Page 1

[bookmark: _Hlk485556097][bookmark: _GoBack]3GPP TSG RAN WG1 NR Ad-Hoc#2 							R1-1711644
27 – 30 June 2017
Qingdao, China

[bookmark: Source]Agenda item:		5.1.4.2.1
Source: 				Tsofun Algorithm
Title: 					Study of Split-CRC Polar Code Construction for Early Termination
[bookmark: DocumentFor]Document for:		Discussion/Decision
Introduction
In RAN1#88b meeting [1], the following agreements were reached:
Agreement:
· J CRC bits are provided (which may be used for error detection and may also be used to assist decoding and potentially for early termination)
· J may be different in DL and UL
· J may depend on the payload size in the UL (0 not precluded)
· In addition, J’ assistance bits are provided in reliable locations (which may be used to assist decoding and potentially for early termination)
· J + J’ <= the number of bits required to satisfy the FAR target (nFAR) + 6
· Working assumption:
· For DL, nFAR = 16 (at least for eMBB-related DCI)
· For UL, nFAR = 8 or 16 (at least for eMBB-related UCI; note that this applies for UL cases with CRC)
· J’>0
· Working assumption: J”<=2 additional assistance bits are provided in unreliable locations (which may be used to assist decoding and potentially for early termination)
· Can be revisited in RAN1#89 if significant benefit is shown from a larger value of J” without undue complexity – companies are encouraged to additionally evaluate J”=8
· The J’ (and J” if any) bits may be CRC and/or PC and/or hash bits (downscope if possible)
· Placement of the J, J’ (and J” if any) assistance bits is FFS after the study of early termination techniques
· Appended?
· Distributed?
· evenly?
· unevenly?
Conclusion:
· Study until RAN1#89 polar code construction techniques to facilitate early termination (i.e. before decoding all the information bits) without degrading BLER performance or latency (especially considering the time for deinterleaving the information and assistance bits) compared to purely implementation based methods such as path-metric based pruning
· e.g. assistance bits distributed in the codeword in such a way that error detection can be performed after partial decoding
· Investigate performance, complexity and FAR impacts
· Study of use of data-independent scrambling to facilitate early termination is also not precluded

In RAN1#89 meeting [2], the following agreement was reached to proceed with the evaluations:
Agreement:
· For DL:
· J’ = 3 or 6, to be downselected at June adhoc
· J’’ = 0
· At least some of the J + J’ bits are appended
· FFS until June adhoc:
· how the J + J’ bits are obtained
· If J’=6, working assumption that at least some of the J + J’ bits are distributed (including to support early termination in the code construction) (Consideration of J’=6 proposals without distributed J+J’ bits are not precluded.)
· If J’=3, FFS until June adhoc whether some of the J + J’ bits are distributed (including to support early termination in the code construction)
· Consideration of distribution of bits shall consider complexity versus benefit and comparison to implementable purely implementation based methods for early termination

In this contribution, we focus on polar code construction for EMBB control channels based on distribution of J+J’ CRC and assistance bits. In latest discussions on polar code construction, a major point of disagreement was whether the J+J’ bits are distributed along the information payload or appended to it. Facilitation of Early Termination (abbreviated ET in this document) support via the code construction was the major motivation in favour of adopting the distributed approach, and drove many companies to propose and evaluate the possible benefits of such schemes.
In the contribution, we introduce a polar code construction scheme based on split CRC blocks, to facilitate ET. We discuss the benefits and the possible shortcomings of our scheme, as well as of other techniques proposed for ET using distributed assistance bits – polar code construction. We provide results of latency and complexity gains of our scheme, and compare them to estimated gains of other propositions, using a realistic timing model based on SSC decoding algorithm.
Note: In a parallel contribution by Tsofun [3], we present a complementary code construction scheme for ET, based on placing UE-ID on frozen bits, with ET being left open to each company’s implementation. Please note that the two schemes proposed by Tsofun are not mutually exclusive and can be used together.

Notations:
M			codeword length in bits (after rate-matching)
N 			mother polar code size (a power of 2)
K 			information payload size in bits (not including CRC)
C = J+J’ 	overall number of CRC / assistance bits
K’=K+C	number of non-frozen bits
		correspond to a FAR requirement (of single decoding attempt) of

Overview of Distributed Assistance Bits Constructions
The agreed J+J’ CRC and assistance bits are used for both error correction and error detection. Distributed assistance bits can be used in intermediate stages of the polar code sequential decoder, thereby allowing early termination of the process in certain situations. The main benefit of ET is a possible reduction in decoding latency and complexity for DL blind decoding (often referred to as “ET gains” in this document), allowing for power reduction and battery life extension.
Below is a short overview of the different proposals for distributed code construction facilitating ET. The proposals are detailed in the context of DL, assuming bits. In short, the proposals can be divided into two basic categories:
1. Constructions based on distributing the bits of a single 19-bit CRC
a. Distributed CRC [4], [5]
i. CRC calculation is similar to standard CA-Polar, but the information and CRC bits are interleaved to form a different bit ordering, that places some of the CRC bits in intermediate locations of the non-frozen payload of the non-frozen payload.
ii. The construction method allows using a single interleaving pattern for any information payload size .
iii. Position of the CRC bits in overall non-frozen payload depends on the CRC polynomial.
b. [bookmark: OLE_LINK5][bookmark: OLE_LINK43]Distributed CRC (as above), combined with PC-Frozen bits [6]
i. J=16, J’=6=J1’+J2’, J+J1’=19-bit distributed CRC are used for ET, and J2’=3 additional assistance bits are PC-Frozen. From ET perspective, since PC-Frozen bits do not serve for parity check and termination, this scheme should have similar ET performance to the original Distributed CRC proposal[footnoteRef:2], and is therefore not further discussed in this document. [2: Except for the fact that the base worst-case decoding latency may somewhat change due to the different allocation of information bits]

c. Evenly-distributed CRC [7]
i. 19 parity check bits are obtained from a modified CRC generating matrix, and distributed with an equal spacing among the non-frozen polar information bits.
ii. Analytically, the construction is not equivalent to a CRC, and results in information bits at higher indices being protected by less parity bits.
2. Constructions based on an appended CRC + additional block of distributed assistance bits
a. Distributed simple parity check polar codes [8] (abbreviated DSPC-Polar)
i. The proposition concatenates a standard J-bit CRC with segmented parity protection
ii. After a J-bit CRC encoding, the result is divided into J’+1 segments, with one parity bit appended to each segment (except for the final segment).
iii. In the basic proposition, the parity bits are placed at constant spacing of bits. Namely, the locations of distributed parity bits are , for .
iv. Another proposition for J’=3, suggests placing the parity bits near locations .
b. Segmented polar Codes with hash check function ([9], Section 2)
i. The proposition concatenates a standard J-bit CRC with segmented hash protection.
ii. J=13 bits are used for CRC, with the result divided into two segments of equal size of bits.
iii. The two segments are encoded separately with hash functions, which outputs of sizes and are appended at the end of each segment; J’=6=.
c. Embedded CRC block [10]
i. [bookmark: OLE_LINK12]J=16, J’=3 bits in an embedded CRC block, calculated with a separate simple polynomial
d. Split - CRC Polar code construction, proposed by Tsofun Algorithm [11]
i. Suggested values: J=13, J’=6, with
1. J+1=14 bits form the main CRC polynomial (appended after information end)
2. [bookmark: OLE_LINK13]J’-1=5 bits form an embedded CRC block
ii. The embedded CRC block is obtained as an intermediate result of the 14-bit CRC calculation
iii. The embedded CRC block is also encoded by the main CRC
iv. Explained in detail in the next section.
e. Additional distributed parity bits [12]
i. J=16 bits for main CRC polynomial, with J’=3 additional distributed parity bits.
ii. Calculation of the additional parity is based on intermediate result of main CRC calculation.
iii. Additional parity bits may or may not be encoded by the main CRC (dubbed recursive and non-recursive construction, respectively [12]).
f. Variant of Distributed CRC (as in [5]), with an additional CRC block [13]
i. J=16 Distributed CRC bits, and J’=3 parity bits distributed in the information block
ii. [bookmark: OLE_LINK11][bookmark: OLE_LINK10]Calculation of the additional parity can be based on intermediate result of main CRC calculation

