Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG RAN WG1 Meeting #92bis	R1-1803937
Sanya, China, April 16th – 20th, 2018

Source:	Ericsson
Title:	Remaining Issues of Channel Coding
Agenda Item:	7.1.4
Document for:	Discussion and Decision
Introduction
In RAN1 #92, an issue was raised about the TBS determination procedure for VoIP support. In this contribution, we analyse the need to revise the TBS table for VoIP packet sizes.
Additionally, two polar coding issues are discussed. One issue is CRC initialization in the Polar coding chain of PBCH. The other issue is how to avoid invalid polar code construction in UCI.
[bookmark: _Ref178064866]Discussion
On VoIP support of TBS determination procedure in 38.214
In [1], VoIP packet sizes for NR were discussed, and some values not present in the current TBS table were identified. The values mentioned were 136, 144, 152, 160, 168, 176, 184, 328, 336, 344, 352, 360, 368, 552, 560, 568, 576, 584, 592, 656, 672, 680, 688, 696, 704, 712, with values not present in the current table highlighted. While the set of VoIP packet sizes in [1] is not yet endorsed, this can be used as an representative example to study the necessity of revising the TBS table for the purpose of supporting VoIP.
In Table 1 we list the overhead when scheduling a missing packet size with the next larger TBS (i.e., mapped TBS) in the existing table. The overhead (bits) is the difference between mapped TBS and the packet size; the overhead (%) is the overhead (bits) as a percentage of the mapped TBS.
[bookmark: _Ref510809164]Table 1: Overhead when scheduling a missing packet size with next largest TBS
	Packet size
	328
	344
	360
	560
	568
	584
	592
	656
	680
	688
	696
	712

	Mapped TBS
	336
	352
	368
	576
	576
	608
	608
	672
	704
	704
	704
	736

	Overhead (bits)
	8
	8
	8
	16
	8
	24
	16
	16
	24
	16
	8
	24

	Overhead (%)
	2.4%
	2.3%
	2.2%
	2.8%
	1.4%
	3.9%
	2.6%
	2.4%
	3.4%
	2.3%
	1.1%
	3.3%

Table 1 shows that the overhead is at most 24 bits, and at most 3.9% in percentage, if zero padding is used. Since higher layer often has other information elements (e.g., BSR, PHR) that need to be transmitted together with the payload, the overhead should not be considered a waste always. The 8-24 bit space can be utilized when the extra bits are used to transmit useful information such as BSR or PHR. Thus overhead is small and acceptable.
[bookmark: _Toc510821591][bookmark: _Toc510821685][bookmark: _Toc510823194]The overhead is small and acceptable when scheduling one of the missing packet sizes using the existing TBS table.

We note that supporting VoIP in an efficient manner is important for NR. In the following we analyse what the impact of adding these values to the TBS table would have on the flexibility of scheduling packets of different sizes.
Recall that in the considered range of TBS, the TBS is determined by first calculating an approximation of the total number of REs available for data transmission as follows:

, where nPRB is the total number of allocated PRBs, and . Here is the number of subcarriers in a physical resource block, is the number of symbols of the PDSCH allocation within the slot, is the number of REs for DM-RS per PRB in the scheduled duration, and is the overhead configured by higher layer parameter Xoh-PDSCH.

Then the intermediate number of information bits (Ninfo) is obtained by . Finally Ninfo is quantized through a two-step process, ending up with a value from the TBS table in TS 38.214.

In the following we will assume that = 0, and that = 12. We fix to either 5, or 12 symbols representing a 2 symbol PDCCH with a total slot length of 7 or 14 symbols and we fix the MCS table to either the 64QAM table or the 256QAM table. We then calculate how many possible ways there are of scheduling a certain TBS by checking all possible combinations of: the MCS index, the number of layers, and with the number of allocated PRBs between 1 and 273.
Two options are tested when mapping Ninfo to a TBS value:
a) Use the existing TBS table in TS 38.214;
b) Use a proposed table, where the proposed table is formed by adding the missing packet sizes {328, 344, 360, 560, 568, 584, 592, 656, 680, 688, 696, 712} to the existing TBS table.
The results on the number of possible ways to schedule a packet are presented in Table 2 - Table 5.

