[bookmark: OLE_LINK5][bookmark: OLE_LINK6]3GPP TSG RAN WG1 NR Ad-Hoc #2 R1-1711539
Qingdao, P.R. China 27th – 30th June 2017

[bookmark: _GoBack]Agenda item:		5.1.4.2.1
Source:	Nokia
Title:	Distributed CRC Polar code construction
Document for:		Discussion and Decision
1 	Introduction
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]In RAN1#89 meeting, the following agreement was made on Polar code construction and early termination,
Agreement:
· For DL:
· J’ = 3 or 6, to be downselected at June adhoc
· J’’ = 0
· At least some of the J + J’ bits are appended
· FFS until June adhoc:
· how the J + J’ bits are obtained
· If J’=6, working assumption that at least some of the J + J’ bits are distributed (including to support early termination in the code construction) (Consideration of J’=6 proposals without distributed J+J’ bits are not precluded.)
· If J’=3, FFS until June adhoc whether some of the J + J’ bits are distributed (including to support early termination in the code construction)
· Consideration of distribution of bits shall consider complexity versus benefit and comparison to implementable purely implementation based methods for early termination
Email discussion until Thursday 1st June to align calculation methods for latency and complexity with early termination – Zukang (Huawei).

In this paper, the distributed CRC Polar code construction is proposed.
2 	Discussion
The proposed distributed CRC Polar code [1] is constructed as illustrated in the following Figure 1. The CRC bits can be generated by conventional CRC generator. With interleaving, the CRC bits are distributed in the information bits. Then comes the kernel of Polar code encoding. In the Polar decoding step, the tree pruning and early termination can be performed. After a corresponding deinterleaving step, CRC detection is executed. The deinterleaving may be performed in parallel with decoding the successive bits in implementation. Similarly, the interleaving can be performed in parallel with the encoding.

Figure 1. CRC distributed Polar code transmission flow

2.1 	Interleaving and deinterleaving
To distribute the CRC bits inside the information bits, interleaving is performed. The corresponding deinterleaving is performed at the receiver side. To ensure the transmitter and receiver have the consistent processing, the interleaving/deinterleaving need to be defined. There could be different designs of interleaving/deinterleaving that may distribute the CRC bits forward, but there is only one which does not need to dynamically generate the interleaving/deinterleaving pattern for different code block sizes, meanwhile keeping the best performance. It is based on the descending information indexing. The information bit with lowest index is mapped to the bottom row of the CRC generator matrix, i.e. the mapping is from bottom to up of the CRC generator matrix. Though the CRC bits may not be generated by the generator matrix, they are equivalent. This is based on the bottom to up unidirectional growth property of CRC. With this indexing and mapping method, the single interleaving/deinterleaving rule or pattern for different block sizes is feasible.
Suppose P is the CRC bit vector; B is the information bit row vector and G is the CRC generator matrix. P is derived by:
P = B*G
Suppose the information block size is K and the indexing starts from 1, the information bits of B should be indexed as:
B = [bk bk-1 … b2 b1]
It’s the reversal order of usual indexing.

With this indexing method and some rules, the receiver may derive the interleaving/deinterleaving pattern in implementation, and a single pattern can be used for all the block sizes. Such a method has very low complexity and the interleaving/deinterleaving can be performed in parallel with the decoding of the followed bits. An example is given bellow.

In Section 2.2 of [1], we illustrated how the distribution of CRC bits could be done by using a single interleaver for all K values. The toy example was for K = 10, and Kmax = 12, as shown below.

[image:]

Figure 2. Deriving interleaving for K =10 from mother interleaving pattern of Kmax = 12 with blanking.

In the Annex of this contribution, we provide example interleaving patterns for Kmax = 200.
The CRC distribution capability of the proposed scheme mainly depends on the underlying CRC polynomials. In this contribution, we try to give some example CRC-11 and CRC-19 polynomials, which have good performance in terms of CRC bit distribution capability and minimum Hamming weights. Note that in the following table, the MSB of the binary and hexadecimal representations corresponds to the coefficient of the term with the largest degree in the GF(2) polynomial, i.e., they are the coefficients of xn + xn-1 + … x + 1.