The survey above shows that all propositions (except [6]) employ J+J’=19, namely CRC and assistance bits. Morover, proposition [6] that suggests J+J’=+6, does not utilize the extra assistance bits for achieving additional ET gains. Based on the profiling already made and discussed in past RAN1 meetings, showing questionable BLER gains for the scheme in [6], we deduce that there is no justification for additional assistance bits beyond the number dictated by FAR requirement.
[bookmark: _Hlk485654840]Proposal 1: Use J+J’= for polar code construction.

As shown in the next sections, code construction schemes of the first category either exhibit poor ET gains, or alternatively achieve them at the unacceptable price of performance degradations. In addition, it is shown that most construction schemes of the second category exhibit insufficient ET gains.

[bookmark: OLE_LINK2]Split – CRC Polar Code Construction
A Split-CRC polar code divides the (J+J’) – bits into two CRC blocks of different sizes: a small CRC block embedded in the middle of the information payload (used for error detection and allowing for ET), and the main (larger) CRC block appended to the information end (used for error correction and error detection). The main (second) CRC block encodes and protects all the preceding information block, including the first CRC. The first (embedded) CRC block is not produced by an independent CRC polynomial, but rather as an intermediate result of encoding with the second (main) CRC. The scheme is proposed for DL control transmission, where ET is an important design consideration.
The following notations will be used in the context of the proposed construction scheme:
· – number of information payload bits before the first (embedded) CRC
· – number of information payload bits between the two CRC blocks; namely
· – size of the first (embedded) CRC block (in bits)
· – size of the second (main) CRC block (in bits); namely
· – CRC polynomial of degree , used for calculating all CRC bits during code construction

Figure 1 below illustrates the composition of the non-frozen bit channels, with yellow blocks denoting CRC.
[image:]
[bookmark: OLE_LINK4]Figure 1. Illustration of the composition of the non-frozen payload

Encoding
Split – CRC Polar code is constructed according to the following steps:
1. Using the sequence design of choice, construct a (M,K’) polar code, and determine the locations of K’=K+C non-frozen bit channels.
2. [bookmark: OLE_LINK15]Split the information payload into two blocks of sizes and , such that .
3. [bookmark: OLE_LINK16]Encode the first information block (bits of the information payload), using the CRC polynomial .
4. Take the least significant bits of the intermediate CRC LFSR state (of size bits), corresponding to powers of the CRC state polynomial, and XOR them with bits from the UE-ID[footnoteRef:3]. The resulting -bit binary word is the first CRC block. Append the CRC block after the first information block (first information bits). [3: Assuming UE-specific DCI, the XOR pattern for common DCI is FFS; precise choice of the bits from UE-ID is FFS.]

5. Encode the first CRC block, using the CRC polynomial (preserving its past state).
6. Encode the second information block (remaining bits of the information payload), using the CRC polynomial (preserving its past state).
7. Take the -bit CRC result, XOR it with bits from the UE-ID[footnoteRef:4], and append the result to the end of the information bits. The resulting -bit binary word is the second CRC block. Append the second CRC block after the second information block (last information bits). [4: Same comment as above. In addition, note that all bits of the UE-ID have to be XOR’ed with either bits of the first or the second CRC block (or both).]

8. [bookmark: OLE_LINK75]Map the obtained K’ non-frozen bits to their allocated locations in the polar information word, and proceed with standard encoding using Arikan kernel.

[bookmark: _Ref485646216][bookmark: OLE_LINK14]Decoding
Split – CRC Polar code is decoded according to the following steps:
1. Decode the polar code, using a decoding algorithm of choice, treating it as if it were a regular CA-Polar code with information payload size of) bits and a single appended CRC of size bits.
2. Upon decoding the first non-frozen payload bits, and encoding all the decoding paths (candidates in the list) with the CRC polynomial , keep the least significant bits of the intermediate CRC LFSR state (per each decoding path), corresponding to powers of the CRC state polynomial, and XOR them with the corresponding bits of UE-ID. The result (per decoding path) is called the “expected CRC”.
3. Upon decoding the following CRC bits, compare (for each decoding path) the decoded bits to the “expected CRC” values (corresponding to the predecessor decoding path bits ago).
4. Mark each decoding path that failed the CRC check as an “invalid candidate”[footnoteRef:5]. Upon each subsequent step of decoding an information bit, mark each decoding path which predecessor is marked “invalid candidate”, as invalid, as well. [5: Note: no path pruning / list reduction based on CRC result may be done, since this may degrade FAR performance]

5. If at any decoding stage, all the decoding paths are marked as “invalid candidates”, terminate decoding and declare an error.
6. After SCL decoding ends, select the best decoding path that satisfies the -bit CRC (XOR’ed with the corresponding UE-ID values). If that decoding path is marked as “invalid candidate”, declare decoding failure[footnoteRef:6]. [6: Choosing the best decoding path that passes CRC and is not marked invalid may degrade FAR performance]

Proposed Parameter Configuration
The following values are proposed for polar code construction for DL control channels:
· [bookmark: OLE_LINK35][bookmark: OLE_LINK17][bookmark: OLE_LINK18]Under working assumptions for DL evaluations, =16, thus C=J+J’==19 bits
· ; bits
· In our understanding of RAN1 agreements, since all J+J’ bits in Split-CRC construction are obtained using the same CRC polynomial, the proposal is compatible with both options of J’=3 and J’=6.
· In the case of J’=3: J=16, with two bits from J being distributed (as intermediate CRC results)
· In the case of J’=6: J=13, with one bit from J’ added to the main CRC of size J+1 bits
· The 14-bit CRC polynomial is g(x) = x^14 + x^12 + x^8 + x^6 + x^4 + x + 1 (0x28A9)
· [bookmark: OLE_LINK57] is a value in the range

The value of is FFS, intended to be as low as possible to maximize ET latency / complexity gains while satisfying FAR requirement.
It is possible to set a single rule for calculating for all codes (which is conservative enough to ensure FAR, but may be suboptimal in terms of ET gains for some codes). Alternatively, different values of may be used for different codes, allowing optimized ET gains.
In our understanding, +3=19 CRC / assistance bits suffice to satisfy FAR requirements for reference List-8 polar decoder design, and any additional assistance bits are unnecessary.