[bookmark: _Ref510797974]Table 2: Number of allocations with a given TBS for 5 OFDM symbols and 64QAM MCS Table.
	TBS
	328
	336
	344
	352
	360
	368
	552
	560
	568
	576
	584
	592

	Current Table
	N/A
	13
	N/A
	19
	N/A
	19
	18
	N/A
	N/A
	36
	N/A
	N/A

	Proposed Table
	2
	11
	10
	9
	10
	9
	18
	14
	12
	10
	13
	3

	TBS
	656
	672
	680
	688
	696
	704
	712
	
	
	
	
	

	Current Table
	N/A
	34
	N/A
	N/A
	N/A
	39
	N/A
	
	
	
	
	

	Proposed Table
	18
	16
	4
	15
	4
	16
	1
	
	
	
	
	

Table 3: Number of allocations with a given TBS for 5 OFDM symbols and 256QAM MCS Table.
	TBS
	328
	336
	344
	352
	360
	368
	552
	560
	568
	576
	584
	592

	Current Table
	N/A
	12
	N/A
	11
	N/A
	16
	13
	N/A
	N/A
	25
	N/A
	N/A

	Proposed Table
	1
	11
	9
	2
	9
	7
	13
	12
	3
	10
	5
	5

	TBS
	656
	672
	680
	688
	696
	704
	712
	
	
	
	
	

	Current Table
	N/A
	28
	N/A
	N/A
	N/A
	27
	N/A
	
	
	
	
	

	Proposed Table
	15
	13
	5
	12
	2
	8
	1
	
	
	
	
	

Table 4: Number of allocations with a given TBS for 12 OFDM symbols and 64QAM MCS Table.
	TBS
	328
	336
	344
	352
	360
	368
	552
	560
	568
	576
	584
	592

	Current Table
	N/A
	3
	N/A
	7
	N/A
	7
	9
	N/A
	N/A
	7
	N/A
	N/A

	Proposed Table
	0
	3
	7
	0
	3
	4
	9
	2
	2
	3
	6
	5

	TBS
	656
	672
	680
	688
	696
	704
	712
	
	
	
	
	

	Current Table
	N/A
	10
	N/A
	N/A
	N/A
	18
	N/A
	
	
	
	
	

	Proposed Table
	2
	8
	3
	4
	9
	2
	2
	
	
	
	
	

[bookmark: _Ref510797981]Table 5: Number of allocations with a given TBS for 12 OFDM symbols and 256QAM MCS Table.
	TBS
	328
	336
	344
	352
	360
	368
	552
	560
	568
	576
	584
	592

	Current Table
	N/A
	2
	N/A
	3
	N/A
	5
	6
	N/A
	N/A
	3
	N/A
	N/A

	Proposed Table
	0
	2
	3
	0
	1
	4
	6
	0
	2
	1
	3
	5

	TBS
	656
	672
	680
	688
	696
	704
	712
	
	
	
	
	

	Current Table
	N/A
	7
	N/A
	N/A
	N/A
	9
	N/A
	
	
	
	
	

	Proposed Table
	2
	5
	2
	3
	3
	1
	2
	
	
	
	
	

The set of VoIP packet sizes in [1] covers a fairly representative range of VoIP configurations. The analysis of TBS table is expected to give similar results even if a different set of VoIP packet size is selected. Based on the results shown in Table 2 - Table 5, we make the following observations.
[bookmark: _Toc510821592][bookmark: _Toc510821686][bookmark: _Toc510823195]The final quantization step in the TBS determination rounds up to the nearest value in the TBS table. This means that when adding entries to the TBS table, the number of ways of scheduling a new entry reduces the number of ways of scheduling the next TBS by the same number.
[bookmark: _Toc510821593][bookmark: _Toc510821687][bookmark: _Toc510823196]In certain cases, adding the missing packet sizes to the TBS table does not allow for scheduling of the added sizes, see for example TBS = 328 bits in Tables 4-5, or TBS = 560 in Table 5.
[bookmark: _Toc510821594][bookmark: _Toc510821688][bookmark: _Toc510823197]Even if the added sizes are possible to schedule, this is at the cost of scheduling opportunities for other TB sizes, in some cases removing the possibility of scheduling them at all, see for example TBS = 352 bits in Tables 4-5.
[bookmark: _Toc510821595][bookmark: _Toc510821689][bookmark: _Toc510823198]When considering the need of supporting VoIP in an efficient manner, the existing entries in Table 5.1.3.2-2 in TS 38.214 are sufficient. There is no need to add or change any entries.
CRC Initialization for Polar Code of PBCH
For NR DCI (carried by PDCCH), it has been agreed that the CRC shift register should be initialized to all-ones, which is realized by pre-pending L=24 ones in front of the information bits.
For NR PBCH, it was agreed that PBCH should use the same Polar code design as PDCCH, including the 24-bit D-CRC and the associated interleaver.
	Agreement from RAN1#89:
· Polar coding is adopted for NR-PBCH
· Using same polar code construction as for the control channel
· Nmax = 512

