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1 	Introduction
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]In RAN1#89 meeting, the following agreement was made on Polar code construction and early termination, 
Agreement: 
· For DL: 
· J’ = 3 or 6, to be downselected at June adhoc
· J’’ = 0
· At least some of the J + J’ bits are appended
· FFS until June adhoc:
· how the J + J’ bits are obtained 
· If J’=6, working assumption that at least some of the J + J’ bits are distributed (including to support early termination in the code construction) (Consideration of J’=6 proposals without distributed J+J’ bits are not precluded.)
· If J’=3, FFS until June adhoc whether some of the J + J’ bits are distributed (including to support early termination in the code construction)
· Consideration of distribution of bits shall consider complexity versus benefit and comparison to implementable purely implementation based methods for early termination
Email discussion until Thursday 1st June to align calculation methods for latency and complexity with early termination – Zukang (Huawei). 

In this paper, the distributed CRC Polar code construction is proposed.
2 	Discussion
The proposed distributed CRC Polar code [1] is constructed as illustrated in the following Figure 1. The CRC bits can be generated by conventional CRC generator. With interleaving, the CRC bits are distributed in the information bits. Then comes the kernel of Polar code encoding. In the Polar decoding step, the tree pruning and early termination can be performed. After a corresponding deinterleaving step, CRC detection is executed. The deinterleaving may be performed in parallel with decoding the successive bits in implementation. Similarly, the interleaving can be performed in parallel with the encoding. 





Figure 1. CRC distributed Polar code transmission flow


2.1 	Interleaving and deinterleaving
To distribute the CRC bits inside the information bits, interleaving is performed. The corresponding deinterleaving is performed at the receiver side. To ensure the transmitter and receiver have the consistent processing, the interleaving/deinterleaving need to be defined. There could be different designs of interleaving/deinterleaving that may distribute the CRC bits forward, but there is only one which does not need to dynamically generate the interleaving/deinterleaving pattern for different code block sizes, meanwhile keeping the best performance. It is based on the descending information indexing. The information bit with lowest index is mapped to the bottom row of the CRC generator matrix, i.e. the mapping is from bottom to up of the CRC generator matrix. Though the CRC bits may not be generated by the generator matrix, they are equivalent. This is based on the bottom to up unidirectional growth property of CRC. With this indexing and mapping method, the single interleaving/deinterleaving rule or pattern for different block sizes is feasible.
Suppose P is the CRC bit vector; B is the information bit row vector and G is the CRC generator matrix. P is derived by:
P = B*G
Suppose the information block size is K and the indexing starts from 1, the information bits of B should be indexed as:
B = [bk bk-1 … b2 b1]
It’s the reversal order of usual indexing. 

With this indexing method and some rules, the receiver may derive the interleaving/deinterleaving pattern in implementation, and a single pattern can be used for all the block sizes. Such a method has very low complexity and the interleaving/deinterleaving can be performed in parallel with the decoding of the followed bits. An example is given bellow.

In Section 2.2 of [1], we illustrated how the distribution of CRC bits could be done by using a single interleaver for all K values. The toy example was for K = 10, and Kmax = 12, as shown below.
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Figure 2. Deriving interleaving for K =10 from mother interleaving pattern of Kmax = 12 with blanking.

In the Annex of this contribution, we provide example interleaving patterns for Kmax = 200.
The CRC distribution capability of the proposed scheme mainly depends on the underlying CRC polynomials. In this contribution, we try to give some example CRC-11 and CRC-19 polynomials, which have good performance in terms of CRC bit distribution capability and minimum Hamming weights. Note that in the following table, the MSB of the binary and hexadecimal representations corresponds to the coefficient of the term with the largest degree in the GF(2) polynomial, i.e., they are the coefficients of xn + xn-1 + … x + 1.

Table 1. Example CRC polynomials
	Candidate 
	# CRC bits
	Binary
	Hexadecimal
	Note

	A
	19
	0b10100010101101111001
	0xA2B79
	This provide to good ET gains while providing the same FAR as in LTE. 

	B
	19
	0b10111011111100001111
	0xBBF0F
	Capable of having improved ET gains

	C
	19
	0b11110000111111011101
	0xF0FDD
	Capable of having improved ET gains

	D
	11
	0b100110101111
	0x9AF
	It is able to evenly distribute the CRC bits, meanwhile it has a very large min. Hamming weight for small K values.



By observing and evaluating the distribution capability and the min. Hamming weights of the CRC polynomials, we notice that
(1) A CRC polynomial and its reversed version almost have the same CRC bit distribution and error detection capability, e.g., the B and C candidates in Table 1; 
(2) as K value goes up, all CRC codes quickly end up with a min. Hamming weight of 2.
For control channels, we see the necessity of having same FAR as LTE for all FAR cases, and suggest to use Candidate A for DL control. However, as we agreed in the work plan, these details can be revisited to further optimize the CRC polynomials.  
2.2 	Implementation issues
The main complexity of coding is at the receiver side. For CRC distributed Polar code, the main operation involved is the deinterleaving. Deinterleaving can be performed in parallel with the decoding of the followed information/frozen bits. When the interleaved information bits are decoded, the deinterleaving is also finished. As shown in Figure 3, the deinterleaving of bit 1 is performed in the followed clock cycle and in parallel with the decoding of bit 2. Because there are some CRC bits and/or information bits not distributed or interleaved so the decoding of the some of the last bits does not deinterleaving, so the deinterleaving does not introduce additional delay.
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Figure 3. Parallel decoding

The intermediate CRC bit checking can also be performed by the conventional CRC detector, because the CRC check can be performed based on the deinterleaved bit sequence even though only partially decoded. The secret is the undecoded bits are irrespective to the CRC bit to be checked.

Of course, the CRC detecting is quite flexible. The CRC bit check can be implemented by comparing the CRC bit value and the sum of the related information bits. This can also be implemented in parallel with the decoding of the followed bits. The summing of the related information bits can be performed during the decoding, so when all of the related information bits are decoded, the sum is completed. And the comparing of CRC bit of the sum of the information bits may even be done in the same clock cycle of the decoding of the CRC bit by the comparing operation. As there are some CRC bits and/or information bits not distributed/interleaved, the CRC bit checking for early termination will not introduce additional clock cycles.
2.4 	Summary of the benefits
The main benefits of distributed CRC can be summarized as: 
· Flexible, the CRC bits can be used as error correction or error detection by conventional CRC detector.
· Performance gain is observed when used as error correction compared to CRC-aided decoding.
· Support of early termination, to save power and reduce decoding delay.
· Possible to reduce the FAR by careful permutation. 

Proposal 1: It is proposed to use the CRC distributed Polar code construction. 

3	Conclusion
In this contribution, the details of the CRC distributed Polar code construction are provided.
Proposal 1: It is proposed to use the CRC distributed Polar code construction. 
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Annex
Here we show two examples of distributing K <= Kmax = 200 bits. Note that (1) indices > 600 indicate the positions of CRC bits; and (2) the indices are in the bottom to the top order w.r.t. CRC generator matrix, as emphasized in [1]. For 0xA2B79, distributing 6 bits will provide good ET gains. The distribution will be as follows. 
Distributing 6 CRC bits: 0xA2B79

To illustrate the distribution method for other polynomials, the following examples use CRC polynomial of 0xF0FDD.
Example 1: distributing 3 CRC bits to the front

Example 2: distributing all CRC bits
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