Discussion
This subsection provides some of the design considerations of Split-CRC Polar code construction, and discusses the advantages and shortcomings of this scheme.

[bookmark: _Ref485569477][bookmark: OLE_LINK9][bookmark: OLE_LINK19]Motivation 1: Optimal BLER Possible with Smaller CRC
Following the working assumption of =16 bits, at least 19 bits are required to satisfy FAR requirement for DL control transmission, using a reference List-8 polar decoder. Hence, it is not surprising that almost all code construction proposals allocate at least 16 of these bits for the CRC appended to the end of information payload. Note, however, that such a large CRC is not required for optimized error correction performance. An equivalent formulation of this claim is that it is possible to reduce the size of the CRC, by converting several CRC bits into information bits, thus enlarging the information code rate, while preserving the “effective rate” of the polar code (because the number of non-frozen bits remains unchanged), without affecting BLER performance.
Furthermore, from Tsofun experience of working ECC products based on polar codes in the field of satellite communications, CRC of size between 8 to 12 bits was shown to achieve optimal BLER performance for a wide range of code rates and sizes, ranging from hundreds to thousands of bits. We believe that the case of EMBB DL control (with mother polar code sizes not exceeding 512 bits) is no different.
[bookmark: OLE_LINK32]Figures 2-3 below illustrate the claim for several sample codes (representing typical values for DL control codes; see Section ‎4.1 below for details of the codes profiled). The reference code uses K information bits with J+J’=19 bits of CRC, resulting in K’=K+J+J’ non-frozen bits. All other variants use less CRC bits, while preserving the same K’. The resulting BLER curves, for profiled CRC size from 19 down to 12, nearly overlap.
[image:] [image:]
Figure 2. BLER curves of misc. codes depending on CRC size, while preserving effective code rate

[image:][image:]
Figure 3. BLER curves of misc. codes depending on CRC size, while preserving effective code rate

[bookmark: _Hlk485654696]Observation 1: The number of CRC bits required for optimal error correction performance of polar codes for EMBB control is smaller than 16.
The immediate conclusion is that some of the CRC bits can be assigned to other goals and embedded in the middle of the information payload, provided that they still serve for error detection (and preserve FAR performance).

Motivation 2: Need for More Embedded Assistance bits
Another consideration for reducing the main CRC size in favour of increasing the number of distributed assistance bits, is improving the probability of ET. As a rough rule of thumb, ET probability can be roughly assessed as

[bookmark: OLE_LINK23][bookmark: OLE_LINK27]where is the maximal list size (reference value 8), and stands for the overall number of distributed / embedded assistance bits. Note that the first assessment above is based on the (partly justified) assumption that the parity / validity check results obtained for all decoding paths in the list are nearly independent[footnoteRef:7], and the second one assumes that all check results differ one from another with high probability (reminiscent of the Union Bound). As will be shown in the following sections, the actual probability will be very close to the first approximation (of independent results). [7: Note: the decoded information bits themselves are typically highly correlated (among the decoding paths)]

Table 1 below illustrates this rough ET probability assessment for , over misc. values of :
	 (# of bits)
	1
	2
	3
	4
	5
	6
	7
	8

	
	[bookmark: OLE_LINK28]Approximation 1
	~3.9e-3
	~0.100
	~0.344
	~0.597
	~0.776
	~0.882
	~0.939
	~0.969

	
	Approximation 2
	0
	0
	0
	0.50
	0.75
	0.875
	0.938
	0.969

[bookmark: OLE_LINK31]Table 1. Assessments of Early Probability for misc. number of distributed parity bits

As will be shown in Section ‎5.1 below, the assessment in Table 1 are very close to reality in the case of the proposed Split CRC embedded block of bits. Adversely, allocation of less assistance bits for ET results in significantly degraded ET probability estimate. This especially holds for code construction schemes using only three assistance bits, as proposed by several companies.
[bookmark: OLE_LINK30]Observation 2: The number of distributed assistance bits should be high enough to ensure high ET probability.

Advantages of the proposed scheme:
· Allows for earliest possible termination among all code constructions based on distributed assistance bits.
· Simple hardware implementation
· Reuse of a single CRC calculation hardware for producing all CRC bits.
· No special treatment of bits other than CRC (as PC-Frozen) required; no impact on decoding parallelism.
· Location of embedded CRC block is simple and requires no additional computation
· No interleaving of the information payload is required
· Worst-case decoding latency is identical to that of reference CA-Polar.
· No BLER degradation, since much less than J CRC bits are required for optimal error correction.
· Decoding modifications that improve BLER performance are possible, when target FAR requirement is relaxed, similarly to the proposition in [14].

Possible drawbacks of the proposed scheme:
· Possible FAR degradation in the scenario of undetectable decoding error
· Relevant for at most ~10% of blind decoding attempts, impact on overall FAR much reduced.
· Same concern exists for all other code construction schemes not based on a single CRC of size J+J’ bits.
· Degradation can be eliminated by increasing , at the cost of decreasing ET gains.
· For optimized ET gains without degrading FAR, needs to be optimized separately per each code.
· Probability of ET will reduce with increasing list size (note: this is a property common to other distributed bits – based schemes)

BLER and FAR Simulations
[bookmark: _Ref485557293][bookmark: OLE_LINK20]Simulation Parameters
The simulation parameters for the codes profiled in this contribution are listed in Table 2 below. Four sample codes, representing typical values for DL control channels, were profiled. For the sake of simplicity, no rate-matching was applied, and codeword sizes are powers of two. PW sequence – based code construction was used for all the cases. All codes are compared to reference CA-Polar code construction, with CRC of J+J’=19 bits.
	[bookmark: _Hlk485566392]Channel
	AWGN

	Modulation
	QPSK

	Construction
	PW

	Construction scheme
	CA-Polar (reference code) / Split-CRC

	Decoding algorithm
	CA-SCL / CA-based Split CRC decoder with ET

	List size
	L=8

	J+J’
	19

	CRC Polynomial
	For CA-Polar: g(x) = x19+x17+x13+x12+x11+x9+x7+x6+x5+x4+x+1 (0x51D79)
For Split-CRC: g(x) = x14+x12+x8+x6+x4+x+1 (0x28A9)

	Split-CRC details
	(For Split-CRC scheme only) ; bits

	
	[bookmark: OLE_LINK36]Code #1
	Code #2
	Code #3
	Code #4

	K
	64
	48
	80
	128

	Codeword size = N
	128
	256
	512
	512

	
(Split-CRC only)
	[bookmark: OLE_LINK37]8 bits;
16 bits
	12 bits;
24 bits
	24 bits;
40 bits
	40 bits;
64 bits

Table 2. Simulation parameters

BLER Performance
Figures 4-5 below present the BLER performance of the four codes, compared to reference CA-Polar. As can be seen from the figures, BLER performance of Split-CRC code construction is identical to that of reference CA-Polar. This result is not surprising, in light of the observations in Section ‎3.4.1.
[bookmark: OLE_LINK38]Observation 3: Split-CRC code construction yields identical BLER performance to reference CA-Polar.