Clarification of the above agreement:
· Reuse Polar code design of PDCCH, i.e., 24-bit D-CRC with the associated interleaver.

However, currently TS 38.212 does not initialize the CRC shift register of PBCH to all-ones. To ensure that exactly the same processing chain is used for PDCCH and PBCH, the CRC initialization of PBCH should be updated to all-ones as well. Furthermore, Figure 1 verifies the BLER performance of PBCH for all-one initialization. As shown, there is virtually no performance difference between all-zero and all-one initialization.

[image: Z:\projects\channel_coding\polar_matlab_new\results\templates\figures\UL_QPSK_K56_M512_PBCHinit.tif]
[bookmark: _Ref510811873]Figure 1.	PBCH BLER performance comparison between all-zero and all-one initializations

Consider the analysis above, we have the following Proposal and Text Proposal to TS 38.212.
[bookmark: _Toc510821153][bookmark: _Toc510821691]Initialize the CRC shift register of PBCH to all-ones by prepending 24 ones in front of the information bits.

**** Start of Text Proposal to TS 38.212 ***
[bookmark: _Toc505960293][bookmark: _Toc508812068]7.1.3	Transport block CRC attachment
Error detection is provided on BCH transport blocks through a Cyclic Redundancy Check (CRC).

The entire transport block is used to calculate the CRC parity bits. The input bit sequence is denoted by , and the parity bits by, where is the payload size and is the number of parity bits. Let be a bit sequence such that for and for .

The parity bits are computed with input bit sequence and attached to the BCH transport block according to Subclause 5.1 by setting to 24 bits and using the generator polynomial ., resulting in the The output bit sequence is

		for

	for ,

where .
[bookmark: _GoBack]
**** End of Text Proposal to TS 38.212 ***

Invalid Polar Code Configuration for UCI
For NR UCI, it has been agreed that when , where denotes the number of UCI payload bits excluding CRC, the payload bits and the associated CRC bits are encoded via Polar coding with bits of PC bits, as stated in the current TS 38.212. For this range of , the number of CRC bits is . However, there are cases in this range of with where there are not enough available positions, after rate-matching-based pre-freezing, at the input of the Polar encoder for 3 PC bits, i.e. , where , , and are the number of code bits, the number of CRC bits, and the number of PC bits, respectively.
For example, listed below are some of the configurations of and in NR UCI that do not have enough available positions for 3 PC bits. Since for all these configurations, the PC bits are placed at the 3 least reliable positions among the most reliable positions at the input of the polar encoder. Note that the effective code rates are very close to 1 in all these cases, while the payload code rate is around 0.6-0.7.
Table 6: List of Invalid Configurations for UCI
	
	
	
	Number of pre-frozen bits
	
	
	

	12
	18
	32
	14
	0
	0.667
	1

	12
	19
	32
	13
	1
	0.632
	0.947

	12
	20
	32
	12
	2
	0.6
	0.9

	13
	19
	32
	13
	0
	0.684
	1

	13
	20
	32
	12
	1
	0.65
	0.95

	13
	21
	32
	11
	2
	0.619
	0.905

	14
	20
	32
	12
	0
	0.7
	1

	14
	21
	32
	11
	1
	0.667
	0.952

	14
	22
	32
	10
	2
	0.636
	0.909

	15
	21
	32
	11
	0
	0.714
	1

	15
	22
	32
	10
	1
	0.682
	0.955

	15
	23
	32
	9
	2
	0.652
	0.913

	16
	22
	32
	10
	0
	0.727
	1

	16
	23
	32
	9
	1
	0.696
	0.957

	16
	24
	32
	8
	2
	0.667
	0.917

	17
	23
	32
	9
	0
	0.739
	1

	17
	24
	32
	8
	1
	0.708
	0.958

	17
	25
	32
	7
	2
	0.68
	0.92

	18
	24
	32
	8
	0
	0.75
	1

	18
	25
	32
	7
	1
	0.72
	0.96

	18
	26
	32
	6
	2
	0.692
	0.923

	19
	25
	32
	7
	0
	0.76
	1

	19
	26
	32
	6
	1
	0.731
	0.962

	19
	27
	32
	5
	2
	0.704
	0.926

One solution for these invalid configurations with is to reduce the number of PC bits whenever necessary so that the number of PC bits is as close to 3 as possible in all cases. For example, one can set the number of PC bits as