Table 1. Example CRC polynomials
	Candidate
	# CRC bits
	Binary
	Hexadecimal
	Note

	A
	19
	0b10100010101101111001
	0xA2B79
	This provide to good ET gains while providing the same FAR as in LTE.

	B
	19
	0b10111011111100001111
	0xBBF0F
	Capable of having improved ET gains

	C
	19
	0b11110000111111011101
	0xF0FDD
	Capable of having improved ET gains

	D
	11
	0b100110101111
	0x9AF
	It is able to evenly distribute the CRC bits, meanwhile it has a very large min. Hamming weight for small K values.

By observing and evaluating the distribution capability and the min. Hamming weights of the CRC polynomials, we notice that
(1) A CRC polynomial and its reversed version almost have the same CRC bit distribution and error detection capability, e.g., the B and C candidates in Table 1;
(2) as K value goes up, all CRC codes quickly end up with a min. Hamming weight of 2.
For control channels, we see the necessity of having same FAR as LTE for all FAR cases, and suggest to use Candidate A for DL control. However, as we agreed in the work plan, these details can be revisited to further optimize the CRC polynomials.
2.2 	Implementation issues
The main complexity of coding is at the receiver side. For CRC distributed Polar code, the main operation involved is the deinterleaving. Deinterleaving can be performed in parallel with the decoding of the followed information/frozen bits. When the interleaved information bits are decoded, the deinterleaving is also finished. As shown in Figure 3, the deinterleaving of bit 1 is performed in the followed clock cycle and in parallel with the decoding of bit 2. Because there are some CRC bits and/or information bits not distributed or interleaved so the decoding of the some of the last bits does not deinterleaving, so the deinterleaving does not introduce additional delay.

	 Interleaved/distributed bits

	None interleaved/distributed bits

	Decode bit 1
	Decode bit 2
	Decode bit 3
	Decode bit 4
	Decode bit 5
	Decode bit 6

	
	
	
	
	
	

	
	Deinterleave bit 1
	Deinterleave bit 2
	Deinterleave bit 3
	Deinterleave bit 4
	

	
Decoding timeline

Figure 3. Parallel decoding

The intermediate CRC bit checking can also be performed by the conventional CRC detector, because the CRC check can be performed based on the deinterleaved bit sequence even though only partially decoded. The secret is the undecoded bits are irrespective to the CRC bit to be checked.

Of course, the CRC detecting is quite flexible. The CRC bit check can be implemented by comparing the CRC bit value and the sum of the related information bits. This can also be implemented in parallel with the decoding of the followed bits. The summing of the related information bits can be performed during the decoding, so when all of the related information bits are decoded, the sum is completed. And the comparing of CRC bit of the sum of the information bits may even be done in the same clock cycle of the decoding of the CRC bit by the comparing operation. As there are some CRC bits and/or information bits not distributed/interleaved, the CRC bit checking for early termination will not introduce additional clock cycles.
2.4 	Summary of the benefits
The main benefits of distributed CRC can be summarized as:
· Flexible, the CRC bits can be used as error correction or error detection by conventional CRC detector.
· Performance gain is observed when used as error correction compared to CRC-aided decoding.
· Support of early termination, to save power and reduce decoding delay.
· Possible to reduce the FAR by careful permutation.

Proposal 1: It is proposed to use the CRC distributed Polar code construction.

3	Conclusion
In this contribution, the details of the CRC distributed Polar code construction are provided.
Proposal 1: It is proposed to use the CRC distributed Polar code construction.