[image:][image:]
Figure 4. BLER performance of Split-CRC vs. reference CA-Polar for codes #1 and #2

[image:][image:]
[bookmark: OLE_LINK21]Figure 5. BLER performance of Split-CRC vs. reference CA-Polar for codes #3 and #4

[bookmark: _Ref485651141]FAR Performance
Figures 6-7 below present the FAR performance of the four codes, with sample values of . Results at each SNR point were obtained based on simulated frames. Three scenarios were simulated for each code and value of :
· FAR caused due to undetectable decoding errors
· Random QPSK data transmission (with white noise). This is a simplified model for the case when the decoder tries an incorrect blind hypothesis regarding DCI resource allocation.
· [bookmark: OLE_LINK40]Note that the scenario when the BS does not transmit at all is a special case thereof, at very low SNRs.
· A valid polar code (matching blind hypothesis), intended to another user. A non-matching UE-ID is used for scrambling the CRC bits.
Note that the first FAR scenario occurs during decoding attempt of a valid candidate, while the latter two refer to false candidates during DCI blind decoding.

[image:] [image:]
[bookmark: OLE_LINK39]Figure 6. FAR performance of Split-CRC codes #1 and #2 for misc. scenarios

[image:] [image:]
[bookmark: OLE_LINK45]Figure 7. FAR performance of Split-CRC codes #3 and #4 for misc. scenarios

[bookmark: _Hlk485654722][bookmark: OLE_LINK42]Observation 4: Split-CRC code construction yields identical FAR performance to reference CA-Polar, for false decoding candidates.
[bookmark: _Hlk485654727]Observation 5: Split-CRC code construction can degrade FAR performance, for some values of , for the undetectable error scenario.
The next subsection discusses FAR performance for Split-CRC Polar codes and for other code constructions employing distributed assistance bits.

Discussion of FAR Performance
[bookmark: OLE_LINK44][bookmark: OLE_LINK1]It can be seen from Figures 6-7, that the degraded FAR curves at undetectable error scenarios typically have the form of “humps”. FAR is close to requirement in the very low SNR region (BLER=1); goes to zero at the higher SNRs (with decreasing BLER); while at intermediate BLER levels (roughly in the region between 10-2÷1), FAR rises, exceeding the official requirement by up to several hundred percent. Thus, degraded FAR levels are encountered at specific SNR regions, which unfortunately, are the ones important to UE operation. Note that the observed FAR behaviour is similar to the analysis made in Appendix C of [15].
[bookmark: OLE_LINK3]Despite the pronounced degradations, it should be kept in mind that the undetectable error scenario has limited influence on FAR, because it corresponds to only a small portion of the overall blind decoding attempts. In the reference blind decoding in LTE, at most 4 DCIs may be scheduled to any given user out of 44 blind decoding candidates, namely, the decoding of DCI frames intended to the UE takes less than ~10% of overall blind decoding attempts. Assuming that these proportions remain similar in NR design, the influence of the FAR degradations we observed on overall FAR behaviour is expected to be an order of magnitude lower.

[bookmark: _Ref485579650]FAR Dependence on Location of Embedded CRC Bits
Degraded FAR (in undetectable error cases) can be observed for lower values of (namely, when the embedded -bit CRC block is located too early in the information payload). Figure 8 below provides some intuition for why this happens. The figure illustrates the standalone bit error probabilities of the non-frozen K’ payload bits, conditioned on a false alarm occurrence in the main CRC of size 13 bits. In the examples simulated below, there is no embedded CRC, and the information payload is of size bits. Multiple curves in each sub-plot of the figure represent different SNRs. The probabilities were estimated based on collected false alarm statistics of ~2000 frames (out of 2x106 frames simulated).
[image:][image:]
Figure 8. BER of non-frozen payload bits for misc. SNRs, given false alarm of the main CRC

It can be seen in the figure above that while the bit error probability (given a false alarm) for most information bits is around 1/2, there is a considerable number of information bits in the beginning of the payload, for which error probabilities tend to go decrease with increasing SNR. In other words, despite the known occurrence of a CRC false alarm, the probability of decoding the first information bits correctly is still relatively high. This means that if some (or all) of the embedded CRC / assistance bits are placed in these locations, it is quite likely that they are still decoded correctly (together with the preceding information block), and their check does not fail. This means that in such cases, despite having J+J’ bits for error detection, the first CRC / assistance bits are less effective in detecting an error, which explains the degraded FAR.

[bookmark: _Ref485647902]FAR Vulnerability of other Code Construction Schemes
[bookmark: OLE_LINK47]Similarly to the observations made regarding FAR issues with Split-CRC Polar code construction, we believe that nearly all code construction schemes based on distributed parity bits present a similar vulnerability to their location. Let us consider two examples.
The Distributed CRC code construction in [5] initially proposed 19-bit CRC polynomials (Hex representation 0xBBF0F or its reciprocal 0xF0FDD) that presented a good property of a relatively early placement of distributed CRC bits (allowing for a relatively early possible termination). However, the FAR (and even BLER) performance of these polynomials (with reference CA-Polar) turned out to be poor, as illustrated in Figure 9 below:
[image:][image:]
[bookmark: OLE_LINK50]Figure 9. BLER and FAR of the original CRC polynomials proposed in [5]
The corrected CRC polynomial (Hex representation 0xA2B79) showed robust BLER and FAR performance, at the price of significantly more conservative new CRC bit positions, making potential ET gains unattractive, as shown in Section ‎5.3.1.
A second notable example is the proposition in [7], which (due to its construction) leaves information bits at higher locations in the non-frozen payload with much less parity protection. Contrary to the claim in [7] that the last information bits have higher reliability[footnoteRef:8], the bit error probability of these bits is actually higher than that of info bits at the initial locations (as illustrated in Figure 8). Therefore, given the multiple parity bits proposed to be placed at very early locations, we have strong concerns regarding possibly degraded FAR performance of the proposed scheme. [8: This statement is only true conditioned on a correct decoding of all preceding information bits]

[bookmark: OLE_LINK69]Observation 6: Nearly all code construction schemes based on distributed parity bits present a similar FAR vulnerability to parity location.

[bookmark: OLE_LINK34]FAR – Early Termination Trade-off
A common denominator to the two construction schemes mentioned in the subsection above is an attempt to define the placing of distributed parity bits, via a single generalized heuristic. Such an approach, though easier to define, may lead to worse performance of the resulting codes: expressed either via suboptimal ET performance (for conservative designs preserving FAR for all codes), or adversely via degraded FAR. An alternative would be to design optimal locations for distributed parities on a per-code basis, which is a more demanding task, though offering best potential ET gains. Split-CRC code construction can be designed by both manners, by either defining a single rule for determining , or by optimizing its value on a per-code basis.
To sum up the FAR discussion so far, we believe that some FAR degradation in the undetected error case is a direct consequence of a code construction with distributed parity / assistance bits.
[bookmark: _Hlk485654744]Observation 7: A trade-off between Early Termination gains and preserving FAR in the undetected error case is inherent for code construction based on distributed assistance bits.
[bookmark: _Hlk485654747]Proposal 2: 	If some of the J+J’ bits are distributed to allow ET, a relaxed requirement for FAR due to undetectable decoding errors should be agreed.

