mode parameters.

3GPP/TSG RAN WG1 Meeting #12 Seoul, Korea, April 10th-14th 2000

Document R1-00-0490 e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

		CHANGE I	REQU	JEST			ile at the bottom of th to fill in this form con	
		25.211	CR	048	C	Current Version	on: 3.2.0	
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team								
For submission to: TSG RAN #8		for infor	for information			strategic (for SMG use only)		
Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc Proposed change affects: (at least one should be marked with an X) The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc WE UTRAN / Radio X Core Network								
Source:	Nokia					Date:	2000-04-05	
Subject:	Propagation	delay for PCPCH	1					
Work item:	UTRAN							
Category: F A (only one category shall be marked with an X) C	Correspond Addition of Functional	modification of fea		rlier releas	Se X	Release:	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
Reason for change:	TS25.211, s and the dov	nas included Prop section 7.4 has to vnlink access slot delay measurem	define the	ne relative n, in orde	timing of tr to have	f uplink acces a clear defin	ss slot number	· n
Clauses affected: 7.4 PCPCH / AICH timing relation								
affected:		cifications	-	→ List of 0	CRs: CRs: CRs:			
Other comments:								
help.doc								

<----- double-click here for help and instructions on how to create a CR.

- when AICH_Transmission_Timing is set to 0, then

```
	au_{p\text{-p,min}} = 15360 \text{ chips (3 access slots)} 	au_{p\text{-a}} = 7680 \text{ chips} 	au_{p\text{-m}} = 15360 \text{ chips (3 access slots)}
```

- when AICH_Transmission_Timing is set to 1, then

```
	au_{\text{p-p,min}} = 20480 \text{ chips (4 access slots)} 	au_{\text{p-a}} = 12800 \text{ chips} 	au_{\text{p-m}} = 20480 \text{ chips (4 access slots)}
```

The parameter AICH_Transmission_Timing is signalled by higher layers.

7.4 PCPCH/AICH timing relation

The uplink PCPCH is divided into uplink access slots, each access slot is of length 5120 chips. Uplink access slot number n is transmitted from the UE τ_{p-a1} chips prior to the reception of downlink access slot number n, n =0, 1, ...,14.

The timing relationship between preambles, AICH, and the message is the same as PRACH/AICH. Note that the collision resolution preambles follow the access preambles in PCPCH/AICH. However, the timing relationships between CD-Preamble and CD-ICH is identical to RACH Preamble and AICH. The timing relationship between CD-ICH and the Power Control Preamble in CPCH is identical to AICH to message in RACH. The $T_{\rm cpch}$ timing parameter is identical to the PRACH/AICH transmission timing parameter. When $T_{\rm cpch}$ is set to zero or one, the following PCPCH/AICH timing values apply.

Note that a1 corresponds to AP-AICH and a2 corresponds to CD-ICH.

 τ_{p-p} = Time to next available access slot, between Access Preambles.

Minimum time = 15360 chips + 5120 chips X Tcpch

Maximum time = 5120 chips X 12 = 61440 chips

Actual time is time to next slot (which meets minimum time criterion) in allocated access slot subchannel group.

- $\tau_{p\text{-al}}$ = Time between Access Preamble and AP-AICH has two alternative values: 7680 chips or 12800 chips, depending on T_{cpch}
- $\tau_{a1\text{-cdp}}$ = Time between receipt of AP-AICH and transmission of the CD Preamble $\tau_{a1\text{-cdp}}$ has a minimum value of $\tau_{a1\text{-cdp, min}}$ =7680 chips.
- $au_{p\text{-cdp}} = ext{Time between the last AP}$ and CD Preamble. $au_{p\text{-cdp}}$ has a minimum value of $au_{p\text{-cdp-min}}$ which is either 3 or 4 access slots, depending on $ext{T}_{cpch}$
- τ_{cdp-a2} = Time between the CD Preamble and the CD-ICH has two alternative values: 7680 chips or 12800 chips, depending on T_{cpch}
- $\tau_{cdp\text{-pcp}}$ = Time between CD Preamble and the start of the Power Control Preamble is either 3 or 4 access slots, depending on T_{cpch} .

The message transmission shall start 0 or 8 slots after the start of the power control preamble depending on the length of the power control preamble.

Figure 30 illustrates the PCPCH/AICH timing relationship when T_{cpch} is set to 0 and all access slot subchannels are available for PCPCH.