instead of always requiring for . Another solution is to simply set when .
In the appendix, Figure 2 to Figure 6 compare the BLER performance between these two solutions. As shown in the figures, there is virtually no performance gain attainable with reduced number of PC bits compared to the performance with no PC bit. As a result, we prefer to simply set the number of PC bits to zero for all the invalid configurations, i.e., set when when . Furthermore, since the invalid cases occur only when , which was not tested in PC bits design, it is easiest for implementation and specification to set when .
While the number of PC bits can be varied, the number of CRC bits can not be reduced. Thus for the Polar code construction to be valid, in general is required, where is the the rate matching output sequence length. In the TS 38.212 specification, is represented by variable ‘E’, is represented by variable ‘K’.

[bookmark: _Toc510821596][bookmark: _Toc510821690][bookmark: _Toc510823199]Some configurations of and in NR UCI are invalid as there is not enough available positions for 3 PC bits.
[bookmark: _Toc510811945]
[bookmark: _Toc510821154][bookmark: _Toc510821692]For polar encoding, Set when .

**** Start of Text Proposal to TS 38.212 ***
[bookmark: _Toc505960223][bookmark: _Toc508811998]5.3.1	Polar coding

The bit sequence input for a given code block to channel coding is denoted by, where is the number of bits to encode. After encoding the bits are denoted by, where and the value of is determined by the following:

Denote by the rate matching output sequence length as given in Subclause 5.4.1; The UE is not expected to transmit or receive the bit sequence if E < K.
….

[bookmark: _Toc505960225][bookmark: _Toc508812000]5.3.1.2	Polar encoding
…

Denote as a set of bit indices in Polar sequence , and as the set of other bit indices in Polar sequence , where and are given in Subclause 5.4.1.1, , , and is the number of parity check bits. =0 when N=32.
**** End of Text Proposal to TS 38.212 ***

Conclusions
In this contribution, we made the following observations:
Observation 1	The overhead is small and acceptable when scheduling one of the missing packet sizes using the existing TBS table.
Observation 2	The final quantization step in the TBS determination rounds up to the nearest value in the TBS table. This means that when adding entries to the TBS table, the number of ways of scheduling a new entry reduces the number of ways of scheduling the next TBS by the same number.
Observation 3	In certain cases, adding the missing packet sizes to the TBS table does not allow for scheduling of the added sizes, see for example TBS = 328 bits in Tables 4-5, or TBS = 560 in Table 5.
Observation 4	Even if the added sizes are possible to schedule, this is at the cost of scheduling opportunities for other TB sizes, in some cases removing the possibility of scheduling them at all, see for example TBS = 352 bits in Tables 4-5.
Observation 5	When considering the need of supporting VoIP in an efficient manner, the existing entries in Table 5.1.3.2-2 in TS 38.214 are sufficient. There is no need to add or change any entries.
Observation 6	Some configurations of and in NR UCI are invalid as there is not enough available positions for 3 PC bits.

Based on the discussion in this contribution we make the following proposals:
Proposal 1	Initialize the CRC shift register of PBCH to all-ones by prepending 24 ones in front of the information bits.
Proposal 2	For polar encoding, Set when .

[bookmark: _In-sequence_SDU_delivery]References
R2-1806095, Transport Block size for NR VoIP, Sharp, NTT DOCOMO, INC., KDDI, Kyocera, Fujitsu, NEC, TSG-RAN WG2 Meeting #101bis, Sanya, China, 16th – 20th April.