Early Termination Gains Simulations

[bookmark: _Ref485565016][bookmark: _Ref485650765]Evaluation of ET Probability for misc. Embedded CRC Sizes
[bookmark: OLE_LINK52][bookmark: OLE_LINK53]Profiling results of ET probability of embedded CRC blocks were obtained for CRC locations typical for Split-CRC scheme (as determined by) and for three values of embedded CRC block sizes : 3, 4 and 5 bits. See Appendix A for all figures of ET probability. Note that though the results were obtained for Split-CRC scheme, they may apply to other code constructions employing an embedded CRC, such as [10], [12] and [13]. Note that for the sake of simplicity, the probabilities simulated corresponded to the probability of stopping upon checking the last CRC bit, and did not take into account the additional possibility for ET (during subsequent decoding process) if all decoding paths are marked as “invalid candidates” (see ‎3.2).
Results summary:
· For =5, ET probability for false candidate cases is SNR – independent, and equals ~78%.
· [bookmark: OLE_LINK54]For =4, ET probability for false candidate cases is SNR – independent, and equals ~58%.
· For =3, ET probability for false candidate cases is almost SNR – independent, and equals ~33% in average.
· ET probability for the correct candidate decreases together with the BLER (as expected). In the higher-BLER region, ET occurs at roughly ~ 33% / 60% / 80% of the cases of decoding errors, for = 3/4/5, respectively.

[bookmark: _Hlk485654763][bookmark: OLE_LINK41]Observation 8: ET probability of false decoding candidates for Embedded CRC of size =3 / 4 / 5 bits is around 33% / 58% / 78%, respectively.
It can be seen from the results, that the rough assessments of ET probability made in equation (1) are justified, and ET probabilities are very close to Approximation 1 in Table 1.
Extrapolating the approximations to values of that were not profiled, we deduce that ET probability after the first 1 / 2 CRC bits is around 0.004 / 0.1, respectively. This result leads to the conclusion that even if the embedded CRC bits are distributed (by shifting the first bits earlier in the information payload), for presumably optimizing ET gains, the probability of such gains being realized is nearly negligible.
Note that another reason in favour of having the embedded parity bits grouped together in a continuous CRC block is a better protection of the preceding information block, as having CRC bits distributed along the information bits might create an unequal protection, with concerns of possible FAR degradation, as discussed in ‎4.4.1.1.
[bookmark: _Hlk485654760]Observation 9: Spreading the embedded CRC bits along the information payload may yield negligible ET gains.

[bookmark: _Ref485654428][bookmark: OLE_LINK46]Timing Model for Early Termination Gains Analysis
Following RAN1-89, an offline email discussion [16] was launched to align calculation methods for latency and complexity between companies. Unfortunately, the discussion did not result in any agreements or common ground for evaluation. Furthermore, most propositions in [16] took an overly simplistic approach, and might miss essential features of the polar decoder.
In an accompanied document to the email discussion [17], Tsofun proposed an approach that uses a simple recursive algorithm that tracks the complexity and latency of the decoder based on a short list of parameters and code configurations. The algorithm is based on Tsofun experience of analysing the timing performance of its existing polar code – based decoder products. Since the SCL and simplified SCL algorithms are recursive in nature, this approach provides better approximations of complexity/latency than using ratio of complexities and latencies between frozen and non-frozen symbols.
Figure 10 below illustrates the significant differences between the results obtained by Tsofun analysis and a simplified method assuming some fixed latency complexity ratio of 4 between the processing of information and frozen bits:
[bookmark: OLE_LINK63][image:][image:]
Figure 10. Comparison of SSC-based Tsofun model to a simplified approach
Note that the discrepancy between the approaches is most prominent in the region of “late termination” (namely, right hand side of the figures, representing occurrence of decoding termination at relatively high indices in the polar information). The main explanation to this mismatch is the fact that the simplified approach assumes all information bits take an equal amount of processing, while in reality, many of the information bits concentrated in the end of polar information form “rate-1” blocks, that can be processed in a much more efficient way in a realistic optimized decoder. The figures clearly show that using the simplified approach, one can reach the mistaken conclusion that “late termination” yields considerable ET gains, while in reality this is not correct.
[bookmark: _Hlk485654783][bookmark: OLE_LINK48]Observation 10: Using a simplified timing model that is not based on SSC – like decoding architecture may lead to highly imprecise results and misleading conclusions regarding ET gains.
Appendix B provides additional examples of latency and complexity gains results obtained with Tsofun SSC-based analysis scheme. It can be seen from the results that regardless of the code characteristics (codeword and information size, code-rate etc), ET gains present a very similar behaviour.
As a rough approximation:
· If decoding is terminated within ~5÷10% of the non-frozen payload, ET gains above ~85-90% can be reached;
· If decoding is not terminated after ~10% of the non-frozen payload, ET gains drop below ~60-70%;
· If decoding is not terminated after ~25% of the non-frozen payload, ET gains drop below ~35-55%;
· If decoding is not terminated after ~50% of the non-frozen payload, ET gains drop below ~10-25%;
· If decoding is not terminated after ~66% of the non-frozen payload, ET gains drop below ~10%;

[bookmark: OLE_LINK33][bookmark: _Hlk485654785]Observation 11: Early Termination gains sharply deteriorate with increase of information bit index where termination occurs.
Immediate conclusion from the above is that significant ET gains can only be achieved if termination occurs (in average) very early during the decoding process.

Evaluation of ET Latency and Complexity Gains
Overall latency and complexity gains of ET are given by the weighted combination of ET gains per possible locations of termination, multiplied by the probabilities of ET occurrence at these locations. For the sake of simplicity, we analyze the Split-CRC scheme as if the embedded CRC is only checked upon decoding all its bits, with the ET probabilities mentioned in Section ‎5.1.
As discussed above, there are two possibilities of Split-CRC Polar code design: a single rule for determining the embedded CRC location () for all codes, or manual optimization of per code.
Based on the profiling in Section ‎4.3 (assuming some mild FAR degradation is permitted), and on the results for latency and complexity gains brought in Appendix B:
· [bookmark: OLE_LINK59]For the former case, a conservative value of around shall be set for all codes.
As shown above, the expected latency gains (given that ET occurred) are around ~10÷25%
· For the latter case, values of will be optimized (per code), to values in the approximate range of .
We assess the achievable latency gains (given that ET occurred) to be in the range ~20÷60%

Table 3 below sums up ET gains, per value of , and using the ET probabilities obtained for false candidate scenarios:
	[bookmark: OLE_LINK64]
	
	
	

	ET Gain per ET occurrence (conservative)
	~10÷25%

	ET Gain per ET occurrence (optimized per code)
	[bookmark: OLE_LINK60]~20÷60%

	ET Probability
	~33%
	~58%
	~78%

	[bookmark: OLE_LINK58]Overall ET Gains (conservative)
	[bookmark: OLE_LINK61]~3÷8%
	~6÷14.5%
	~8÷19.5%

	Overall ET Gains (optimized)
	~7÷20%
	~12÷35%
	~16÷47%

Table 3. Summary of ET Gains of Embedded CRC – based construction

[bookmark: _Hlk485654798][bookmark: OLE_LINK72]Observation 12: Early Termination gains of optimized Split-CRC with =5 are in the range ~16-47%.
Observation 13: Without optimizing the location of embedded CRC per code, Early Termination gains are below 20%, and the profitability of using the scheme is questionable.