References
[1] R1-1708833	“Design details of distributed CRC”	Nokia, Alcatel-Lucent Shanghai Bell
Annex
Here we show two examples of distributing K <= Kmax = 200 bits. Note that (1) indices > 600 indicate the positions of CRC bits; and (2) the indices are in the bottom to the top order w.r.t. CRC generator matrix, as emphasized in [1]. For 0xA2B79, distributing 6 bits will provide good ET gains. The distribution will be as follows.
Distributing 6 CRC bits: 0xA2B79
1 3 4 5 6 8 11 12 13 16 17 20 21 22 26 27 30 31 32 33 37 39 40 41 42 48 52 54 60 67 68 70 72 73 74 75 79 85 86 88 89 92 93 94 99 100 101 103 104 108 109 110 111 112 113 114 117 123 125 127 128 129 131 135 137 140 141 154 157 162 163 165 167 168 169 176 180 183 186 188 190 191 192 193 194 195 616 14 15 18 23 25 28 35 36 38 45 55 57 58 61 64 71 82 91 95 96 98 107 116 119 122 126 130 133 136 138 139 142 145 148 151 160 170 171 172 173 174 175 177 178 181 184 187 196 197 199 200 619 2 7 9 34 43 49 53 69 76 80 87 90 102 105 115 118 124 132 155 158 164 166 189 615 24 44 47 51 59 62 63 65 77 78 83 120 146 152 156 159 608 29 56 81 121 144 147 150 161 182 185 198 603 10 19 97 106 134 601 46 50 66 84 143 149 153 179 602 604 605 606 607 609 610 611 612 613 614 617 618
To illustrate the distribution method for other polynomials, the following examples use CRC polynomial of 0xF0FDD.
Example 1: distributing 3 CRC bits to the front
5 9 11 12 28 36 40 42 43 59 67 71 73 74 90 98 102 104 105 121 129 133 135 136 152 160 164 166 167 183 191 195 197 198 604 4 8 10 27 35 39 41 58 66 70 72 89 97 101 103 120 128 132 134 151 159 163 165 182 190 194 196 605 3 7 26 34 38 57 65 69 88 96 100 119 127 131 150 158 162 181 189 193 606 1 2 6 13 14 15 16 17 18 19 20 21 22 23 24 25 29 30 31 32 33 37 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64 68 75 76 77 78 79 80 81 82 83 84 85 86 87 91 92 93 94 95 99 106 107 108 109 110 111 112 113 114 115 116 117 118 122 123 124 125 126 130 137 138 139 140 141 142 143 144 145 146 147 148 149 153 154 155 156 157 161 168 169 170 171 172 173 174 175 176 177 178 179 180 184 185 186 187 188 192 199 200 601 602 603 607 608 609 610 611 612 613 614 615 616 617 618 619
Example 2: distributing all CRC bits
5 9 11 12 28 36 40 42 43 59 67 71 73 74 90 98 102 104 105 121 129 133 135 136 152 160 164 166 167 183 191 195 197 198 604 4 8 10 27 35 39 41 58 66 70 72 89 97 101 103 120 128 132 134 151 159 163 165 182 190 194 196 605 3 7 26 34 38 57 65 69 88 96 100 119 127 131 150 158 162 181 189 193 606 1 24 32 55 63 86 94 117 125 148 156 179 187 608 20 51 82 113 144 175 612 2 6 25 33 37 56 64 68 87 95 99 118 126 130 149 157 161 180 188 192 607 13 17 21 29 45 49 53 61 77 81 85 93 109 137 141 145 153 169 173 177 185 616 14 15 18 19 22 23 30 31 44 47 76 79 80 83 84 91 92 106 138 139 142 143 146 147 154 155 168 171 200 619 60 75 122 184 199 603 52 114 176 611 16 46 78 108 140 170 617 48 50 54 124 172 174 178 601 62 123 186 602 116 609 115 610 112 613 111 614 110 615 107 618

image1.emf
CRC

generation

Interleaving

Subchannel

mapping and

Polar encoding

Information bits

Polar decoding

with tree

pruning and

early

termination

deinterleaving CRC detection

oleObject1.bin
CRC generation

Interleaving

Subchannel mapping and Polar encoding

Information bits

CRC detection

Polar decoding with tree pruning and early termination

deinterleaving

image2.png
Interleaving

<NULL> removing

1 7 8 9 | [10] [11] |12 |P1]| [P2]| |P3]| |P4
2 10 |>P3—| f1—| g | [11] |P1 |76—| P2 | 12| |P4
2 10| (P3| | 1 8 P1| | 6| |P2 P4