Appendix. Polar code performance with and without PC bits

[image: Z:\projects\channel_coding\polar_matlab_new\results\templates\figures\UL_QPSK_K13_M21_AdaptPCBits.tif]
[bookmark: _Ref498694351][bookmark: _Ref498694047]Figure 2.	BLER performance comparison between reduced number of PC Bits and no PC bit
for and
[image: Z:\projects\channel_coding\polar_matlab_new\results\templates\figures\UL_QPSK_K14_M22_AdaptPCBits.tif]
Figure 3.	BLER performance comparison between reduced number of PC Bits and no PC bit
for and
[image: Z:\projects\channel_coding\polar_matlab_new\results\templates\figures\UL_QPSK_K15_M23_AdaptPCBits.tif]
Figure 4.	BLER performance comparison between reduced number of PC Bits and no PC bit
for and
[image: Z:\projects\channel_coding\polar_matlab_new\results\templates\figures\UL_QPSK_K16_M24_AdaptPCBits.tif]
Figure 5.	BLER performance comparison between reduced number of PC Bits and no PC bit
for and
[image: Z:\projects\channel_coding\polar_matlab_new\results\templates\figures\UL_QPSK_K18_M26_AdaptPCBits.tif]
[bookmark: _Ref510808298]Figure 6.	BLER performance comparison between reduced number of PC Bits and no PC bit
for and

	6/10	
image1.wmf
(

)

PRB

RE

RE

n

N

N

×

=

'

,

156

min

oleObject1.bin

image2.wmf
PRB

oh

PRB

DMRS

sh

symb

RB

sc

RE

N

N

N

N

N

-

-

×

=

'

oleObject2.bin

image3.wmf
12

=

RB

sc

N

oleObject3.bin

image4.wmf
sh

symb

N

oleObject4.bin

image5.wmf
PRB

DMRS

N

oleObject5.bin

image6.wmf
PRB

oh

N

oleObject6.bin

image7.wmf
u

×

×

×

=

m

RE

Q

R

N

N

info

oleObject7.bin

oleObject8.bin

oleObject9.bin

oleObject10.bin

image8.tiff

image9.wmf
1

3

2

1

0

'

,...,

'

,

'

,

'

,

'

-

A

a

a

a

a

a

oleObject11.bin

image10.wmf
1

3

2

1

0

,...,

,

,

,

-

L

p

p

p

p

p

oleObject12.bin

image11.wmf
A

oleObject13.bin

image12.wmf
L

oleObject14.bin

image13.wmf
1

3

2

1

0

'

,...,

'

,

'

,

'

,

'

-

+

L

A

a

a

a

a

a

oleObject15.bin

image14.wmf
1

'

=

i

a

oleObject16.bin

image15.wmf
1

,...,

1

,

0

-

=

L

i

oleObject17.bin

image16.wmf
L

i

i

a

a

-

=

'

oleObject18.bin

image17.wmf
1

,...,

1

,

-

+

+

=

L

A

L

L

i

oleObject19.bin

oleObject20.bin

oleObject21.bin

image18.wmf
(

)

D

g

CRC24C

oleObject22.bin

image19.wmf
1

3

2

1

0

,...,

,

,

,

-

B

b

b

b

b

b

oleObject23.bin

image20.wmf
k

k

a

b

=

oleObject24.bin

image21.wmf
1

,...,

2

,

1

,

0

-

=

A

k

oleObject25.bin

image22.wmf
A

k

k

p

b

-

=

oleObject26.bin

image23.wmf
1

,...,

2

,

1

,

-

+

+

+

=

L

A

A

A

A

k

oleObject27.bin

image24.wmf
L

A

B

+

=

oleObject28.bin

image25.wmf
1

3

2

1

0

,...,

,

,

,

-

K

c

c

c

c

c

oleObject29.bin

image26.wmf
K

oleObject30.bin

image27.wmf
1

2

1

0

,...,

,

,

-

N

d

d

d

d

oleObject31.bin

image28.wmf
n

N

2

=

oleObject32.bin

image29.wmf
n

oleObject33.bin

image30.wmf
E

oleObject34.bin

image31.wmf
N

I

Q

oleObject35.bin

image32.wmf
1

0

-

N

Q

oleObject36.bin

image33.wmf
N

F

Q

oleObject37.bin

oleObject38.bin

oleObject39.bin

oleObject40.bin

image34.wmf
PC

N

I

n

K

+

=

Q

oleObject41.bin

image35.wmf
N

I

N

F

N

Q

Q

-

=

oleObject42.bin

image36.wmf
PC

n

oleObject43.bin

image37.wmf
PC

n

oleObject44.bin

image38.tiff

image39.tiff

image40.tiff

image41.tiff

image42.tiff