[bookmark: _Ref485601094]Assessment of ET Gains of Distributed CRC Scheme
To assess the ET gains of Distributed CRC construction scheme, Table 4 below shows the locations of the first distributed CRC bits for severalsample values of K, based on the reference interleaving sequence in [5] (for CRC polynomial 0xA2B79, and):
	[bookmark: _Hlk485653405]Locations of 6 first Distributed CRC bits
	Location #1
	Location #2
	Location #3
	Location #4
	Location #5
	Location #6

	[bookmark: _Hlk485653553]K = 48, K’ = 67
	27
	38
	44
	48
	50
	53

	K = 64, K’ = 83
	30
	46
	54
	62
	65
	68

	K = 80, K’ = 99
	38
	55
	66
	77
	80
	83

	K = 128, K’ = 147
	62
	89
	107
	120
	125
	130

	K = 200, K’=219
	87
	139
	163
	180
	192
	198

Table 4. Summary of ET Gains of Embedded CRC – based construction
Cells in Table 4 colored red indicate bit positions that occur very late in the non-frozen payload (after more than two thirds of K’ bits), while cells colored orange indicate bit positions that occur late (after more than a half). The consequence is that for the values of K checked, all distributed CRC bits except the first, are located late in the second half of the non-frozen payload. Therefore, (keeping in mind that the probability of terminating after the first bit is negligible), according to the results in Section ‎5.2, even if ET probability is one, overall ET gains are expected to be very low, presumably below ~10%.
[bookmark: _Hlk485654802]Observation 14: Early Termination gains of Distributed CRC are expected to be below 10%, due to very late locations of the distributed parity bits.

Conclusions
Observation 1: The number of CRC bits required for optimal error correction performance of polar codes for EMBB control is smaller than 16.
Observation 2: The number of distributed assistance bits should be high enough to ensure high ET probability.
Observation 3: Split-CRC code construction yields identical BLER performance to reference CA-Polar.
Observation 4: Split-CRC code construction yields identical FAR performance to reference CA-Polar, for false decoding candidates.
Observation 5: Split-CRC code construction can degrade FAR performance, for some values of , for the undetectable error scenario.
Observation 6: Nearly all code construction schemes based on distributed parity bits present a similar FAR vulnerability to parity location.
Observation 7: A trade-off between Early Termination gains and preserving FAR in the undetected error case is inherent for code construction based on distributed assistance bits.
[bookmark: OLE_LINK71]Observation 8: ET probability of false decoding candidates for Embedded CRC of size = 3 / 4 / 5 bits is around 33% / 58% / 78%, respectively.
Observation 9: Spreading the embedded CRC bits along the information payload may yield negligible ET gains.
Observation 10: Using a simplified timing model that is not based on SSC – like decoding architecture may lead to highly imprecise results and misleading conclusions regarding ET gains.
Observation 11: Early Termination gains sharply deteriorate with increase of information bit index where termination occurs.
Observation 12: Early Termination gains of optimized Split-CRC with =5 are in the range ~16-47%.
Observation 13: Without optimizing the location of embedded CRC per code, Early Termination gains are below 20%, and the profitability of using the scheme is questionable.
Observation 14: Early Termination gains of Distributed CRC are expected to be below 10%, due to very late locations of the distributed parity bits.

Proposal 1: Use J+J’= for polar code construction.
Proposal 2: 	If some of the J+J’ bits are distributed to allow ET, a relaxed requirement for FAR due to undetectable decoding errors should be agreed.

References
[1] [bookmark: _Ref481825115]Chairman’s notes RAN1#88b
[2] Chairman’s notes RAN1#89
[3] R1-1709882, Enhancement of Early Termination of Polar Codes by placing UE-ID on Frozen Bits, Tsofun Algorithm, RAN1-NR-AH#2
[4] R1-1708833, “Design details of Distributed CRC”, Nokia, RAN1#89
[5] “CRC distributed Polar code construction”, Nokia, [89-27] offline email discussion
[6] [bookmark: OLE_LINK8]“Polar Code Construction”, Huawei, [89-27] offline email discussion
[7] “Simple distributed CRC for Polar code”, Intel, [89-27] offline email discussion
[8] [bookmark: OLE_LINK6][bookmark: OLE_LINK7]“Distributed simple parity check Polar codes”, NTT DOCOMO, [89-27] offline email discussion
[9] “Polar design for control channel”, CATT, [89-27] offline email discussion
[10] “Polar code construction for evaluation proposal”, Qualcomm, [89-27] offline email discussion
[11] “Split-CRC Polar Code Construction for Early Termination”, Tsofun, [89-27] offline email discussion
[12] “CRC-based Polar Code Construction”, Ericsson, [89-27] offline email discussion
[13] “Proposal for Polar code construction”, NEC, [89-27] offline email discussion
[14] R1-1708831, Performance evaluation of polar code constructions, Nokia, RAN1#89
[15] R1-1706965, Polar code design, Huawei, RAN1#89
[16] [89-26] offline email discussion
[17] “Simplified Timing Model for NR SCL Decoding”, Tsofun, [89-26] offline email discussion

Appendix A: Results of Early Termination Probability
The figures below show simulation results of Early Termination probability of embedded CRC blocks of sizes = 3/4/5 bits, embedded at locations typical for Split-CRC scheme (as determined by). All three scenarios relevant for ET were profiled: correct candidate transmission; valid Polar code scrambled by a different UE-ID; random QPSK data.
Results for bits:
[image:]
[image:]
[image:]
[image:]

Results for bits:
[image:]
[image:]
[image:]
[image:]

Results for bits:
[image:]
[image:]
[image:]
[image:]

Appendix B: Early Termination Latency & Complexity Gains

The figures below provide several examples of latency and complexity gains results obtained with Tsofun SSC-based analysis scheme in [17]. All Polar codes were constructed using PW sequence; the rate – matching scheme (where applicable) was bit-reversed shortening. The left sub-plot of each figure shows the gains with the X-axis being the index of the non-frozen symbol where decoding terminates; while the right sub-plot shows the gains corresponding to the termination point (X-axis) brought in the index in overall polar information word.
The value NPE in the figure titles denotes the number of processing elements assumed in the decoder (number of f and g LLR processing units). A general insight from the evaluations is that the value of NPE has a little impact on the relative latency and complexity gains of ET[footnoteRef:9]. [9: NPE has a major impact on the absolute decoding latency, of course]

[image:]
[image:]

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

1/27

image1.png

image2.png
BLER

BLER for K=64,

—5— 19.0it CRC - Reference
|—<— 16:0it CRC, K+3 info
| 15bit CRC, K+4 info
| 14bitCRC, K+5 info
5 13.bit CRC, K+6 info
|—5— 12.bit CRC, K+7 info

0 1 2 3 4
SNR [dB]

image3.png
BLER

102

104

BLER for K=48,

—5— 19:0it CRC - Reference
—S— 16:0it CRC, K+3 info
| 15bit CRC, K+4 info
|—— 14bit CRC, K+5 info
< 13itCRC, K+6 info
|5 12bit CRC, K+7 info

5 4 E 2 4 0
SNR [dB]

image4.png
BLER for K=80,

—5— 19.0it CRC - Reference
—S— 16:0it CRC, K+3 info
| 15bit CRC, K+4 info
|—— 14bit CRC, K+5 info
< 13itCRC, K+6 info
|5 12bit CRC, K+7 info

5

SNR [dB]

image5.png
BLER

BLER for K=128,

107

102

104

—5— 19:0it CRC - Reference
|—<— 16:0it CRC, K+3 info
| 15bit CRC, K+4 info
| 14bitCRC, K+5 info
5 13.bit CRC, K+6 info
|—5— 12.bit CRC, K+7 info

10°
45

4 a5 3 25 2 A5
SNR [dB]

image6.png
BLER

BLER for K=64, N=128, J+J

102

—6—CA-Polar (reference), J+J=19 bits
|——SpiLCRC, C1=5, C2=14, K1=8
| —#— SpitCRC, C1=5, C2=14, K1=16

0 1 2 3
SNR [dB]

image7.png
BLER

BLER for K=48,

256, J+J

104

—6—CA-Polar (reference), J+J=19 bits
|——Spit-CRC, C
| —#—SpitCRC, C

10°

SNR [dB]

image8.png
100¢—e-
107
o
2
4o
a
10
|+ SpitCRC, C1=5, C2=14, Ki=40
10

BLER for K=80, N=512, J+J

7 E 5 4
SNR [dB]

image9.png
BLER

BLER for K=128,

10°¢

107

102

—6—CA-Polar (reference), J+J=19 bits
| ——SpitCRC, C1=5, C2=14, K1=40
| —#— SpILCRC, C1=5, C2=14, K1=64

4 a5 3 25 2
SNR [dB]

15

image10.png
FAR

FAR for Split-CRC, K=64, N=128, J+J'=19

-~ BLER (of correct candidate)

G-+ SpItCRC, K1=8, Undetected Error FAR

- Spit-CRC, K1=16, Undetected Error FAR

—C-- Spit-CRC, K1=8, Random QPSK transmission
—5-- SpitCRC, K1=16, Random QPSK transmission
| SpItCRC, K1=8, Incorrect UE-ID

| SpitCRC, K

it

it
Vi

©5 0o 05 1 15 2 25
SNR [dB]

35

image11.png
FAR for Split-CRC, K=48, N=256, J+J'=19

-~ BLER (of correct candidate)

G- SpitCRC, K1

12, Undetected Error FAR
- Spit-CRC, K1=24, Undetected Error FAR

G-~ SpitCRC, K1=12, Random QPSK transmission
—5-- Spit-CRC, K1=24, Random QPSK transmission

- SpICRC, K1=12, Incorrect UE-ID

| SpItCRC, K1=24, Incorrect UE-ID

4 a5
SNR [dB]

image12.png
FAR for Split-CRC, K=80, N=512, J+J'=19

BLER (of correct candidate)
Spil-CRC, K1=24, Undetected Error FAR
Spi-CRC, K1=40, Undetected Error FAR

SpiLCRC, K1=24, Random QPSK transmission
Spii-CRC, K1=40, Random QPSK ransmission

Spii-CRC, K1=24, Incorrect UE-ID
Spi-CRC, K1=40, Incorrect UE-ID

55 5
SNR [dB]

image13.png
FAR for Split-CRC, K=128,

BLER (of correct candidate)

SpILCRC, K1=40, Undetected Error FAR
Spl-CRC, K1=64, Undetected Error FAR
Spii-CRC, K1=40, Random QPSK ransmission
SpiLCRC, K1=64, Random QPSK ransmission
Spii-CRC, K1=40, Incorrect UE-ID

Spi-CRC, K1=84, Incorrect UE-ID

SNR [dB]

image14.png
=13

=128, K=64, C2:

QPSK, N

100

102

Non-Frozen Bit index

image15.png
&
4 4o

QPSK, N=256, K=48, C2=13

[10 20 EY 40 50 60

Non-Frozen Bit index

image16.png
100

104

BLER, QPSK, N=512, K=80, K1=64, J+J'=19

—— Reference CRC
- Nokia 1 - 0xFOFDD
|—— Nokia 2 - xBBFOF

5

55

5

45 4

SNR [dB]

image17.png
FAR

104

FAR, QPSK, N=512, K=80,

, J+J'=19

—S—Reference CRC
5 Nokia - 0xFOFDD.
| Nokia2 - 0xBBFOF

7 E 5 4
SNR [dB]

image18.png
Latency / Complexity Gain

09

08

[ik4

06

2

01

Latency / Complexity Gains: M=192, K=64, J=19

b - Complexity Gain
—G- Latency Gain
|—— Simpiified, Info/Frozen Ratio = 4

&
Sy

50 100 150 200 250
Polar information bit index

300

image19.png
Latency / Complexity Gain

09

08

[ik4

06

05

04

03

02

01

Latency / Complexity Gains:

=512, K=128, J=19

TEeE
- Complexity Gain
—G- Latency Gain
|—— Simpiified, Info/Frozen Ratio = 4
100 200 300 400 500

Polar information bit index

600

image20.png
09

08

07

Cortect candidate
Random QPSK.
Incorrect UE-ID.

05

ET Probabi

04

03

02

01

SNR [dB]

image21.png
ET Probability of Split-CRC,

=48, N=256, C1=5, C2=14

09 :

08 —O——————B——5—B—fp——p—b

07

"~ Reference BLER
- K1=12, Correct candidale
G- Ki=12, Random QPSK

H o ki-tz, ncorert D
g 05 |——K1=24, Correct candidale
& g —5—K1=24, Random QPSK
1 04 |—o—K1=24, ncorrect UE-ID
03
02
01
0 x
- 5 4 E 2 4 o

SNR [dB]

image22.png
09

08

[ik4

05

ET Probabi

04

03

02

01

ET Probability of Split-CRC,

=80, N=512, C1=5, C2=14

~ Reference BLER
— K1
o ki
—o- ki
|——K1=40, Correct candidale
—5—K1=40, Random QPSK

| —5—K1=40, Incarrect UE-ID

SNR [dB]

image23.png
ET Probability of Split-CRC, K=

128, N=512, C1=5, C2=14

09

08

[ik4

05

ET Probabi

04

03

02

01

~~Reference BLER
—>- K1=40, Correct candidale
G- K1=40, Random QPSK
—G- K1=40, Incarrect UE-ID
|——K1=64, Correct candidale
—5—K1=64, Random QPSK
| —5—Ki1=64, Incorrect UE-ID

25 2
SNR [dB]

image24.png
ET Probability

| ——Ki1=8, Correct candidale
—5—K1=8, Random QPSK

08 |—6—Ki1=8, Incorrect UE-ID

[ik4

06

05

04

s

01

ET Probability of Split-CRC, K=64, N=128, C1=4, C2=15

Reference BLER

SNR [dB]

image25.png
ET Probability
& 2 &8 5

s

01

ET Probability of Split-CRC, K=48, N=256, C1=4, C2=15

00 . ~~Reference BLER
|——Ki1=12, Correct candidale

—5—K1=12, Random QPSK

| —e—Ki=12, Incorrect UE-ID

SNR [dB]

image26.png
ET Probability

ET Probability of Split-CRC, K=80, N=512, C1=4, C2=15

s
¥

Reference BLER
|——K1=24, Correct candidale
—5—K1=24, Random QPSK
| —6—Ki1=24, Incorrect UE-ID

s

01

SNR [dB]

image27.png
ET Probability
8 288 8

s

01

ET Probability of Split-CRC, K=128, N=512, C1=4, C2=15

Reference BLER
|——K1=40, Correct candidale
—5—K1=40, Random QPSK
| —6—Ki1=40, Incarrect UE-ID

45 4 35 3 25 2 A5 4 05

SNR [dB]

image28.png
ET Probability

ET Probability of Split-CRC, K=64, N=128, C1=3, C2=16

Reference BLER
09 | ——Ki1=8, Correct candidale
—5—K1=8, Random QPSK
08 |—6—Ki1=8, Incorrect UE-ID
[ik4
06
05
04
o
03
02
01
o *
El 0 1 2 3 4

SNR [dB]

image29.png
>

s

01

ET Probability

ET Probability of Split-CRC, K=48, N=256, C1=3, C2=16

Reference BLER
|——Ki1=12, Correct candidale
—5—K1=12, Random QPSK
| —e—Ki=12, Incorrect UE-ID

SNR [dB]

image30.png
ET Probability

>

s

ET Probability of Split-CRC, K=80, N=512, C1=3, C2=16

I

Reference BLER
|——K1=24, Correct candidale
—5—K1=24, Random QPSK
| —6—Ki1=24, Incorrect UE-ID

5

SNR [dB]

image31.png
ET Probability of Split-CRC, K=128, N=512, C1=3, C2=16

ET Probability
8 2868 8 S 8 8

s

01

Reference BLER
|——K1=40, Correct candidale
—5—K1=40, Random QPSK
| —6—Ki1=40, Incarrect UE-ID

4 35

3

25 2
SNR [dB]

image32.png
Latency / Complexity Gain

Latency / Complexity Gains: M=120, K=80, J=19, NPE=32
1

o Latoroy an —o Latonoy Gan
09 - Gomplexity Gain 09 - Gomplexity Gain

*
08fa”, 08 .

Xy < b
o7 Sor %

z v
06 x £os x
b x H b
os oy Eos vl
3 8 %
0s ; gos ¢
&
03 % Los Y
e 3 U
0.2 - 0.2 G‘a\"
“D\\ % i

01 ~ou 01 Ol
0 0
o » @ o = w D @ © @ w0 1

Information bit index

Polar information bit index

140

image33.png
Latency / Complexity Gains:
1

1=
G Lateny Gan ~& G Lateny Gan
09 %{ - Gomplexity Gain 09 \% - Gomplexity Gain
08 % 08
Sorp © So7 %
z z x
Fos 308 S
2 2 B
Eos Eos %
S S
304 304 %
§ §
£os £os
3 3
02 02 %
y y %
B
0 0
0 0 50 10 150 200 250 300

Information bit index Polar information bit index

image34.png
Latency / Complexity Gain

Latency / Complexity Gains:
1

09

08

[ik4

06

05

04

03

02

01

=384,

=64, J=19, NPE=32

—G- Latency Gain
- Complexty Gain

Latency / Complexity Gain

09

08

[ik4

06

05

04

03

02

01

—G- Latency Gain
% Complexty Gain

4

20 40 60 80
Information bit index

100

100

200 300 400 500

Polar information bit index

600

image35.png
Latency / Complexity Gains: M=576, K=48, J=19, NPE=32
§ i
s —G- Latency Gain T8 [Latenoycan

o9 ¥ - Gomplexity Gain 09 - Gomplexity Gain

osf ! 0
Sorf ! o7
z 9@# z %
Fos Fos
g ! g !
§os §o05 B
8 8]
308 308 %
g 1% g
£os 1 Los
3 3 @

02 02

b3
01 QS% 01
Bl
0 0
o 10 2 X 4 s e 70 20 40 60 80 1000

Information bit index

Polar information bit index

1200

image36.png
Latency / Complexity Gains:
1

Latency / Complexity Gain

09

>

2

s

=128, K=64, J=19, NPE=32

G- Latency Gain G- Latency Gain
I - Complexlly Gain 09 - Complexlly Gain

% os
5, :

07
o 2

%06
<% 3

@ 2 9
i Eos ¥
£ < b
b 304 b
X c S
% g S
£os
x 3 [
® oL
b 02 §
&
& 01 %
s B
0
0 20 0 60 80 100 20 4 6 8 100 120

Information bit index

Polar information bit index

140

image37.png
Latency / Complexity Gains: M=256, K=48, J=19, NPE=32
1

Latency / Complexity Gain

09

08

[ik4

06

05

04

03

02

01

1=
SEe
G- Latency Gain B G Latency Gan
%m - omplexity Gain 09 h% - Complexity Gain
%
@ 08 "
i = ks
t 007 N
¥ = W%
&, 306 @
w 2 %
¥ gos
5k S
% 304
§ : ‘
% Los
kY 5 &
&
: %
5 01
Bag, &
0
1 20 3 4 5 6 70 o s 10 150 200 250

Information bit index

Polar information bit index

300

image38.png
Latency / Complexity Gains: M=512, K=80, J=19, NPE=32
1

Latency / Complexity Gain

09

08

[ik4

06

05

04

03

02

01

—G- Latency Gain
> Complexty Gain

Latency / Complexity Gain

09

08

[ik4

06

—G- Latency Gain
> Complexty Gain

20

40 60 80
Information bit index

100

200 300 400 500 600
Polar information bit index

image39.png
Latency / Complexity Gains:
1

Latency / Complexity Gain

09

08

[ik4

06

05

04

03

02

01

b

%
B

P

i

t

e B

o

—G- Latency Gain
> Complexty Gain

£
R,

Latency / Complexity Gain

09

08

[ik4

06

05

04

03

02

01

% G Latency Gan
- Complexity Gain

50

100

Information bit index

150

100 200 300 400 500
Polar information bit index

600

